999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

八鋼COREX多粒度非球形顆?;旌隙逊e的研究

2017-04-11 01:00:32李海峰李林蔚羅志國鄒宗樹東北大學冶金學院沈陽110819東北大學多金屬共生礦生態(tài)化冶金教育部重點實驗室沈陽110819
材料與冶金學報 2017年1期
關鍵詞:實驗

李海峰,李林蔚,游 洋,羅志國,鄒宗樹(1.東北大學冶金學院,沈陽110819;2.東北大學多金屬共生礦生態(tài)化冶金教育部重點實驗室,沈陽110819)

八鋼COREX多粒度非球形顆?;旌隙逊e的研究

李海峰1,2,李林蔚1,2,游 洋1,2,羅志國1,2,鄒宗樹1,2
(1.東北大學冶金學院,沈陽110819;2.東北大學多金屬共生礦生態(tài)化冶金教育部重點實驗室,沈陽110819)

本文以八一鋼廠COREX當?shù)卦?球團礦、焦炭和煤)為研究對象,采用物理模擬和數(shù)值模擬方法,對多粒徑非球形顆?;旌隙逊e行為進行了研究.首先通過物理實驗確定各原料的物性參數(shù),如粒度分布、表觀密度、堆密度、靜摩擦系數(shù)、恢復系數(shù)、彈性模量、剪切模量和泊松比等;其次通過物理實驗和由組合球構建真實顆粒形狀的數(shù)值模擬對二元混合堆積角進行研究,在兩種結果相吻合的前提下,獲得二元混合物之間的滾動摩擦系數(shù),且利用該系數(shù)進一步研究三元混合堆積效果.研究結果表明:由二元混合獲得的系數(shù)可成功應用在三元混合模型之上,最終模型獲得了球團礦、多粒度焦炭、多粒度煤兩兩之間混合堆積及三者之間混合堆積的料堆休止角及內部空隙度信息,為八鋼使用當?shù)匚锪线M行裝料操作提供了詳細的參考數(shù)據.

離散單元法;混合堆積;數(shù)值模擬

顆粒堆積問題近百年來一直是十分引人矚目的問題.前人對顆粒堆積已進行了大量研究,研究手段主要有物理模擬和數(shù)值模擬.其中數(shù)值模擬研究存在三大問題.其一,大多數(shù)文獻中數(shù)值模擬通常把非球形的實際物料近似為球形顆粒來處理,并通過各種參數(shù)標定方法調整模擬參數(shù),以達到與宏觀現(xiàn)象的相似吻合.但是,球形堆積與實際物料堆積的內部微觀結構差異較大,無法對微觀結構進行深入分析;其二,由于計算機能力限制,將多粒度分布的物料近似為單一的平均粒度堆積,這對內部微觀結構影響更大;其三,大多數(shù)文獻主要涉及單一物質堆積過程,對多元物質混合堆積研究較少.綜上所述,關于不同粒徑、非球形顆粒的混合堆積文獻鮮有報道,考慮到八一鋼廠COREX實際生產中使用的物料是多粒度分布的、多元混合的、非球形顆粒等特殊性質,因此迫切需要對其進行深入研究.

顆粒堆積空隙度是反映顆粒介質內部構造的一個基本指標,是研究眾多顆粒力學問題的切入點.過去幾十年間,許多學者通過物理實驗研究了混合物料的堆積過程,尤其是在二元球形顆?;旌隙逊e過程,實踐證明堆積空隙度與填充物料的性質(密度、摩擦系數(shù)、顆粒形狀、顆粒級配等)密切相關.諸多學者提出了預測多元混合物料堆積空隙度的數(shù)學模型,建立的數(shù)學模型中空隙度是關于顆粒粒徑比和顆粒比例的函數(shù)[1-4],不足之處在于人們主要研究組元有限的球形顆粒堆積,對于涉及多組元的非規(guī)則形狀顆粒的堆積問題,尚無很好的預測模型.此外,理論分析方法尚不能提供一些重要的細節(jié)描述,例如堆積混合物的不均勻性.另外,有大量文獻也報道了相關的物理實驗,主要是采用各種材料的均一尺寸球形顆粒來進行堆積實驗,如鋼球,聚乙烯球,以及木質球等[5-7].

