徐萬(wàn)海, 馬燁璇, 杜 杰, 羅 浩
(天津大學(xué) 水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室, 天津 300072)
45°大傾角傾斜柔性圓柱渦激振動(dòng)不相關(guān)原則實(shí)驗(yàn)驗(yàn)證
徐萬(wàn)海, 馬燁璇, 杜 杰, 羅 浩
(天津大學(xué) 水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室, 天津 300072)
渦激振動(dòng)是誘發(fā)海洋管道與浮式平臺(tái)系泊纜線等細(xì)長(zhǎng)柔性圓柱結(jié)構(gòu)疲勞損傷的重要因素,已有研究大多關(guān)注結(jié)構(gòu)軸向與來(lái)流垂直的情況,實(shí)際的海洋工程中,圓柱結(jié)構(gòu)軸向與來(lái)流并不完全垂直,存在一定傾斜角度。針對(duì)這種復(fù)雜的情況,傾斜圓柱渦激振動(dòng)的不相關(guān)原則被提出,即假定傾斜圓柱渦激振動(dòng)與來(lái)流速度在結(jié)構(gòu)軸向的垂直方向投影分量引起的垂直圓柱情況等價(jià)。然而,較大傾角條件下不相關(guān)原則的正確與否仍未知。為了論證大傾角傾斜柔性圓柱渦激振動(dòng)不相關(guān)原則,開展了長(zhǎng)徑比為350,傾角為45°的傾斜柔性圓柱渦激振動(dòng)實(shí)驗(yàn),采用應(yīng)變傳感器測(cè)量結(jié)構(gòu)應(yīng)變信息,運(yùn)用模態(tài)分析法對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行處理。通過(guò)大傾角傾斜圓柱與垂直圓柱的實(shí)驗(yàn)結(jié)果對(duì)比,發(fā)現(xiàn)在控制模態(tài)轉(zhuǎn)化區(qū)域,傾斜圓柱更容易被激發(fā)高階模態(tài),同時(shí)傾斜圓柱與垂直圓柱在測(cè)點(diǎn)處的應(yīng)變和位移差異較大,并均出現(xiàn)高頻特征。最終得出了較大傾角狀態(tài)下傾斜柔性圓柱渦激振動(dòng)不相關(guān)原則不成立的結(jié)論。
傾斜柔性圓柱;模態(tài)分析法;渦激振動(dòng);不相關(guān)原則
圓柱結(jié)構(gòu)置于一定來(lái)流速度流場(chǎng)中,其兩側(cè)會(huì)發(fā)生交替的旋渦脫落,誘發(fā)“渦激振動(dòng)(Vortex-induced vibrations,VIV)”現(xiàn)象。近年來(lái),渦激振動(dòng)問(wèn)題已得到人們廣泛關(guān)注[1-11]。
然而,已有研究更多關(guān)注來(lái)流與圓柱結(jié)構(gòu)軸向垂直的特殊情形[12-14]。實(shí)際工程中,特別是海洋工程中的懸鏈線立管和海洋浮式結(jié)構(gòu)系泊纜線等結(jié)構(gòu)軸向與來(lái)流并不垂直,存在著不同的傾斜角度。針對(duì)這種復(fù)雜的情況,傾斜圓柱渦激振動(dòng)不相關(guān)原則(Independence Principle, IP)被提出(見(jiàn)圖1),即假定來(lái)流速度為U,傾斜角度為a的圓柱渦激振動(dòng)與來(lái)流速度為Ucos(a)的垂直圓柱情況等價(jià)[15-16]。

圖1 傾斜圓柱渦激振動(dòng)不相關(guān)原則示意圖Fig.1 Independence principle of inclined cylinder
