999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于時空分解的梯級泵站輸水系統運行效率計算方法與應用

2017-04-24 03:45:35桑國慶張雙虎宋淑馨
農業工程學報 2017年6期
關鍵詞:泵站效率優化

桑國慶,張雙虎,張 林,宋淑馨

?

基于時空分解的梯級泵站輸水系統運行效率計算方法與應用

桑國慶1,2,張雙虎2,張 林3,宋淑馨1

(1. 濟南大學資源與環境學院,濟南 250061; 2. 中國水利水電科學研究院,北京 100038;3. 南水北調東線山東干線有限責任公司,濟南 250012)

針對大型串并聯梯級泵站輸水系統存在組成復雜性和運行動態性,難以對實時運行狀態進行評價和優化的問題,提出了一種基于時空分解的串并聯梯級泵站輸水系統運行效率計算方法。在空間上將系統劃分為并聯系統、串聯系統、泵站和輸水子系統。在時間上將動態調度過程劃分為若干個平衡狀態,定量計算水力、水量損失等影響因素。基于能量傳輸、轉化原理,將各變量進行歸一化處理,依次建立泵站、輸水子系統和串、并聯系統運行效率表達式,可對各子系統及整體實時運行效率進行計算,并為后期系統運行效率優化提供了參考。結合2016年典型并聯梯級泵站輸水系統調度運行數據,對該方法進行了實踐。結果表明,與傳統運行效率計算方法相比,該方法在效率計算的實時性和全面性上有明顯提升。不僅能夠直觀反映各級泵站實時運行情況,還可定量評估各輸水渠道以及系統整體運行情況,有助于發現影響系統運行效率的薄弱環節,為實時調度提供參考。

泵;優化;效率;梯級泵站;輸水系統

0 引 言

大型串并聯梯級泵站輸水工程一般通過泵站提水,渠道、管道輸水,湖泊或水庫調蓄,是由泵站(攔污柵、水泵裝置、其他輔助裝置等)、節制閘和渠道等設備、設施組成的復雜輸水系統,即串并聯梯級泵站輸水系統[1]。各級泵站是系統主要控制單元,泵站之間由渠道剛性、半剛性串聯或并聯,調蓄能力較小。各站之間的流量、水位互相影響。系統運行過程中,受制于輸水工況動態變化和未知的外界擾動,往往處于動態變化中。綜上,由于系統組成復雜性和運行動態性,調度運行難度較大,如僅關注系統局部,而不對系統中各部分進行統一協調,往往會造成顧此失彼,系統運行效率低下[2-5]。串并聯梯級泵站輸水系統運行效率代表系統中各設備、設施的整體運行狀態,決定了輸水能耗及費用,是系統運行的重要評價指標,也是衡量調水工程是否成功的標準之一[6]。

以往針對梯級泵站輸水系統效率的研究多集中于單級泵站效率,較少提出串并聯系統整體運行效率理念。在研究中,往往忽略梯級間水力、水量損失等因素。事實上,長距離梯級泵站輸水系統的水力、水量損失較大,往往對系統運行效率影響較大。近年來,部分學者開始注重滲漏、蒸發、水力損失等因素對系統整體效率的影響,提出了大型調水系統整體運行效率研究的內容、途徑和方法[7-9]。此外,現有系統運行效率的計算方法多屬于完成效率、平均效率范疇[10-11],并不能反映實時或時段內的系統運行狀態。綜上,目前尚未形成一整套能夠全面反映串并聯梯級泵站輸水系統實時整體運行狀態的理論體系,并在此基礎開展運行效率影響因素定量分析及優化研究。

本文針對串并聯梯級泵站輸水系統組成復雜性和運行動態性的難題,提出了基于時空分解的串并聯梯級泵站輸水系統運行效率計算方法:一方面,在空間維度上將并聯系統劃分為若干串聯系統,將串聯系統劃分為泵站和輸水子系統;另一方面,從時間維度上提出動態平衡的理念,將調度過程分為若干個相對平衡時段,對時段內水量、水力損失等參數進行定量計算;在此基礎上建立串并聯梯級泵站輸水系統運行效率表達式,并對系統運行效率的影響因素進行定量分析,為系統運行效率優化提供理論基礎。同時本文結合典型梯級泵站輸水系統調度運行進行了實踐研究。

1 基于時空分解的串并聯梯級泵站輸水系統運行效率計算方法

1.1 空間上的系統結構分解

圖1為串并聯梯級泵站輸水系統示意圖。根據系統工程理論,在空間維度上,將梯級泵站輸水系統中調蓄湖泊、各泵站、渠段等設備、設施作為統一的整體。首先將并聯梯級泵站輸水系統劃分為若干串聯系統,在此基礎上將串聯梯級泵站輸水系統劃分為泵站、輸水子系統2個相互關聯的子系統[12],其系統結構見圖2。其中,泵站子系統是整個系統的能量轉化核心,由多級泵站組成。泵站內各機組運行狀態決定了能量轉化的效率,即泵站子系統的效率。