前人已對冶金領域的顆粒堆積進行了大量研究.Yoshimasa K[8-9]等在一個等容高爐模型實驗和1:10高爐縮小模型實驗結果的基礎上,通過離散單元法開發(fā)出一種無鐘布料模型,該模型提出定量分析混合層對爐料分布影響的一種方法,在Wakayama 5號高爐上定量分析了布料批重的大小、礦焦比大小及料線高低對爐料徑向分布的影響.Hiroshi M等[10]分析了高爐無料鐘爐頂?shù)念w粒行為,研究結果表明爐料在沿溜槽下滑過程中,大部分小顆粒緊貼溜槽壁,大顆粒則由于顆粒粒徑偏析聚集在料流表面.料面區(qū)域的爐料相對密度隨著布料次數(shù)的增加而增加,裝入的爐料沿料面斜坡向爐喉中心蔓延.同時隨著裝料次數(shù)增加,焦炭顆粒被隨后裝入的燒結礦顆粒推向爐喉中心.Yaowei Yu, Henrik Saxén等[11]使用DEM分析了高爐無料鐘爐頂裝料倉內的顆粒粒徑偏析行為.結果顯示影響粒徑偏析的最主要的因素是裝料制度、爐料粒徑分布、顆粒與爐墻的摩擦系數(shù)、顆粒的滾動摩擦系數(shù)及礦石的質量分數(shù)等.周宗彥、余艾冰等[12-14]使用離散單元法模擬顆粒體系,使用給球形顆粒添加不同的滾動摩擦系數(shù)和滑動摩擦系數(shù)來模擬非球形顆粒的堆積,通過大量的實驗研究,逐步完善了離散單元法數(shù)學模型,達到球形顆粒模擬非球形顆粒的目的.李強、鄒宗樹等[15]對COREX預還原豎爐布料過程進行研究.

綜上所述,通過查閱文獻,獲悉前人從理論分析、物理模擬、數(shù)值模擬三方面進行研究,作者發(fā)現(xiàn)使用球形顆粒模擬非球形顆粒的方法僅能對料流軌跡、料面形狀等宏觀參數(shù)進行模擬,因球形顆粒與非球形顆粒堆積的內部結構參數(shù)(空隙度)存在差異,不能準確地計算內部空隙度的大小.因此作者針對八一鋼廠COREX內部涉及的多粒度多元非球形顆?;旌隙逊e進行研究,進一步完善顆粒堆積的研究成果.其中數(shù)值模擬研究中的離散單元法(DEM)是Cundall[16]于1979年首次提出的,這種方法擁有計算顆粒的宏觀力學和信息的優(yōu)勢,其發(fā)展程度受到計算機性能的約束,但隨著計算機算法的不斷優(yōu)化以及計算機性能的普遍提高,DEM方法在研究顆粒流動行為的發(fā)展上再次顯出其獨有的優(yōu)勢.COREX工藝需要球團礦、焦炭和煤三種物料,因此有必要對三種物料的堆積現(xiàn)象進行研究.本文將按照與生產現(xiàn)場相同的各物料質量配比,對該三元混合物進行堆積的物理實驗和DEM模擬研究.

1 物理實驗的原料選擇及參數(shù)測定

物料的選擇直接關系到實驗的準確性,前文文獻有選擇模擬粒子作為實驗原料的,因顆粒形狀不同于實際物料,造成物料堆積后可達到宏觀上的相似,但無法對堆積的空隙度進行實際考察,故本模型采用實際原料作為實驗原料,實驗原料來源于八鋼現(xiàn)場.

物料的物性參數(shù)是進行數(shù)值模擬不可或缺的條件,物性參數(shù)的獲取主要通過縮小的實驗室物理模型進行物理實驗獲得[17],保證所用COREX原料物性參數(shù)數(shù)據的可靠性,對數(shù)值模擬的準確性和可信度至關重要.因此,在數(shù)值模擬之前,本文設計了若干物性參數(shù)測定實驗,對所用物料的粒度分布、表觀密度、堆密度、彈性模量、泊松比、靜摩擦系數(shù)和恢復系數(shù)等必要參數(shù)進行了測定,測量結果如表1所示.

表1 球團礦、焦炭和煤的物性參數(shù)測量結果

2 數(shù)學模型方法簡介

離散單元法適用于模擬散體物料的運動,通過對每一個顆粒進行受力分析,獲得顆粒的運動行為.模型中顆粒與顆粒發(fā)生碰撞時的作用力如圖1所示,其中顆粒i、顆粒j均受到兩種力和兩種力矩的作用.作用力包括顆粒自身重力、顆粒-顆粒或顆粒-壁面之間的接觸力.力矩包括切向力矩和滾動摩擦力矩.根據牛頓第二定律,可獲得顆粒的運動方程,計算公式如下:

(1)

(2)

式中符號的意義及顆粒-顆?;蝾w粒-壁面的接觸力及力矩的計算公式見參考文獻[11-12].