IP原則的提出開辟了傾斜圓柱渦激振動(dòng)研究的新途徑,然而其合理性一直存在爭(zhēng)議。FRANZINI等[17]實(shí)驗(yàn)觀測(cè)了傾斜剛性圓柱渦激振動(dòng)特性,傾角分別為0°、10°、20°、30°、45°,研究發(fā)現(xiàn):傾角<20°時(shí),IP原則正確,傾角>20°,圓柱結(jié)構(gòu)渦激振動(dòng)幅值隨傾角的增大而變小。ZHAO 等[18]采用Petrov-Galerkin 有限元法數(shù)值求解N-S方程,分析了傾角變化范圍為0°~60°的傾斜固定圓柱渦激振動(dòng)特性,發(fā)現(xiàn)傾角<30 °時(shí),斯托羅哈數(shù)和平均阻力系數(shù)與IP原則得到的結(jié)果一致,但升力系數(shù)不滿足IP原則。JAIN等[19]實(shí)驗(yàn)研究了傾角范圍0°~75°的傾斜剛性圓柱渦激振動(dòng),雷諾數(shù)的范圍為500~4 000,實(shí)驗(yàn)結(jié)果表明傾角為20°時(shí),IP原則成立,傾角為45°和60°時(shí)IP原則不再適用。國(guó)內(nèi)亦開展了傾斜圓柱流激振動(dòng)問(wèn)題的部分研究工作。李壽英等[20]采用CFD 軟件CFX5.5 對(duì)直圓柱和斜角30°傾斜圓柱繞流問(wèn)題進(jìn)行了數(shù)值模擬。許常悅等[21]采用大渦模擬方法數(shù)值研究了斜角為60°的偏斜圓柱跨聲速繞流。杜曉慶等[22]同樣采用了大渦模擬方法,研究了斜置圓柱在展向剪切流作用下的氣動(dòng)性能。
近期,傾斜柔性結(jié)構(gòu)渦激振動(dòng)的研究逐步得以重視,BOURGUET等[23]采用DNS方法數(shù)值模擬了長(zhǎng)徑比為50,傾角為60°的傾斜柔性圓柱渦激振動(dòng),計(jì)算雷諾數(shù)為500,重點(diǎn)論證了IP原則是否適用于柔性結(jié)構(gòu),結(jié)果表明,較低的軸向力(τ=T/ρD2U=13.5,τ為無(wú)量綱軸向力,ρ外部流體密度,D圓柱結(jié)構(gòu)外徑,U為來(lái)流速度)不相關(guān)原則不成立,較高軸向力(τ=124)不相關(guān)原則成立。
雖然傾斜圓柱渦激振動(dòng)不相關(guān)原則已得到了初步研究,但是,至今仍缺乏足夠的研究證明不相關(guān)原則的成立條件,特別是針對(duì)于大傾角柔性傾斜圓柱結(jié)構(gòu)渦激動(dòng)研究還存在諸多不足。本文采用模型實(shí)驗(yàn)的方法,觀測(cè)大傾角傾斜柔性圓柱結(jié)構(gòu)的渦激振動(dòng)特性,主要目的是對(duì)傾斜圓柱渦激振動(dòng)的不相關(guān)原則正確性進(jìn)行實(shí)驗(yàn)驗(yàn)證。
實(shí)驗(yàn)在天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室內(nèi)長(zhǎng)137 m、寬7.0 m、深3.3 m的拖曳水池(見(jiàn)圖2(a))中進(jìn)行。實(shí)驗(yàn)中拖車速度間隔為0.05 m/s,范圍為0.05~1.0 m/s,實(shí)驗(yàn)雷諾數(shù)最大可達(dá)16 000,圓柱實(shí)驗(yàn)?zāi)P蛢啥送ㄟ^(guò)萬(wàn)向節(jié)與鋼架相連,軸向力為450 N,鋼架通過(guò)螺栓固定于拖車之上。測(cè)量?jī)煞N工況,圓柱模型傾角為0° 和45°,實(shí)驗(yàn)?zāi)P筒贾萌鐖D2(b)所示。圓柱模型長(zhǎng)為5.6 m,外徑為0.016 m,長(zhǎng)徑比350,內(nèi)芯材質(zhì)為銅管,外表面包裹硅膠管,具體結(jié)構(gòu)參數(shù)參見(jiàn)表1。圓柱模型被均等分為8份,沿軸線方向7個(gè)截面的橫流向和順流向粘貼應(yīng)變片,采集結(jié)構(gòu)振動(dòng)信息。

圖2 實(shí)驗(yàn)示意圖Fig.2 Schematic of the experimental set-up

參數(shù)數(shù)值長(zhǎng)度L/m5.60外徑D/m0.016彎曲剛度EI/Nm217.45軸向力T/N450單位長(zhǎng)度結(jié)構(gòu)質(zhì)量ms(kg·m-1)0.3821質(zhì)量比4ms/(πρD2)1.90長(zhǎng)徑比L/D350