輸水子系統是整個系統能量傳輸紐帶,由級間的渠道、管道、攔污柵等設施組成,其水流運動狀態決定了傳輸過程中的能量損耗率,即輸水子系統效率。泵站、輸水2個子系統通過級間水力(水位、流量)要素相互關聯,2個子系統共同決定了系統運行效率。分別逐一明確串并聯梯級泵站輸水系統的邊界條件、狀態變量、決策變量,見表1。

1.2 時間上平衡時段的分解

受制于調度工況的動態變化和未知的外界擾動,串并聯梯級泵站輸水系統內部往往處于動態變化中。系統的調度目標之一是通過合理的調度,使系統保持在一定的平衡狀態,避免泵站頻繁開啟和調節。由此,系統的動態運行過程可劃分為若干個相對平衡狀態以及過渡狀態,系統在不同相對平衡狀態之間轉化,即處于動態平衡中,見圖3。在相對平衡狀態下,可對時段內泵站性能參數、水力和水量損失等參數進行定量計算,進而可對其整體運行效率進行計算和分析,為串并聯梯級泵站輸水系統運行效率計算提供了前提條件。

表1 串并聯梯級泵站輸水系統變量分析

1.3 串并聯梯級泵站輸水系統影響因素定量計算

基于上述時空分解理論,可對一定時段內的泵站效率、水力和水量損失等影響因素進行定量計算。其中,平衡時段內水力損失、泵站效率等參數可直接取時段均值。對于水量損失,由于梯級水量損失包括滲漏、蒸發、支流回水等,難以用公式表示,可根據時段內的損失總量[13],換算為單位輸水長度上的瞬時損失流量。時段劃分可根據渠段水量損失特性劃分,一般可劃分為輸水初期、中期和后期3個階段。

式中(j?1, j)為時段Dt內,第(?1)和級泵站間,單位長度渠道上的流量損失值,m3/s;DDt為第(?1)和級泵站間渠道在輸水時段D內的蓄量變化值,m3;W(j?1,j)為由于第(?1)和級泵站流量差引起的渠道蓄量變化值,m3;(j?1,j)為第(?1)和級泵站間渠道長度,km。

綜上,針對串并聯梯級泵站輸水系統運行效率計算存在的復雜性和動態性難題,通過空間上的系統分解和時間上平衡狀態劃分,定量計算泵站性能、水力、水量損失等參數,構建了基于時空分解的串并聯梯級泵站輸水系統運行效率的理論基礎。

2 串并聯梯級泵站輸水系統運行效率表達式

在基于時空分解的串并聯梯級泵站輸水系統運行效率計算方法基礎上,分別提出泵站子系統和輸水子系統效率的定義和表達式,在此基礎上將兩者關聯,依次提出串聯、并聯梯級泵站輸水系統運行效率定義及表達式。

2.1 泵站子系統效率表達式

泵站子系統效率是反映各級泵站運行狀態的綜合指標。泵站子系統效率可定義為水體經各級泵站提升后,所獲得的能量之和與各級泵站所消耗能量之和的比值。在單機組、單級泵站效率計算的基礎上,綜合各泵站的效率,給出泵站子系統效率ps表達式

(3)

(4)

式中ps為泵站子系統效率;Q為第級泵站流量,m3/s;為水的密度,kg/m3;為重力加速度,m/s2;為梯級泵站個數;為泵站內機組的個數;TP為水體經過第級泵站提升所獲得的能量,kW;TP′為第級泵站提水所需消耗的能量,kW;h′h分別為第級泵站進、出水池水位,m;H為第級泵站的揚程,m,;為泵站流量為Q、揚程為H工況下,第級泵站內各抽水裝置聯合運行的效率值,即單級泵站效率;為泵站內抽水裝置編號;為泵站內第個抽水裝置的流量,當揚程H一定時,其為水泵葉片安放角θ、機組轉速n的函數;為第個抽水裝置的有效輸出功率;為第個抽水裝置的輸入功率;set,i為第個抽水裝置的效率,本文將泵站進、出水池的效率并入輸水子系統效率中;為水泵裝置效率,可通過裝置模型數據換算或實際運行測試得出[14-15],為傳動效率,為電機效率。

2.2 輸水子系統效率表達式

輸水子系統效率是反映梯級間渠道、攔污柵、閘門等整體輸水狀態的指標。輸水子系統效率定義為水體經泵站提升后,經過級間渠道、攔污柵、閘門等設備、設施輸送到目的地,最終獲得的凈能量與水體經過各級泵站提水獲得的總能量的比值。水力、水量損失可理解為泵站能量損失的延伸,是影響輸水子系統效率的主要因素。根據是否考慮級間水力、水量損失,級間是否有分水任務,可分為3種情況。