圖1 顆粒間的受力分析圖Fig.1 Force analysis among the particles

3 結果分析與討論

3.1 二元混合堆積的物理實驗

物料實驗采用圓筒提拉法測量物料休止角,先后對單一粒度的球團礦和具有一定粒度分布的焦炭的混合物、單一粒度的球團礦和具有一定粒度分布的煤的混合物以及具有一定粒度分布的焦炭和煤的混合物做堆積實驗(焦炭和煤的粒度分布見表1),為了提高實驗的精確度,對每組物料混合堆積實驗重復若干次,然后對測定的實驗結果取平均值,結果見表2.

3.2 二元混合堆積的數(shù)值模擬及二元模擬參數(shù)的確定

對實驗物料進行篩選,選出物料中的典型顆粒形狀,然后參照典型顆粒形狀,使用多個大小不一的球體組合構建,構成比例為1:1的形似真實顆粒形狀的物料顆粒數(shù)學模型,如圖2所示.在尋找形狀代表顆粒的過程中發(fā)現(xiàn),料堆中每種顆粒形狀的質量分配是不均勻的,因此,有必要確定各典型顆粒形狀所占的質量分數(shù),從而更加真實地反映原料顆粒形狀特點的實際情況,質量分布見表3.

表2 多粒度的球團礦、焦炭和煤(質量比148:19:80)二元混合物的堆積實驗

圖2 COREX原料顆粒的數(shù)學模型構建Fig.2 Numerical model for the COREX material particles(a)—焦炭顆粒; (b)—煤顆粒

表3 焦炭顆粒和煤顆粒的形狀分布(質量分數(shù))

用組合球的顆粒模型構建焦炭和煤顆粒的數(shù)學模型,同時建立1∶1的幾何體模型,先后對球團礦和焦炭、球團礦顆粒和煤及焦炭和煤等三種二元混合物進行了模擬堆積,結果如圖3所示,獲得了不同滾動摩擦系數(shù)下的混合物堆積休止角的信息.

圖3 多粒度的球團礦、焦炭和煤(質量比148∶19∶80)二元混合物的堆積料堆休止角Fig.3 Repose angle of multi-sized binary mixture among pellet, coke and coal

分析圖3可知,對球團礦、焦炭和煤(質量比148∶19∶80)二元混合物而言,隨著兩種物料顆粒間滾動摩擦系數(shù)的增大,其料堆休止角逐漸增大;同時DEM模擬還獲得了各組物料料堆空隙度以及與物料實驗休止角相吻合時的兩種物料顆粒間的表觀滾動摩擦系數(shù),模擬結果見表4.

表4 各組物料堆積的料堆空隙度及各物料顆粒間的表觀滾動摩擦系數(shù)

3.3 三元混合堆積的物理實驗與數(shù)值模擬的對比分析

同樣使用圓筒提拉法對球團礦、焦炭和煤(質量比148∶19∶80)三元混合物進行堆積實驗(焦炭和煤的粒度分布見表1,結果見圖4.),其中球團礦質量為21.4 kg、焦炭質量為2.75 kg、煤質量為 11.5 kg,并對該堆積實驗重復若干次,對測定的實驗結果取平均值,最終獲得其休止角約為29°.

圖4 多粒度球團礦、焦炭和煤(質量比 148∶19∶80)的堆積 (1)Fig.4 Packing of multi-sized pellet, coke and coal (148∶19∶80) (1)

圖5 多粒度球團礦、焦炭和煤(質量比148∶19∶80)的堆積 (2)Fig.5 Packing of multi-sized pellet, coke and coal (148∶19∶80) (2)

通過對三種物料中的二元混合物的堆積情況的研究,獲得了兩種物料顆粒間的表觀滾動摩擦系數(shù)以及料堆空隙度,為三元混合物的堆積提供了重要參數(shù),使用此參數(shù),模擬了三元混合堆積,結果如圖5所示.對比分析DEM模擬獲得的料堆休止角與物理實驗測量的休止角,發(fā)現(xiàn)實驗結果與模擬結果吻合度較高,故可進一步通過數(shù)值模擬預測球團礦、焦炭和煤以148:19:80比例堆積的料堆空隙度,為COREX工藝布料規(guī)律的研究提供參考依據.