實(shí)驗(yàn)過(guò)程中,采用拖車拖動(dòng)實(shí)驗(yàn)?zāi)P停M來(lái)流均勻作用。待拖車加速平穩(wěn)后,開始測(cè)量采集順流向和橫流向的應(yīng)變信號(hào),采集時(shí)間50 s,采樣頻率100 Hz,滿足奈奎斯特定律。為了驗(yàn)證應(yīng)變采集系統(tǒng)的正確性以及兩端萬(wàn)向節(jié)提供的鉸支邊界條件是否合理,測(cè)量了傾斜柔性圓柱模型在靜水中的固有頻率 (見(jiàn)表2),由

表2 固有頻率
于僅測(cè)量7個(gè)截面的應(yīng)變信息,所以最多能得到前7階固有頻率,對(duì)比測(cè)量數(shù)值與理論計(jì)算式(1)[24]獲得的理論值差異情況。
(1)
式中,m為單位長(zhǎng)度質(zhì)量,包括結(jié)構(gòu)質(zhì)量ms與附加質(zhì)量ma。對(duì)比結(jié)果表明固有頻率測(cè)量值與理論值吻合的十分理想,進(jìn)一步證明了實(shí)驗(yàn)設(shè)計(jì)與信號(hào)采集系統(tǒng)的可信度。
應(yīng)變數(shù)據(jù)采集過(guò)程中會(huì)受到一些低頻干擾和高頻噪音信號(hào)影響,需對(duì)測(cè)得的應(yīng)變信號(hào)進(jìn)行濾波處理。實(shí)驗(yàn)中拖車運(yùn)動(dòng)產(chǎn)生的干擾信號(hào)的頻率不到1.0 Hz,遠(yuǎn)低于實(shí)驗(yàn)中柔性圓柱結(jié)構(gòu)渦激振動(dòng)的響應(yīng)頻率;另外,圓柱模型渦激振動(dòng)的最高響應(yīng)頻率(包括倍頻)<40.0 Hz。在后續(xù)實(shí)驗(yàn)數(shù)據(jù)處理之前,均先采用帶通濾波的方法消除<1.0 Hz的低頻拖車運(yùn)動(dòng)干擾信號(hào)和>40.0 Hz的高頻噪音信號(hào)。
模態(tài)法是柔性圓柱結(jié)構(gòu)渦激振動(dòng)實(shí)驗(yàn)數(shù)據(jù)處理常用的一種方法[25-28],根據(jù)不同離散點(diǎn)獲得的應(yīng)變信息,運(yùn)用模態(tài)法求得圓柱結(jié)構(gòu)任一點(diǎn)的位移信息。分別對(duì)橫流向(Cross-flow,CF)和順流向(In-line,IL)的位移進(jìn)行模態(tài)分解。為簡(jiǎn)化起見(jiàn),僅以CF位移為例。IL位移信息的確定與CF位移類似,在此不再贅述。
橫流向位移為
(2)
式中,y(z,t)為橫流向的位移,z為軸向坐標(biāo),t為時(shí)間;wn(t)為權(quán)重系數(shù);n為圓柱結(jié)構(gòu)的模態(tài)階次;N為確定結(jié)構(gòu)位移所需的模態(tài)數(shù)目;φn(z)為模態(tài)函數(shù),可表示為
(3)
曲率與應(yīng)變具有如下關(guān)系
(4)
式中,ε為測(cè)量獲得的應(yīng)變;R結(jié)構(gòu)半徑;L結(jié)構(gòu)長(zhǎng)度。圓柱結(jié)構(gòu)的振動(dòng)位移可采用N個(gè)模態(tài)疊加來(lái)表示
ΩW=Θ
(5)
其中,
(6)
W=[w1(t),w2(t),…,wN(t)]T
(7)
(8)
式中,M為應(yīng)變片的測(cè)點(diǎn)數(shù)目,本文為7。實(shí)驗(yàn)中激發(fā)的橫流向最高模態(tài)為4階,小于應(yīng)變片的數(shù)目7,采用最小二乘法獲得模態(tài)權(quán)重系數(shù)
W=[ΩTΩ]-1ΩTΘ
(9)
將式(9)中的權(quán)重系數(shù)結(jié)果代入式(2),即可獲得結(jié)構(gòu)位移信息。