1)計入級間水力損失,級間無分水情況。僅計入水力損失,不考慮輸水水量損失,且級間無分水任務情況下,系統末級泵站輸出水體的凈能量即系統最終獲得的凈能量,輸水子系統效率cs表達式為

(6)

式中cs為輸水子系統效率;TP為水體經過泵站、渠道(管道)輸送到目的地(末級泵站出口)最終獲得的凈能量,kW;H為最末級泵站輸出水體獲得的有效揚程,即梯級間凈揚程;為第和(+1)級泵站間渠道的水力損失,主要與級間流量、泵站進、出水池水位、糙率等因素相關,無實測資料時,可采用水力學模型進行預測。

2)考慮級間水力及水量損失,級間無分水情況。考慮級間水力及水量損失,級間無分水情況下,扣除級間流量損失,末級泵站輸出水體的凈能量即為系統最終獲得的凈能量,輸水子系統效率cs表達式為

(8)

式中1為首級泵站的輸出流量,m3/s;Q為最末級泵站所輸出的流量,等于首級泵站的流量減去級間的水量損失,m3/s,見式(8);(j-1,j)為第(?1)和泵站間渠道長度,m;(j-1, j)為第(?1)和泵站間,單位長度渠道的流量損失值,m3/(s·m);Q為經過第級泵站的流量,數值上等于首級泵站減去第1級至級間的流量損失,m3/s,。

3)考慮級間水力、水量損失,級間分水情況。考慮級間水力、水量損失,級間有分水情況下,系統最終輸出水體的凈能量包括2部分:一部分為末級泵站輸出水體獲得的凈能量;另一部分為沿線分水口輸出水體獲得的凈能量。輸水子系統效率cs表達式為

(10)

(11)

式中H為最末級泵站輸出水體獲得的有效揚程,m;Q為最末級泵站所輸出的流量,m3/s,等于首級泵站流量減去沿線水量損失和分水流量,見式(10);z為第(?1)和泵站間的分水口總個數;k為第(?1)和泵站間分水口序號;為第(?1)和泵站間,第k個分水口的分水流量,m3/s;、分別為第k個分水口的高程、分水獲得的凈揚程,m;;Q為第級泵站的輸出流量,m3/s,等于首級泵站流量減去第級泵站前所有流量損失和分水流量,見式(11)。

2.3 串聯梯級泵站輸水系統運行效率表達式

串聯梯級泵站輸水系統運行效率可定義為在串聯線路上,水體經過多級泵站(泵站子系統)提升和渠道(輸水子系統)傳輸,到達目的地后所獲得的凈能量與各級泵站消耗總能量的比值,等于泵站子系統效率與輸水子系統效率的乘積。根據輸水子系統效率的3種不同表達式,串聯梯級泵站輸水系統運行效率pcs的表達式分別為

1)計入級間水力損失,沿線無分水情況

2)計入級間水力及水量損失,級間無分水情況

(13)

3)計入級間水力、水量損失,級間有分水情況

式中pcs為串聯梯級泵站輸水系統運行效率。

2.4 并聯梯級泵站輸水系統運行效率表達式

并聯梯級泵站輸水系統運行效率定義為:水體經過各串聯線路,到達目的地后獲得的凈能量與各串聯梯級泵站輸水系統內各級泵站消耗總能量的比值。假定并聯梯級泵站輸水系統包含條串聯線路,根據是否計入級間水力、水量損失,級間是否有分水任務,3種工況下并聯梯級泵站輸水系統運行效率表達式分別見式(15)、(16)、(17)。當=1時,則等同于串聯梯級泵站輸水系統運行效率公式。

1)計入級間水力損失,沿線無分水情況

2)計入級間水力及水量損失,級間無分水情況

(16)

3)計入級間水力、水量損失,級間有分水情況

式中bpcs為并聯梯級泵站輸水系統運行效率;為串聯線路序號;為串聯線路總數。由此可得,串并聯梯級泵站輸水系統運行效率均可轉化為以梯級間流量,各級泵站進、出水池水位,各級泵站效率為變量的函數,在此基礎上可建立相應的優化模型[16-23],采用動態規劃、粒子群等方法求解[24-28]。

3 典型并聯梯級泵站輸水系統運行效率計算實例及分析

3.1 典型并聯梯級泵站輸水系統

以典型并聯梯級泵站輸水系統為研究對象,該系統上、下游邊界均為調蓄湖泊(S1、S2),系統包括3個梯級,6座低揚程、大流量的泵站,從上游至下游依次為A、A1,B、B1,C、C1;6段輸水河道S1-A、S1-A1,A-B、A1-B1,B-C、B1-C1。可分為2個串聯梯級泵站輸水系統,其中串聯系統1為S1-A-B-C(S2)、串聯系統2為S1-A1-B1-C1(S2),2個串聯系統設計輸水流量分別為100、200 m3/s,見圖4。

