孫美佳,李寶寬,王 強(qiáng),彭建平(東北大學(xué)冶金學(xué)院,沈陽110819)
不同開槽陽極鋁電解槽的節(jié)能性研究
孫美佳,李寶寬,王 強(qiáng),彭建平
(東北大學(xué)冶金學(xué)院,沈陽110819)
基于有限體積方法,建立三維傳統(tǒng)陽極、縱向開槽和橫向開槽陽極鋁電解槽非穩(wěn)態(tài)數(shù)學(xué)模型,采用磁動(dòng)力流體模型(MHD)中電勢法計(jì)算電磁場,把電磁力作為動(dòng)量方程的源項(xiàng),通過流體體積函數(shù)(VOF)法追蹤電解質(zhì)-鋁液界面的波動(dòng),用離散相模型(DPM)追蹤氣泡的運(yùn)動(dòng)路徑.對比分析傳統(tǒng)陽極、縱向開槽和橫向開槽陽極鋁電解槽中電解質(zhì)-鋁液界面波動(dòng)和氣泡分布情況.結(jié)果表明,縱向開槽陽極下電解質(zhì)-鋁液界面波動(dòng)幅度小于橫向開槽陽極下的電解質(zhì)-鋁液界面波動(dòng)幅度,且都小于傳統(tǒng)陽極下電解質(zhì)-鋁液界面波動(dòng)幅度.縱向開槽陽極底部的氣體體積分?jǐn)?shù)最小.
鋁電解槽;開槽陽極;界面波動(dòng);極距
目前工業(yè)鋁電解中采用的是霍爾-埃盧特的熔鹽電解法.鋁電解反應(yīng)主要發(fā)生在溫度為950~970 ℃的高溫鋁電解槽中,直流電通過熔融態(tài)電解質(zhì)時(shí),與陽極炭塊發(fā)生電化學(xué)反應(yīng),陽極發(fā)生氧化反應(yīng),陰極發(fā)生還原反應(yīng),產(chǎn)生熔融態(tài)的鋁[1].二氧化碳等氣體從陽極底部逸出的過程中,對周圍電解質(zhì)產(chǎn)生較大的擾動(dòng)作用,影響電解質(zhì)-鋁液界面波動(dòng).隨著電化學(xué)反應(yīng)的進(jìn)行,陽極底部產(chǎn)生的氣體積聚在陽極底部,影響極間導(dǎo)電性,導(dǎo)致鋁電解槽電壓升高,消耗大量的電能,不利于電解過程的正常進(jìn)行[2-3].
為解決上述問題,國內(nèi)外學(xué)者通過優(yōu)化陰極結(jié)構(gòu)和陽極結(jié)構(gòu),加快陽極底部氣泡溢出并提高電解質(zhì)-鋁液波動(dòng)界面穩(wěn)定性.目前國內(nèi)采用馮乃祥[4-6]提出的異型陰極來降低鋁液波動(dòng),部分學(xué)者也對開槽陽極進(jìn)行了試驗(yàn)研究.Barclay等[7]提出了在陽極底部沿陽極長度方向開非通長槽.這種開槽方式可以將氣泡更多地導(dǎo)向陽極中縫,加強(qiáng)電解質(zhì)區(qū)域的擾動(dòng),促進(jìn)氧化鋁的溶解和電解反應(yīng),此方案可降低氣泡層壓降180 mV.Kiss等人[8]認(rèn)為覆蓋在陽極底部的氣泡取決于氣泡的產(chǎn)生與疏散的平衡關(guān)系,并探討了陽極結(jié)構(gòu)對覆蓋因子的影響.楊帥等人[9]采用數(shù)值模擬的方法計(jì)算三種不同鋁電解槽預(yù)焙陽極開槽結(jié)構(gòu)下的氣泡-電解質(zhì)流場,分別是沿長度方向開槽,沿寬度方向開槽和沿豎直方向開槽.結(jié)果表明,陽極長度和寬度方向開槽可以促進(jìn)氣泡的排放,豎直方向開槽對氣泡的排放效果的影響不明顯.李賀松等人[10]運(yùn)用仿真軟件對穿孔陽極的電熱場及應(yīng)力場進(jìn)行模擬,并進(jìn)行了穿孔陽極工業(yè)試驗(yàn).結(jié)果表明穿孔陽極氣泡層厚度減小,槽電壓降低.陽極炭塊開孔在一定程度上影響槽上部保溫,在開孔較多的情況下也會(huì)降低陽極強(qiáng)度.Storesund[11]提出了在陽極上開兩條傾斜細(xì)槽,槽的寬度為3~8 mm.該種有傾斜角度槽的作用是更有利于氣泡的排出,并指出隨著開槽寬度的增大,陽極有效導(dǎo)電面積減小.
本研究基于有限體積方法,將磁流體流動(dòng)模型(MHD)與流體體積函數(shù)方法(VOF)相結(jié)合,分析鋁電解槽內(nèi)流體流動(dòng)行為,采用離散相模型(DPM)模擬氣泡在鋁電解槽中運(yùn)動(dòng)情況.對比傳統(tǒng)陽極,考察兩種不同開槽陽極對鋁電解槽中氣體逸出情況及電解質(zhì)-鋁液界面穩(wěn)定性的影響,為鋁電解槽陽極結(jié)構(gòu)的優(yōu)化設(shè)計(jì)提供理論支持.
鋁電解槽熔體中陽極氣泡、電解質(zhì)及鋁液運(yùn)動(dòng)作用過程十分復(fù)雜,本模型中不考慮電解質(zhì)中氧化鋁顆粒對流場的作用;假設(shè)氣泡、電解質(zhì)及鋁液的相關(guān)參數(shù)不隨溫度變化;將電解質(zhì)、鋁液視為不可壓縮流體;忽略陽極底部氣泡的碰撞、合并等變形過程;陽極炭塊不會(huì)隨著電解過程而消耗.