結(jié)構(gòu)響應(yīng)幅值是反映渦激振動(dòng)特性一個(gè)重要參數(shù),在確定不相關(guān)原則是否成立時(shí),首先對(duì)比傾斜圓柱與垂直圓柱的橫流向與順流向最大響應(yīng)幅值,如圖3和圖4所示。圖中橫軸為約化速度,定義Vr=Ucos(a)/f1D,其中U為拖車的速度,a為傾斜角度,垂直時(shí)為0°,傾斜時(shí)為45°,f1為結(jié)構(gòu)固有頻率,選取理論公式(1)獲得的計(jì)算值。觀察圖3可發(fā)現(xiàn),較低的約化速度,傾斜圓柱與垂直圓柱獲得的橫流向響應(yīng)幅值比較接近,隨著約化速度增加,傾斜圓柱獲得的橫向位移幅值略小于垂直圓柱。對(duì)比圖4中順流向響應(yīng)幅值結(jié)果,發(fā)現(xiàn)較低約化速度時(shí),傾斜圓柱位移幅值較大,在約化速度近似為11.5~16.0時(shí),垂直圓柱順流向位移幅值更大。順流向渦激振動(dòng)較高模態(tài)會(huì)被激發(fā),因此順流向最大均方根位移幅值隨約化速度變化十分復(fù)雜。本文開展的實(shí)驗(yàn)中,拖車的最大速度為1.0 m/s,采用Ucos 45°

圖3 橫流向最大均方根位移幅值隨約化速度變化Fig.3 Max RMS CF displacement versus reduced velocity

圖4 順流向最大均方根位移幅值隨約化速度變化Fig.4 Max RMS IL displacement versus reduced velocity
表示垂直其軸向的來(lái)流速度,最終導(dǎo)致了在更高約化速度時(shí),只有垂直圓柱結(jié)構(gòu)渦激振動(dòng)結(jié)果,缺少傾斜圓柱結(jié)果,圖3和圖4,以及后續(xù)圖5和圖6均會(huì)出現(xiàn)類似情況。

圖5 橫流向控制模態(tài)隨流速變化Fig.5 CF dominate mode number versus reduced velocity

圖6 順流向控制模態(tài)隨流速變化Fig. 6 IL dominate mode number versus reduced velocity
控制模態(tài)是描述柔性圓柱結(jié)構(gòu)渦激振動(dòng)特性的另一個(gè)重要指標(biāo)。圖5和圖6分別針對(duì)橫流向與順流向情形,對(duì)比傾斜圓柱與垂直圓柱控制模態(tài)差異。
在圖5中傾斜圓柱激發(fā)最高橫流向渦激振動(dòng)的控制模態(tài)為3階,垂直圓柱為4階,Vr<7.0時(shí),獲得的控制模態(tài)結(jié)果幾乎一致,僅有一個(gè)特殊情況,約化速度Vr=2.65時(shí),2階模態(tài)為傾斜圓柱的主要控制模態(tài),而垂直圓柱控制模態(tài)卻為1階,這也印證了傾斜柔性圓柱渦激振動(dòng)的復(fù)雜性。約化速度介于7.0~8.75以及17.7附近時(shí),恰巧是不同控制模態(tài)轉(zhuǎn)化區(qū)域,相比于垂直圓柱,傾斜圓柱更容易被激發(fā)更高階模態(tài)。圖6中傾斜圓柱順流向渦激振動(dòng)最高5階模態(tài)被激發(fā),垂直圓柱為6階,與橫流向結(jié)果類似,在不同模態(tài)轉(zhuǎn)化區(qū)域,傾斜圓柱更容易發(fā)生高階的順流向渦激振動(dòng)。
分別針對(duì)具體的來(lái)流速度情況,進(jìn)行對(duì)比分析。選取傾斜圓柱較低來(lái)流速度U=0.35 m/s,中等來(lái)流速度0.75 m/s和較高來(lái)流速度1.0 m/s三個(gè)實(shí)驗(yàn)工況。根據(jù)不相關(guān)原則,對(duì)應(yīng)的垂直圓柱來(lái)流速度分別為0.2 m/s,0.5 m/s和0.7 m/s。圖7和圖8給繪出了測(cè)點(diǎn)處應(yīng)變隨時(shí)間變化的圖像。第一列為7個(gè)測(cè)點(diǎn)的應(yīng)變信息,第二列為頻譜分析結(jié)果。可以發(fā)現(xiàn)應(yīng)變結(jié)果不滿足不相關(guān)原則,在距離零點(diǎn)較近的三個(gè)測(cè)點(diǎn),垂直圓柱獲得的順流向與橫流向應(yīng)變更大,距離零點(diǎn)最遠(yuǎn)的三個(gè)測(cè)點(diǎn),傾斜圓柱應(yīng)變更大,中點(diǎn)處差異不明顯。通過(guò)頻譜分析結(jié)果可知,傾斜圓柱和垂直圓柱渦激振動(dòng)均會(huì)出現(xiàn)高頻現(xiàn)象,但是傾斜圓柱應(yīng)變振動(dòng)控制頻率略低于垂直圓柱。