根據典型并聯梯級泵站輸水系統2016年1月-6月調度數據,將整個調度過程可劃分為個平衡狀態,從中選取1月18日-1月28日、5月6日-5月12日和6月14日-6月20日 3個典型時段平衡狀態,在此基礎上分別計算各子系統效率和系統整體運行效率。

3.2 泵站子系統運行效率計算及分析

基于實測運行數據,根據式(2)、(3)、(4),分別計算平衡狀態1~3各級泵站抽水裝置效率、泵站子系統效率。以串聯系統1為例,泵站子系統效率計算結果見表2,基本結論如下:泵站子系統效率與各泵站抽水裝置效率正相關,泵站抽水裝置效率取決于各機組性能參數及流量、揚程組合。以平衡狀態1、3為例,兩者梯級凈揚程分別為7.10和7.30 m,單機組流量基本相同,但兩者運行效率分別為69%、74%,原因在于后者的各級泵站效率分布更為均衡。

3.3 輸水子系統效率計算及分析

根據式(7)計算輸水子系統效率,以串聯系統1為例,輸水子系統效率計算結果見表3,基本結論如下:1)輸水子系統效率與沿線水力、水量損失負相關。如平衡狀態2、3的水力損失分別為0.64、1.33 m,水量損失分別為5.92%、2.98%,輸水子系統效率分別為89%、84%;2)水力損失主要包括河道、引水渠、攔污柵等的水力損失。正常工況下,水力損失隨流量增加而增加。其中,平衡狀態3,S1—A渠段水力損失較正常工況偏大,主要原因在于A泵站攔污柵有輕微堵塞現象。對于渠道水力損失預測,可構建渠道水力學模型[28-29],建立水力損失與上游水位、流量的相關關系;對冰期、攔污柵堵塞[30]等工況下水力損失需要進行單獨處理;3)水量(滲漏、蒸發)損失與水位、天氣、地下水等因素相關。可結合長期輸水規律,根據式(1),分時段計算S1-A、A-B、B-C(S2)各渠段水量損失,并換算為瞬時損失流量或比率。

表2 泵站子系統效率計算結果

表3 輸水子系統效率計算結果

3.4 串聯梯級泵站輸水系統運行效率計算及分析

根據式(13),可計算各串聯梯級泵站輸水系統運行效率,以串聯系統1為例,串聯梯級泵站輸水系統運行效率計算結果見表4,基本結論如下:1)一定梯級凈揚程情況下,串聯梯級泵站輸水系統運行效率取決于泵站、輸水子系統效率組合。2)不同平衡狀態下,系統運行效率區間為58.65%~62.16%。泵站子系統是系統優化的核心,但不能忽視特殊工況下輸水子系統效率的影響。

3.5 并聯梯級泵站輸水系統運行效率計算及分析

根據式(16),可計算并聯梯級泵站輸水系統運行效率,并聯梯級泵站輸水系統運行效率計算結果見表5。基本結論如下:1)同一平衡狀態下,不同串聯系統運行效率有一定差異。平衡狀態1下串聯系統1和2運行效率分別為58.65%、54.62%;2)不同平衡狀態下,并聯系統效率區間為56.36~60.63%,尚有較大的優化空間。2)梯級凈揚程和總輸水流量一定情況下,并聯梯級泵站輸水系統運行效率取決于不同串聯系統運行效率組合,以及對應的輸水流量分配。3)可根據不同串聯系統效率特性,制定流量優化分配方案,以提高并聯系統運行效率。

表4 串聯梯級泵站輸水系統運行效率計算結果

表5 并聯梯級泵站輸水系統運行效率計算結果

4 結論與討論

1)針對串并聯梯級泵站輸水系統運行中存在的復雜性和動態性,難以對其效率定量評價難題,本文提出了一套串并聯梯級泵站輸水系統實時運行效率計算方法,該方法通過調度系統在時間和空間上的分解,基于能量傳輸、轉化原理,將系統中水力、水量損失等變量進行歸一化處理,依次建立泵站、輸水子系統和串、并聯系統實時運行效率表達式,可對各子系統和整體實時運行效率進行計算。

2)該方法在典型并聯梯級泵站系統的應用表明,與傳統單一泵站效率和完成效率計算方法相比,該方法在效率計算的實時性和全面性上有明顯提升。一方面,該方法可計算系統實時運行效率值,有利于發現影響系統運行效率的薄弱環節。另一方面,該方法不僅能夠直觀反映系統中各級泵站實時運行情況,還可定量評估各輸水渠道以及系統整體運行情況,為實時調度提供了有利支撐。

本文建立的串并聯梯級泵站輸水系統運行效率計算方法為系統的優化提供了參考,考慮一定約束條件,可建立運行效率優化模型,求解優化運行方案。其中梯級水位、流量是2個核心優化變量,優化包含單變量和雙變量2個層次的優化。單變量優化即水位(揚程)優化:在一定流量和梯級凈揚程下,尋求一個優化水位分配,使系統運行效率最優;雙變量優化即水位優化下的流量優化:一定梯級凈揚程下,尋求一個最適宜流量值以及對應的梯級水位最優組合,使系統運行效率全局最優。

[1] 桑國慶,曹升樂,郭瑞,等. 基于分時電價的梯級泵站輸水系統日優化運行[J]. 排灌機械工程學報,2013,31(8):688-695.