流場中采用多相流模型中的VOF算法追蹤鋁電解槽中電解質(zhì)和鋁液的波動(dòng)界面,計(jì)算過程中,考慮電磁力、氣泡以及表面張力對電解質(zhì)和鋁液的流動(dòng)影響.
氣泡運(yùn)動(dòng)采用DPM模型描述,該模型用拉格朗日方法來追蹤氣泡的運(yùn)動(dòng)路徑.氣泡運(yùn)動(dòng)過程中,主要受到重力、浮力、曳力、虛擬質(zhì)量力以及壓力梯度力的影響.
2.1 物理模型及相關(guān)參數(shù)
本研究建立三種陽極鋁電解槽幾何模型,分別為傳統(tǒng)陽極、縱向開槽鋁電解槽和橫向開槽陽極鋁電解槽,如圖1所示,具體結(jié)構(gòu)參數(shù)見表1.

圖1 電解槽幾何模型Fig.1 Geometric models of the aluminum electrolytic cell(a)—傳統(tǒng)陽極; (b)—縱向開槽陽極; (c)—橫向開槽陽極

表1 電解槽幾何結(jié)構(gòu)參數(shù)
圖2分別為采用ICEM建立傳統(tǒng)陽極、縱向開槽陽極和橫向開槽陽極鋁電解槽的計(jì)算網(wǎng)格模型.表2為電解質(zhì)、鋁液和氣泡的主要物性參數(shù)[12].

圖2 鋁電解槽計(jì)算網(wǎng)格模型Fig.2 Meshes of the aluminum electrolytic cell(a)—傳統(tǒng)陽極; (b)—縱向開槽陽極; (c)—橫向開槽陽極

表2 主要物性參數(shù)
2.2 邊界條件與求解方法
本文將電解槽進(jìn)行切片處理,把切片的橫斷面定義為對稱面.陽極底面為直流電入口面,電解槽底面設(shè)置為零電勢,電解槽上表面及其他面設(shè)置為絕緣面.陽極底面設(shè)置為氣體速度入口,電解槽上表面為氣體出口且為滑移壁面,入口與其他邊界為無滑移壁面.
鋁電解過程中電解質(zhì)和鋁液均為不可壓縮流體,采用二階迎風(fēng)格式計(jì)算流動(dòng)中的質(zhì)量守恒方程、動(dòng)量守恒方程、湍動(dòng)能k方程及耗散率ε方程,體積分?jǐn)?shù)方程采用QUICK格式計(jì)算,其余采用默認(rèn)格式,且計(jì)算收斂的精度為10-6.
圖3為某一時(shí)刻下傳統(tǒng)、縱向開槽和橫向開槽陽極鋁電解槽中陽極底部氣體體積分?jǐn)?shù)分布,傳統(tǒng)陽極底部的氣體主要集中在陽極底部中心區(qū)域,靠近陽極邊緣處的氣體體積分?jǐn)?shù)較小,主要是因?yàn)閭鹘y(tǒng)陽極底部中心區(qū)域的氣泡需要沿陽極底部水平移動(dòng)一定的距離到達(dá)陽極邊緣處逸出到外界環(huán)境中.縱向開槽將陽極底部長度方向分為三部分,橫向開槽將陽極底部寬度方向分為三部分.橫向開槽陽極底部氣體體積分?jǐn)?shù)小于傳統(tǒng)陽極底部氣體體積分?jǐn)?shù),但是氣泡仍積聚在這三部分的中心區(qū)域,縱向開槽陽極底部氣體體積分?jǐn)?shù)小于傳統(tǒng)陽極和縱向開槽陽極底部氣體體積分?jǐn)?shù),且分布更加均勻.縱向開槽陽極加快陽極底部氣泡的排出,減小了氣泡在陽極底部的堆積情況,增加了陽極底部與電解質(zhì)區(qū)域的接觸面積,有利于極間導(dǎo)電性,降低電壓降,節(jié)省電能.