圖7 測(cè)點(diǎn)處橫流向應(yīng)變時(shí)間歷程曲線和頻譜分析結(jié)果實(shí)線為垂直圓柱,U=0.25 m/s,虛線為傾斜圓柱U=0.35 m/s)Fig.7 CF strain history and its spectra at measured positions (Solid line expressed vertical cylinder, U=0.25 m/s,dash line expressed inclined cylinder, U=0.35 m/s)

圖8 測(cè)點(diǎn)處順流向應(yīng)變時(shí)間歷程曲線和頻譜分析結(jié)果(實(shí)線為垂直圓柱,U=0.25 m/s,虛線為傾斜圓柱U=0.35 m/s)Fig.8 IL strain history and its spectra at measured positions(Solid line expressed inclined cylinder, U=0.25 m/s,dash line expressed inclined cylinder, U=0.35 m/s)
圖9和圖10給出了測(cè)點(diǎn)處橫流向和順流向位移時(shí)間歷程曲線及頻譜分析結(jié)果,傾斜圓柱的外部來(lái)流速度為0.75 m/s,垂直圓柱為0.5 m/s,由圖9可以得到垂直和傾斜兩種情況,測(cè)點(diǎn)處橫流向位移響應(yīng)幅值和頻率近似相同,較好的滿足不相關(guān)原則。然而,圖10中的順流向位移結(jié)果對(duì)比卻差異十分明顯,在兩端最外側(cè)4個(gè)測(cè)點(diǎn)及最中間測(cè)點(diǎn)處,垂直圓柱渦激振動(dòng)順流向幅值大于傾斜圓柱,其他測(cè)點(diǎn)兩種情況位移幅值差距不大。振動(dòng)控制頻率傾斜圓柱略大于垂直圓柱,亦可以觀測(cè)到高頻的成分。

圖9 測(cè)點(diǎn)處橫流向位移時(shí)間歷程曲線和頻譜分析結(jié)果(實(shí)線為垂直圓柱,U=0.5 m/s,虛線為傾斜圓柱U=0.75 m/s)Fig.9 CF displacement history and its spectra at measured positions (Solid line expressed inclined cylinder, U=0.5 m/s,dash line expressed inclined cylinder, U=0.75 m/s)

圖10 測(cè)點(diǎn)處順流向位移時(shí)間歷程曲線和頻譜分析結(jié)果(實(shí)線為垂直圓柱,U=0.5 m/s,虛線為傾斜圓柱U=0.75 m/s)Fig.10 IL displacement history and its spectra at measured positions(Solid line expressed inclined cylinder, U=0.5 m/s, dash line expressed inclined cylinder, U=0.75 m/s)
最后繪出斜圓柱的外部流速為1.0 m/s,垂直圓柱為0.7 m/s時(shí),橫流向與順流向位移均方根值的空間分布情況,如圖11和圖12所示,垂直圓柱橫流向渦激振動(dòng)的控制模態(tài)為2階,近似空間對(duì)稱,而傾斜圓柱的控制模態(tài)為3階,不存在空間對(duì)稱。同時(shí)最大響應(yīng)幅值垂直圓柱的結(jié)果略大,再次驗(yàn)證了圖3和圖5中的結(jié)論。垂直圓柱的順流向渦激振動(dòng)控制模態(tài)為4階,仍然具有空間對(duì)稱形式,傾斜圓柱的控制模態(tài)為5階,不具備空間對(duì)稱的特征。驗(yàn)證了圖4和圖6結(jié)論的同時(shí),也證明了不相關(guān)原則的不合理性。