Sang Guoqing, Cao Shengle, Guo Rui, et al. Optimization of cost per day of cascade pumping station water-delivery system[J]. Journal of irrigation and drainage engineering, 2013, 31(8): 688-695. (in Chinese with English abstract)

[2] 馮曉莉,仇寶云. 考慮河道輸水損失的大型泵站系統運行優化[J]. 農業工程學報,2015,31(17):35-41.

Feng Xiaoli, Qiu Baoyun. Optimal operation for large pumping station system based on water transferring losses of river[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 35-41. (in Chinese with English abstract)

[3] 馮曉莉,仇寶云,楊興麗,等. 大型泵站運行優化方法及其應用[J]. 排灌機械工程學報,2011,29(2):127-132.

Feng Xiaoli, Qiu Baoyun, Yang Xingli, et al. Optimal methods and its application of large pumping station operation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(2): 127-132. (in Chinese with English abstract)

[4] 馮曉莉,仇寶云,王斐,等. 南水北調東線高港泵站優化運行方案研究[J]. 水利學報,2010,41(4):412-418.

Feng Xiaoli, Qiu Baoyun, Wang Fei, et al. Study on optimal operation schemes of Gao gang pumping station in eastern route of south-to-north water transfer project[J]. Journal of Hydraulic Engineering, 2010, 41(4): 412-418. (in Chinese with English abstract)

[5] 馮曉莉,仇寶云. 大型泵站系統運行優化模型與節能效果比較[J]. 農業工程學報,2012,28(23):46-51.

Feng Xiaoli, Qiu Baoyun. Optimal operation models and comparison of their energy-saving effects for large pumping station system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(23): 46-51. (in Chinese with English abstract)

[6] 曹鳴,姚青云. 梯級泵站優化調度研究進展[J]. 寧夏農學院學報,2003,24(4):101-106.

Cao Ming, Yao Qingyun. Progress of studies on optimization operation for multi stage pumping station[J]. Journal of Ningxia Agricultural College, 2003, 24(4): 101-106. (in Chinese with English abstract)

[7] 黃海田,仇寶云,王斐. 泵站+渠道構成的站渠系統調水效率概念的建立與計算[J]. 灌溉排水學報,2007,26(4B):16-17.

Huang Haitian, Qiu Baoyun, Wang Fei. The establishment and calculation of pumping station-canal system water transfer efficiency concept[J].Journal of Irrigation and Drainage, 2007, 26(4B): 16-17. (in Chinese with English abstract)

[8] 黃海田,仇寶云,馬倩,等. 基于系統理念對東線江蘇境內一期工程進行調水效率研究的設想[J]. 南水北調與水利科技,2007,5(2):3-5.

Huang Haitian, Qiu Baoyun, Ma Qian, et al. Preview on water diversion efficiency research in the first phase of the eastern route of south to north water diversion project in Jiangsu province based on system conception[J]. South to North Water Transfers and Water Science & Technology, 2007, 5(2): 3-5. (in Chinese with English abstract)

[9] 黃海田,仇寶云,顏紅勤,等. 多級調水-供水-蓄水結合泵站-渠道-湖庫系統效率計算[J]. 水利水運工程學報,2007(4):21-26. Huang Haitian, Qiu Baoyun, Yan Hongqin, et al. Efficiency computation of multi-stage pumping station-canal-lake reservoir system for water transfer-supply-storage[J]. Hydro-Science and Engineering, 2007(4): 21-26. (in Chinese with English abstract)

[10] 鄭世宗,賈宏偉,崔遠來. 區分工程狀況與管理水平影響的渠系水利用效率指標體系的構建[J]. 農業工程學報,2013,29(18):1-7.

Zheng Shizong, Jia Hongwei, Cui Yuanlai. Structure of assessment indicator system of water use efficiency for distinguishing engineering conditions and management level of canal-system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 1-7. (in Chinese with English abstract)

[11] 崔遠來,譚芳,鄭傳舉,等. 不同環節灌溉用水效率及節水潛力分析[J]. 水科學進展,2010,21(6):787-793.

Cui Yuanlai, Tan Fang, Zheng Chuanju, et a1. Analysis of irrigation efficiency and water saving potential at different scales[J]. Advances in Water Science, 2010, 21(6): 787-793. (in Chinese with English abstract)

[12] 桑國慶,曹升樂,郭瑞,等. 梯級泵站輸水系統運行效率優化模型[J]. 系統工程理論與實踐,2014,34(8):2179-2185.