圖3 陽極底部氣體體積分?jǐn)?shù)分布Fig.3 Gas volume fraction distribution in the anode bottom (a)—傳統(tǒng)陽極; (b)—縱向開槽陽極; (c)—橫向開槽陽極

圖4 氣體體積分?jǐn)?shù)Fig.4 Gas volume fraction(a)—線1; (b)—線2
圖4 (a) (b) 分別為傳統(tǒng)陽極、縱向和橫向開槽陽極鋁電解槽在線1和線2上的氣體體積分?jǐn)?shù)曲線分布圖.線1和線2分別為沿長軸Y方向和短軸X方向.圖中傳統(tǒng)陽極和兩種開槽陽極鋁在線1和線2上的氣體體積分?jǐn)?shù)曲線分布與圖3相符.

圖5 電解質(zhì)-鋁液波動(dòng)界面Fig.5 The fluctuation of bath-metal interface (a)—傳統(tǒng)陽極; (b) —縱向開槽陽極;(c) —橫向開槽陽極

圖6 不同時(shí)間下的界面點(diǎn)波動(dòng)幅度大小Fig.6 Fluctuation of bath-metal interface points with different times(a)—點(diǎn)1; (b)—點(diǎn)2; (c)—點(diǎn)3
圖5為某一時(shí)刻在電磁力和氣泡共同作用下的三種陽極鋁電解槽的電解質(zhì)-鋁液界面波動(dòng)圖,結(jié)合圖中等高線可以看出,界面波動(dòng)幅度大小依次為傳統(tǒng)陽極、橫向開槽陽極、縱向開槽陽極鋁電解槽.因此,開槽陽極有利于降低界面的波動(dòng)幅度,改善電解質(zhì)-鋁液波動(dòng)界面穩(wěn)定性.對比兩種不同開槽方式的鋁電解槽中界面波動(dòng),可以得出,縱向開槽陽極對于穩(wěn)定電解質(zhì)-鋁液界面波動(dòng)效果更加明顯,結(jié)合圖3,縱向開槽陽極底部的氣體體積分?jǐn)?shù)最小,加快了氣泡的排出,減小了氣泡在鋁電解槽內(nèi)的停留時(shí)間,減弱了氣泡對電解質(zhì)區(qū)域的擾動(dòng),使界面更加穩(wěn)定,有利于縮短極距.
圖6為傳統(tǒng)陽極、縱向開槽和橫向開槽陽極鋁電解槽中波動(dòng)界面點(diǎn)在不同時(shí)刻下的波動(dòng)幅度大小曲線圖,在傳統(tǒng)陽極和開槽陽極鋁電解槽的相同位置上取3個(gè)點(diǎn),分別記錄3個(gè)點(diǎn)隨時(shí)間的波動(dòng)幅度大小.從圖中可以看出,傳統(tǒng)陽極鋁電解槽界面點(diǎn)1、點(diǎn)2和點(diǎn)3在不同時(shí)刻下的波動(dòng)幅度,大于橫向開槽陽極界面點(diǎn)的波動(dòng)幅度,大于縱向開槽陽極界面點(diǎn)的波動(dòng)幅度,說明縱向開槽陽極界面波動(dòng)點(diǎn)的波動(dòng)幅度最小,更有利于維持界面穩(wěn)定性,達(dá)到縮短極距的目的.
縱向開槽陽極底部氣體體積分?jǐn)?shù)小于橫向開槽陽極底部氣體體積分?jǐn)?shù),且小于傳統(tǒng)陽極底部氣體體積分?jǐn)?shù).縱向開槽加快了陽極底部氣泡的排出,減小氣泡在陽極底部的堆積問題,改善了極間導(dǎo)電性,降低電解槽電壓降.縱向開槽陽極鋁電解槽的界面波動(dòng)幅度小于橫向開槽陽極鋁電解槽的液面波動(dòng)幅度,小于傳統(tǒng)陽極鋁電解槽的界面波動(dòng)幅度.縱向開槽陽極鋁電解槽有利于穩(wěn)定電解質(zhì)-鋁液波動(dòng)界面,縮短極距,減小電能的消耗,達(dá)到節(jié)能減排的目的.
[1]劉業(yè)翔, 李劼, 姚世煥, 等. 現(xiàn)代鋁電解[M]. 北京: 冶金工業(yè)出版社, 2008. (Liu Yexiang, Li Jie, Yao Shihuan,etal. Modern aluminum electrolysis[M]. Beijing:Metallurgical Industry Press, 2008.)
[2]Thonstad J, Kleinschrodt H D, Vogt H. Improved design equation for the interelectrode voltage drop in industrial aluminium cells[C]// The 126th the Minerals, Metal & Materials Society Annual Meeting. Warrendale: TMS, 1997: 427-432.
[3]Hyde T M, Welch B J. The gas under anodes in aluminum smelting cells Part one: Measuring and modeling bubble resistance under horizontally oriented electrodes[C]// The 126th the Minerals, Metal & Materials Society Annual Meeting. Warrendale: TMS, 1997: 333?340.
[4]Wang Qiang, Li Baokuan, He Zhu,etal. Simulation of magnetohydrodynamic multiphase flow phenomena and interface fluctuation in aluminum electrolytic cell with innovative cathode[J].Metallurgical and Materials Transactions B, 2014, 45: 272-279.
[5]彭建平, 田應(yīng)甫, 馮乃祥, 等. 新型陰極結(jié)構(gòu)電解槽鋁電解試驗(yàn)[J]. 材料與冶金學(xué)報(bào), 2009, 8(3): 165-171. (Peng Jianping, Tian Yingfu, Feng Naixiang,etal. Test of novel energy-saving cell for aluminum electrolysis[J]. Journal of Materials and Metallurgy, 2009, 8(3): 165-171.)