圖11 橫流向位移均方根空間分布(實(shí)線為垂直圓柱,U=0.7 m/s,虛線為傾斜圓柱U=1.0 m/s)Fig.11 Spatial distribution of CF RMS displacement(Solid line expressed inclined cylinder, U=0.7 m/s,dash line expressed inclined cylinder, U=1.0 m/s)

圖12 順流向位移均方根空間分布(實(shí)線為垂直圓柱,U=0.7 m/s,虛線為傾斜圓柱U=1.0 m/s)Fig.12 Spatial distribution of IL RMS displacement(Solid line expressed inclined cylinder, U=0.7 m/s, dash line expressed inclined cylinder, U=1.0 m/s)
依據(jù)響應(yīng)幅值,控制模態(tài),應(yīng)變和位移時(shí)間歷程變化,頻譜分析,均方根位移的空間分布等結(jié)果,發(fā)現(xiàn)傾角為45°時(shí),柔性傾斜圓柱渦激振動(dòng)不相關(guān)原則不再適用。按照BOURGUET等軸向力無(wú)量綱化的方法(τ=T/ρD2U),本文實(shí)驗(yàn)的無(wú)量綱軸向力范圍為1.76×103≤τ≤3.52×104,符合BOURGUET等定義的較大軸向力條件。然而本文的實(shí)驗(yàn)結(jié)果與BOURGUET等近期的數(shù)值模擬結(jié)果相矛盾,主要原因是本文實(shí)驗(yàn)圓柱模型長(zhǎng)徑比更大,為350,遠(yuǎn)大于BOURGUET等的50,同時(shí)本文實(shí)驗(yàn)雷諾數(shù)最大可達(dá)16 000,而BOURGUET等的計(jì)算雷諾數(shù)僅為500,長(zhǎng)徑比和雷諾數(shù)是影響柔性結(jié)構(gòu)渦激振動(dòng)的重要參數(shù),兩個(gè)參數(shù)不同引起了本文的實(shí)驗(yàn)結(jié)果與BOURGUET等的數(shù)值結(jié)果出現(xiàn)了不一致。
本文針對(duì)大傾斜圓柱渦激振動(dòng)開展了實(shí)驗(yàn)研究,采用了大長(zhǎng)徑比和小質(zhì)量比圓柱實(shí)驗(yàn)?zāi)P?,?shí)驗(yàn)雷諾數(shù)最高可達(dá)16 000,通過(guò)實(shí)驗(yàn)觀測(cè),并與垂直圓柱渦激振動(dòng)實(shí)驗(yàn)結(jié)果對(duì)比,發(fā)現(xiàn):
(1) 較低約化速度時(shí),傾斜圓柱與垂直圓柱獲得的橫流向與順流向渦激振動(dòng)響應(yīng)幅值均比較接近,但當(dāng)約化速度進(jìn)一步增加,傾斜圓柱獲得的位移幅值與垂直圓柱之間差異變大。
(2) 在不同控制模態(tài)轉(zhuǎn)化區(qū)域,傾斜圓柱更容易被激發(fā)高階模態(tài),由于順流向渦激振動(dòng)本身激發(fā)的模態(tài)較高,傾斜圓柱與垂直圓柱獲得的控制模態(tài)數(shù)值差異更加顯著。
(3) 傾斜圓柱與垂直圓柱在測(cè)點(diǎn)處的應(yīng)變和位移差異較大,兩種情況均出現(xiàn)了高頻現(xiàn)象。
(4) 均方根位移的空間分布結(jié)果差異十分明顯,垂直圓柱的均方根位移具有近似空間對(duì)稱性,而傾斜圓柱的渦激振動(dòng)更加復(fù)雜,對(duì)稱性不復(fù)存在。
實(shí)驗(yàn)結(jié)果進(jìn)一步證明了在傾角為45°時(shí),柔性圓柱結(jié)構(gòu)不相關(guān)原則不成立。至于不相關(guān)原則的成立條件,以及與雷諾數(shù)、質(zhì)量比、長(zhǎng)徑比、傾角等關(guān)系仍有待進(jìn)一步實(shí)驗(yàn)和理論探討。
[ 1 ] SARPKAYA T. Vortex induced oscillations: a selective review[J]. Journal of Applied Mechanics, 1979,46 (2): 241-258.