Sang Guoqing, Cao Shengle, Guo Rui, et al. Research on optimization of whole efficiency of cascade pumping station water-delivery system[J]. Systems Engineering Theory & Practice, 2014, 34(8): 2179-2185. (in Chinese with English abstract)

[13] 胡周漢,方國華,馬兆龍,等. 南水北調東線一期輸水工程水量損失計算方法及應用[J]. 水電能源科學,2016,34(8):45-49.

Hu Zhouhan, Fang Guohua, Ma Zhaolong, et al. Calculation and application of water losses in the first-phase in east route of south-to-north water diversion project[J]. Water Resources and Power, 2016, 34(8): 45-49. (in Chinese with English abstract)

[14] 嚴登豐. 泵與泵裝置特性預測[J]. 排灌機械工程學報,2012,30(3):315-323.

Yan Dengfeng. Performance prediction for pump and pumping system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(3): 315-323. (in Chinese with English abstract)

[15] 龍新平,朱勁木,劉梅清,等. 基于性能曲面擬合的泵站優化調度分析[J]. 水利學報,2004,35(11):27-31.

Long Xinping, Zhu Jinmu, Liu Meiqing, et al. Optimized dispatch of pumping stations based on performance curve surface fitting[J]. Journal of Hydraulic Engineering, 2004, 35(11): 27-31. (in Chinese with English abstract)

[16] 程吉林,張禮華,張仁田,等. 泵站葉片可調單機組日運行優化方法研究[J]. 水利學報,2010,41(4):499-504.

Cheng Jilin, Zhang Lihua, Zhang Rentian, et al. Study on optimal daily operation of single adjustable-blade pump unit in pumping station[J]. Journal of Hydraulic Engineering,2010, 41(4): 499-504. (in Chinese with English abstract)

[17] 周龍才. 長渠道梯級供水泵站變頻轉速最優匹配[J]. 武漢大學學報,2010,43(5):576-580.

Zhou Longcai. Optimal matching of cascade water supply pumping stations with long channels by variable frequency speed control[J]. Engineering Journal of Wuhan University,2010, 43(5): 576-580. (in Chinese with English abstract)

[18] 龔懿,程吉林,張仁田. 淮安-淮陰段梯級泵站群運行優化[J]. 農業工程學報,2013,29(22):59-67.

Gong Yi, Cheng Jilin, Zhang Rentian. Operation optimization of Huai’an-Huaiyin multistage pumping stations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 59-67. (in Chinese with English abstract)

[19] Mari?o M A, Moradi-Jalal M, Afshar A. Optimal design and operation of irrigation pumping stations[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(3): 149-154.

[20] Vieira F, Ramos H M. Optimization of operational planning for wind/hydro hybrid water supply systems[J]. Renewable Energy, 2009, 34(3): 928-936.

[21] 張禮華. 南水北調提水泵站站內優化運行模式研究[D]. 揚州:揚州大學,2007.

Zhang Lihua. Study on Optimal Function of the Lift Pump Stations in the South-to-North Water Transfer Project[D]. Yangzhou: Yangzhou University, 2007. (in Chinese with English abstract)

[22] 專祥濤,李明龍. 基于移峰填谷的排水泵站優化調度研究[J]. 武漢大學學報工學版,2011,44(6):773-778.

Zhuan Xiangtao, Li Minglong. Optimal operation of pumping stations with load shifting[J]. Engineering Journal of University, 2011, 44(6): 773-778. (in Chinese with English abstract)

[23] 梁興,劉梅清,劉志勇,等. 基于混合粒子群算法的梯級泵站優化調度[J]. 武漢大學學報工學版,2013,46(4):536-539.

Liang Xing, Liu Meiqing, Liu Zhiyong, et al. Optimum dispatching of multistage pumping station based on mixed particle swarm optimization[J]. Engineering Journal of Wuhan University, 2013, 46(4): 536-539. (in Chinese with English abstract)

[24] 龔懿,程吉林,劉靜森. 揚程-水位逐次逼近策略優化梯級泵站群級間河道水位[J]. 農業工程學報,2014,30(22):120-129.

Gong Yi, Cheng Jilin, Liu Jingsen. Water level optimization of water transferring channel in multi-stage pumping stations based on head-water level successive approximation optimization method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 120-129. (in Chinese with English abstract)

[25] 陳曉楠,段春青,邱林,等. 基于粒子群的大系統優化模型在灌區水資源優化配置中應用[J]. 農業工程學報,2008,24(3):103-106.

Chen Xiaonan, Duan Chunqing, Qiu Lin, et al. Application of large scale system model based on particle swarm optimization to optimal allocation of water resources in irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 103-106. (in Chinese with English abstract)

[26] 龔懿,程吉林,張仁田,等. 淮陰三站變頻變速優化運行的分解-動態規劃聚合法[J]. 農業工程學報,2011,27(3):79-83.