[6]Feng Naixiang. Low energy consumption aluminum reduction cell with novel cathode[J]. Journal of Materials and Metallurgy, 2008.
[7]Barclay R D, Tarcy G P, Hosler R B,etal. Closed and slotted carbon anodes for aluminum electrolysis cells: United States: US7799189[P].
[8]Kiss L I, Ponesak S, Antille J. Simulation of the bubble layer in aluminum electrolysis cell[C]// Kvande H. The 134th the Minerals, Metal & Materials Society Annual Meeting. Warrendale: TMS, 2005: 559-564.
[9]楊帥, 張紅亮, 徐宇杰, 等. 鋁電解槽預(yù)焙陽極開槽對氣泡排出的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 43(12). (Yang Shuai, Zhang Hongliang, Xu Yujie,etal. Effects of slot cutting at prebaked anodes on bubble elimination in aluminum reduction cell[J]. Journal of Central South University (Science and Technology),2012,43(12).)
[10]李賀松, 曹曦, 田應(yīng)甫. 低能耗下鋁電解槽陽極結(jié)構(gòu)的優(yōu)化[J]. 中國有色金屬學(xué)報(bào), 2012, 22(10): 2960-2969. (Li Hesong, Cao Xi, Tian Yingfu. Optimization of anode structure in aluminum reduction cells under low power consumption[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(10): 2960-2969.)
[11]Storesund A. Method and a prebaked anode for aluminum production: United States: US7901560[P].
[12]Solheim A, ThonstadJ.Model experiments of mass transfer at the electrolyte-gas interface in aluminum cells[C]// Campbell P G.The 116th the Minerals, Metal & Materials Society Annual Meeting.Las Vegas, Nevada:TMS, 1987:239 245.
Investigate on energy-saving of slotted anode cells in aluminum electrolytic cell
Sun Meijia, Li Baokuan, Wang Qiang, Peng Jianping
(School of Metallurgy, Northeastern University, Shenyang 110819, China)
Based on the finite volume method, a three-dimensional physical and transient mathematical model for the traditional anode and the slotted anode in the aluminum electrolysis cell was developed to investigate the magnetohydrodynamic flow and gas bubble behavior. Magnetohydrodynamics model (MHD) solved by the electrical potential method was used to describe the electromagnetic field. The electromagnetic force (EMF) was taken as a source term in the momentum equation. The volume of fluid (VOF) approach was employed to track the bath-metal interface. The discrete particle model (DPM) was applied to study the motion of the gas bubbles in the aluminum electrolytic cells. The results indicated that the bath-metal interface fluctuation in the longitudinal slotted anode is less than that in the transverse slotted anode and also less than that in the traditional anode cell. The gas volume fraction in the bottom of longitudinal slotted anode is much small.
aluminum electrolysis cell; slotted anode; bath-metal interface fluctuation; distance between anode and cathode
10.14186/j.cnki.1671-6620.2017.01.008
TF 821
A
1671-6620(2017)01-0042-05