[ 2 ] BEARMAN P W. Vortex shedding from oscillating bluff bodies[J]. Annual Review of Fluid Mechanics, 1984, 16: 195-222.
[ 3 ] VANDIVER J K. Dimensionless parameters important to the prediction of vortex induced vibration of long, flexible cylinders in ocean currents[J]. Journal of Fluids and Structures, 1993, 7(5):423-455.
[ 4 ] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389-447.
[ 5 ] FACCHINETTI M L, LANGRE E D, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004,19 (2): 123-140.
[ 6 ] GABBAI R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282: 575-616.
[ 7 ] VIOLETTE R, LANGRE E D, SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments[J]. Computers and Structures, 2007, 85: 1134-1141.
[ 8 ] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 713-735.
[ 9 ] 宋芳,林黎明,林國(guó)燦.圓柱渦激振動(dòng)的結(jié)構(gòu)-尾流振子耦合模型研究[J]. 力學(xué)學(xué)報(bào),2010,42(3):357-365. SONG Fang, LIN Liming, LIN Guocan. The study of vortex-induced vibrations by computation using coupling model of structure and wake oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):357-365.
[10] WU Xiaodong, GE Fei , HONG Youshi. A review of recent studies on vortex-induced vibrations of long slender cylinders[J]. Journal of Fluids and Structures, 2012, 28(1):292-308.
[11] XUE Hongxiang, TANG Wenyong, QU Xue. Prediction and analysis of fatigue damage due to cross-flow and in-line VIV for marine risers in non-uniform current[J]. Ocean Engineering,2014,83(2):52-62.
[12] 黃維平,劉娟,唐世振.考慮流固耦合的大柔性圓柱體渦激振動(dòng)非線性時(shí)域模型[J]. 振動(dòng)與沖擊,2012,31 (9):140-143. HUANG Weiping, LIU Juan, TANG Shizhen. Nonlinear model of vortex induced vibration of flexible cylinder in consideration of fluid-structure interaction[J].Journal of Vibration and Shock,2012,31(9): 140-143.
[13] 唐友剛,樊娟娟,張杰,等.高雷諾數(shù)下圓柱順流向和橫向渦激振動(dòng)分析[J].振動(dòng)與沖擊,2013,32(13):88-92. TANG Yougang, FAN Juanjuan, ZHANG Jie, et al. In line and transverse vortex-induced vibration analysis for a circular cylinder under high Reynolds number [J]. Journal of Vibration and Shock,2013,32(13) : 88-92.
[14] 高云,任鐵,付世曉,等.柔性立管渦激振動(dòng)響應(yīng)特性試驗(yàn)研究[J]. 振動(dòng)與沖擊,2015,34(17):6-11. GAO Yun, REN Tie, FU Shixiao, et al. Tests for response characteristics of VIV of a flexible riser [J].Journal of Vibration and Shock, 2015, 34(17): 6-11.
[15] HANSON A R. Vortex-shedding from yawed cylinders[J]. AIAA Journal, 1966, 4(4):738-740.
[16] VAN ATTA C W. Experiments on vortex shedding from yawed circular cylinders [J]. AIAA Journal, 1968,6(5):931-933.
[17] FRANZINI G R, GON CALVES R T, MENEGHINI J R, et al. One and two degrees-of-freedom vortex-induced vibration experiments with yawed cylinders[J].Journal of Fluids and Structures, 2013, 42(4):401-420.
[18] ZHAO M, CHENG L, ZHOU T. Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length[J]. Journal of Fluids and Structures, 2009, 25(5):831-847.
[19] JAIN A, MODARRES-SADEGHI Y. Vortex-induced vibrations of a flexibly mounted inclined cylinder [J]. Journal of Fluids and Structures, 2013,43(6): 28-40.
[20] 李壽英,顧明. 斜、直圓柱繞流的CFD 模擬[J]. 空氣動(dòng)力學(xué)學(xué)報(bào),2005,23(2):222-227. LI Shouying, GU Ming. Numerical simulation for flow around perpendicular and oblique circular cylinders[J]. Acta Aerodynamic Sinica,2005,23(2):222-227.