Gong Yi, Cheng Jilin, Zhang Rentian, et al. Optimization on variable speed operation with VFD for No.3 Huaiyin pumping station based on decomposition-dynamic programming aggregation method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 79-83. (in Chinese with English abstract)

[27] 張禮華,程吉林,張仁田,等. 基于試驗-整數規劃方法的泵站多機組變速優化[J]. 農業工程學報,2011,27(5):156-159.

Zhang Lihua, Cheng Jilin, Zhang Rentian, et al. Research on optimal operation for multi-units with variable speed in one pumping station based on the theory of experimental and integer programming method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 156-159. (in Chinese with English abstract)

[28] 馬吉明,史哲. 南水北調典型寬淺渠道糙率系數研究[J]. 水力發電學報,2007,26(5):75-79.

Ma Jiming, Shi Zhe. Research on the absolute roughness of the typical channel of the south-to-north water diversion project[J]. Journal of Hydroelectric Engineering, 2007, 26(5): 75-79. (in Chinese with English abstract)

[29] 黃會勇,劉子慧,范杰,等. 南水北調中線工程總干渠水力學仿真模型研究[J]. 水利水電技術,2013,44(12):111-115. Huang Huiyong, Liu Zihui, Fan Jie, et al. Study on hydraulic simulation model of main canal of Mid-route of South-to-North Water Transfer Project[J]. Water Resources and Hydropower Engineering, 2013, 44(12): 111-115. (in Chinese with English abstract)

[30] 賀淑全. 攔污柵攔污流動數值模擬與阻力預測[D]. 揚州:揚州大學,2013.

He Shuquan. Numerical Simulation of Trash-barriering Flow of Rack and Prediction of Trash-barriering Resistance[D]. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract)

Calculation method and application on operation efficiency of water transfer system with cascade pumping station based on time and space scale

Sang Guoqing1,2, Zhang Shuanghu2, Zhang Lin3, Song Shuxin1

(1.250061; 2.100038; 3.250012,)

Water resource is distributed unevenly in time and space in the world. With the development of society, water demand is increasing. In some places, water shortage is becoming the bottleneck of the development of social economy. In order to realize the rational allocation of water resources, lots of water diversion projects with cascade pumping stations have been carried out. Water is transferred from areas with plenty of water to areas with more water demand. For example, South-to-North Water Transfer Project is being built in China, which is the largest water transfer project in the world. There are 3 lines for this project, which are East line, Middle line and West line. East line is typical parallel and series cascade pump system, which is the largest pumping station system in the world. Water is pumped from Yangzi River in Yangzhou of Jiangsu Province to North areas including Jiangsu and Shandong Province. At some places old rivers are used for water transfer such as the Grand Canal between Beijing and Hangzhou. At other places new channels are built for water transfer. Some lakes used for storage are connected by these channels and rivers such as Hongze Lake, Nansi Lake and Dongping Lake. From Dongping Lake water flow becomes gravity flow to 2 directions. One route is north to Tianjin finally and the other is east to Jiaodong area. Water transferred to Jiaodong belongs to the first stage. Now the first stage of East line has been finished and is on operation period. It is typical cascade pumping station system for water transfer project. Large scale pumping station in parallel and series is a complex water transfer system. It consists of water pumps, controlling gates, channels or pipes and water lakes or reservoirs, and so on. Water is pumped from low area to high position or pressure pipes. Then it is transferred by channels or pressure pipes to water lakes or reservoirs. Lakes and reservoirs are used for storage and volume adjusting. In this system, pumping stations at different levels are control units. Channels or pipes between pumping station units limit the adjusting ability on water quantity. What’s more, discharge and water level interrelate. During the operation period, water flow is changing dynamically caused by different scenarios or unknown external disturbance. So this system has the characteristics of complexity and dynamic. It is difficult to evaluate and optimize the real-time operation state. So how to control the system accurately becomes a challenge. Normally operation efficiency is one of the important methods for checking the validity. The operation efficiency of cascade pumping stations for water transfer system reflects the operating results of the whole system. It determines the energy consumption and the cost of water transfer. So it is an important evaluation index of system operation. It can also be one of the criteria to measure the success of water transfer project. There are many methods which can be used to calculate out operation efficiency. But these methods are focusing on end efficiency or average efficiency, which cann’t reflect the accurate system running status in real time or a time interval. In order to solve these problems, with a series of research or experiments, the operation efficiency theory based on time and space is presented. In space scale, this system is divided into several subsystems, which are parallel subsystem, series subsystem, pumping station subsystem and water transfer subsystem.Pumping station subsystem consists of different pumping stations at different levels, which is the center of energy transfer of the whole system. Water transfer subsystem consists of different hydraulic structures such as channels, pipes, trash rack, and so on, which is the link of energy transfer. Different subsystems are connected by hydraulic factors such as water level or discharge. The operation efficiency of the whole system is decided by different subsystem. In time scale, it is divided into several parallel states, which are used to calculate pumping station performance, hydraulics loss and water quantity loss. A series of index system and formulas for operation efficiency of large scale pumping station are given out including pumping station subsystem and water transfer subsystem. Based on this, the related influence factors are studied with quantitative analysis. This research provides the theoretical basis for optimizing the operation efficiency of large scale pumping station system. Based on real operation datain 2016 of typical water transfer system with cascade pumping station in parallel, practice is carried out for this theory. Results show that this method can evaluate the operational efficiency accurately and find out the optimized potential factors and bottlenecks of the subsystems and the whole system. The operation efficiency of cascade pumping station system based on time and space scale is decided by different related factors such as water level, discharge and pumping unit power, and so on. So it is necessary to monitor these factors accurately. At the same time, summaries should be made in time about pumping station unit performance, hydraulics, discharge loss, and so on to find out the useful law. In one word, accurate operation efficiency comes from accurate raw data and detailed study. In addition, the operation efficiency can also provide the reference for route comparison and model selection of all-level pumping stations, and therefore, it can also be used for project planning.