[21] 許常悅,孫智,王從磊.偏斜來(lái)流對(duì)圓柱跨聲速繞流的影響[J].應(yīng)用數(shù)學(xué)和力學(xué),2014,35(10):1135-1142. XU Changyue, SUN Zhi, WANG Conglei. Effects of tilted free-stream on the transonic flow past a circular cylinder[J]. Applied Mathematics and Mechanics, 2014, 35(10):1135-1142.
[22] 杜曉慶,費(fèi)陳杰,況中華,等. 展向剪切流作用下斜置圓柱氣動(dòng)特性研究[J].振動(dòng)與沖擊.2014, 33(21):31-37. DU Xiaoqing,F(xiàn)EI Chenjie,KUANG Zhonghua,et al. Aerodynamic characteristics of an inclined circular cylinder in a span-wise linear shear flow[J]. Journal of Vibration and Shock, 2014,33(21):31-37.
[23] BOURGUETA R, KARNIADAKIS G E, TRIANTAFYLLOU M S. On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60°[J]. Journal of Fluids and Structures, 2015, 53:58-69.
[24] SONG Ji’ning, LU Lin, TENG Bin, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow [J]. Ocean Engineering, 2011, 38(11):1308-1322.
[25] LIE H, KAASEN K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006, 22(4): 557-575.
[26] CHAPLIN J R, BEARMAN P W, HUERA HUARTE F J, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids and Structures, 2005, 21(1): 3-24.
[27] TRIM A D, BRAATEN H, LIE H, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids and Structures, 2005, 21(3): 335-361.
[28] 張建僑,宋吉寧,呂林,等.柔性立管渦激振動(dòng)實(shí)驗(yàn)的數(shù)據(jù)分析[J]. 中國(guó)海洋平臺(tái),2009,24(4):26-32. ZHANG Jianqiao, SONG Ji’ning, Lü Lin, et al. Analysis on the vortex-induced vibrations experimental results of flexible risers[J]. China Offshore Platform, 2009,24(4):26-32.
Test verification for independence principle applied in vortex-inducedvibrations of a flexible cylinder inclined at 45°
XU Wanhai, MA Yexuan, DU Jie, LUO Hao
(State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)
Vortex-induced vibrations (VIV) can cause fatigue damage of marine pipeline and mooring lines. The current VIV studies focus on a canonical problem that a circular cylinder freely to oscillates within a flow perpendicular to the body axis. In practical applications, cylinder structures are often inclined with respect to the direction of the oncoming flow. Aiming at this complex situation, the independence principle (IP) that the VIV of an inclined circular cylinder is assumed to be equivalent to the VIV of a vertical circular cylinder excited by the projection component of oncoming flow velocity in the direction perpendicnlar to the cylinder’s axis is proposed. However, more attentions need to be paid to the validity of the independence principle. Here, laboratory tests were conducted for vortex-induced vibrations (VIV) of an inclined flexible cylinder with a ratio of length to diameter of 350 and an incline angle of 45° in order to check the validity of the independence principle (IP). Strain gages were adopted to measure the cylinder’s dynamic response, a modal analysis approach was used to analyze the measured data. The test results of a vertical cylinder and the inclined cylinder were compared. It was shown that the higher order modes are easy to be excited for the inclined cylinder in the controlled mode transition region; the strain and displacement at measured points of both cylinders are obviously different and the higher order modes’ features of VIV responses are observed. All the results indicated that the use of IP may not be correct to describe the VIV of the flexible cylinder inclined at 45°.
inclined flexible cylinder; modal analysis; vortex-induced vibrations (VIV); independence principle (IP)
國(guó)家自然科學(xué)基金(51379144;51479135;51679167);國(guó)家自然科學(xué)基金創(chuàng)新群體項(xiàng)目科學(xué)基金(51621092);國(guó)家重點(diǎn)基礎(chǔ)研究計(jì)劃-973計(jì)劃(2014CB046801);天津市青年科學(xué)基金(15JCQNJC07700)
2015-11-06 修改稿收到日期: 2016-02-03
徐萬(wàn)海 男,副教授,碩士生導(dǎo)師,1981年生 E-mail:xuwanhai@tju.edu.cn
TV312
A
10.13465/j.cnki.jvs.2017.07.027