pumps; optimization; efficiency; cascade pumping stations; water transfer system

10.11975/j.issn.1002-6819.2017.06.009

TV675

A

1002-6819(2017)-06-0067-09

2016-10-09

2017-01-15

國家科技支撐計劃項目課題(2015BAB07B02);國家青年基金(51409119);山東省省級水利科研與技術推廣項目(SDSLKY201404)

桑國慶,男,山東省濟寧人,副教授,博士,主要從事梯級泵站優化調度、山洪災害防治研究等。濟南 濟南大學資源與環境學院,250061。Email:sangguoqing@163.com

猜你喜歡
泵站效率優化
超限高層建筑結構設計與優化思考
房地產導刊(2022年5期)2022-06-01 06:20:14
張家邊涌泵站建設難點及技術創新實踐
民用建筑防煙排煙設計優化探討
關于優化消防安全告知承諾的一些思考
一道優化題的幾何解法
提升朗讀教學效率的幾點思考
甘肅教育(2020年14期)2020-09-11 07:57:42
2016年河南省己建成泵站數量
全省已建成泵站數量
河南省2014年已建成泵站數量
跟蹤導練(一)2
主站蜘蛛池模板: 91色在线视频| 国产精品综合色区在线观看| 婷五月综合| 欧美成一级| 亚洲精品第1页| 欧美日本在线一区二区三区| 漂亮人妻被中出中文字幕久久| 熟女视频91| 精品久久久久久久久久久| 国产一在线观看| 狠狠色丁香婷婷| 在线观看欧美精品二区| 青草免费在线观看| 在线看片免费人成视久网下载| 亚洲国产一区在线观看| 婷婷99视频精品全部在线观看| 亚洲天堂久久新| 99人体免费视频| 欧美色亚洲| 欧美日韩国产精品综合| 波多野结衣久久精品| 99热这里只有精品免费国产| 亚洲另类国产欧美一区二区| 日韩精品一区二区三区免费在线观看| 日日摸夜夜爽无码| 99热免费在线| 国产欧美综合在线观看第七页| 男女男免费视频网站国产| 国产超碰一区二区三区| 无码AV动漫| igao国产精品| 欧美色香蕉| a毛片免费在线观看| 精品一区二区三区中文字幕| 国产精品视频a| 中美日韩在线网免费毛片视频| 成人av手机在线观看| 日韩经典精品无码一区二区| 国产男人天堂| 99激情网| 一级片一区| 精品国产免费观看| 精品国产黑色丝袜高跟鞋| 亚洲欧美成aⅴ人在线观看 | 在线人成精品免费视频| 伊人国产无码高清视频| 一级爱做片免费观看久久| 欧美成人h精品网站| 亚洲视频免费在线看| 97影院午夜在线观看视频| 中文字幕 91| 99久视频| 久久一日本道色综合久久| 国产成人综合亚洲网址| 玖玖免费视频在线观看| 日韩无码真实干出血视频| 欧美中文字幕在线二区| 欧美日本在线播放| 免费看一级毛片波多结衣| 永久免费AⅤ无码网站在线观看| 色婷婷色丁香| 亚洲成人播放| 亚洲精品无码不卡在线播放| 国产视频大全| 曰韩人妻一区二区三区| 国产精品蜜芽在线观看| 国产精品深爱在线| 国产精品久久久久久久久久98| 亚洲天堂网在线视频| 日本成人福利视频| 久久亚洲高清国产| 国产精品成人不卡在线观看| 国产精品30p| 亚洲国产欧美中日韩成人综合视频| 国产91无码福利在线| 国产精品污视频| 国产成人欧美| 亚洲日韩精品无码专区97| 亚洲第一视频免费在线| 国产三级国产精品国产普男人| 91九色国产porny| 2021无码专区人妻系列日韩|