綜上分析可知,實驗測得球團礦、焦炭和煤三種物料堆積的料堆休止角為29°,而用DEM模擬相同過程所得的料堆休止角為28.61°,模擬與實驗的誤差為1.34%,可見模擬結果與實驗結果吻合較好,故可認為DEM模擬可在一定程度上準確地預測料堆的宏觀結構(如:休止角),同時經過模擬計算,本文可得到球團礦、焦炭和煤按照質量比為149:19:80進行堆積的料堆內部空隙度為0.436,為生產現(xiàn)場提供必要的參數(shù)指導.

4 結 論

對于顆粒流動來講,球形顆??纱鎸嶋H不規(guī)則的非球形顆粒,只要給定合適的滾動摩擦系數(shù)即可實現(xiàn)與實際物料形成比較吻合的堆積現(xiàn)象,即堆積角.對于任何物料的堆積,因顆粒形狀、粒度分布均會對顆粒的滾動摩擦系數(shù)產生影響,在模擬之前必須進行滾動摩擦系數(shù)的測定,通過本文的研究,獲得冶金物料堆積的一些規(guī)律有:

(1)粒度分布范圍會影響COREX原料堆積的空隙度和料堆休止角;

(2)顆粒形狀同樣對料堆的空隙度和休止角會產生影響;

(3)物料性質對COREX原料堆積的空隙度影響較小,但是會對料堆休止角造成一定的影響.對于兩種物料混合物堆積的一般規(guī)律是:混合物料的料堆休止角值介于單種物料的料堆休止角值之間.

[1]John R L Allen. Sedimentary Structures: Their character and physical basis [M]. Volume 2. Elsevier Scientific Pub. Co.. 2011.

[2]Leitzelement M, Lo C S, Dodds J. Porosity and permeability of ternary mixtures of particles [J]. Powder Technology, 1985, 41(2): 159-164.

[3]Stovall T, de Larrard F, Build M. Linear packing density model of grain mixtures [J]. Powder Technology, 1986, 48(1): 1-12.

[4]Yu A B, Standish N. An analytical-parametric theory of the random packing of particles [J]. Powder Technology, 1988, 55(3): 171-186.

[5]Scott G D. Packing of spheres [J].Nature, 1960(188): 908-909.

[6]Ridgway K, Tarbuck K J. Particulate mixture bulk densities [J]. Chemical Engineering Science, 1968, 49: 103-105.

[7]Scott G D. Radial distribution of the random close packing of equal spheres [J].Nature, 1962, 194: 956-957.

[8]Yoshimasa K, Jimbo T, Joko T. Investigations of bell-less charging based on full scale model experiments [J]. Trans ISIJ, 1984, 24: 799-807.

[9]Yoshimasa K, Jimbo T, Joko T. Size segregation of sinter in top bunker of a bell-less furnace [J]. Trans ISIJ, 1987, 27: 851-860.

[10]Hiroshi M, Satoshi K, Masatoshi A,etal. Effect of chute angle on charging behavior of sintered ore particles at bell-less type charging system of blast furnace by discrete element method [J]. ISIJ International, 2009, 49 (4): 479-486.

[11]Yu Y W, Henrik S. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model [J]. Chemical Engineering Science, 2010, 65(18): 5237-5250.

[12]Zhu H P, Zhou Z Y, Yang R Y,etal. Discrete particle simulation of particulate systems: Theoretical developments [J]. Chemical Engineering Science, 2007, 62: 3378-3396.

[13]Zhou Z Y, Zhu H P, Yu A B,etal. Discrete particle simulation of gas-solid flow in a blast furnace [J]. Computers and Chemical Engineering, 2008, 32: 1760-1772.

[14]Zhou Z Y, Zhu H P, Yu A B,etal. Discrete particle simulation of solid flow in a model blast furnace [J], ISIJ International, 2005, 45(12): 1828-1837.

[15]Li Q, Feng M X, Zou Z S. Validation and calibration approach for discrete element simulation of burden charging in pre-reduction shaft furnace of COREX process [J]. ISIJ International, 2013, 53(8): 1365-1371.

[16]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.

[17]陳立勝, 羅志國, 游 洋, 等. 擋板角度對擋板布料器布料過程的影響[J]. 東北大學學報(自然科學版), 2013, 34 (7) : 971-974. (Chen L S, Luo Z G, You Y,etal. Effects of flap angles on the charging procedure of flap distributors [J]. Journal of Northeastern University (Natural Science), 2013, 34(7): 971-974.)

Research on packing of multi-size non-spherical particle for COREX process in BaYi steel company

Li Haifeng1,2, Li Linwei1,2, You Yang1,2, Luo Zhiguo1,2, Zou Zongshu1,2

(1.School of Metallurgy, Northeastern University, Shenyang 110819, China; 2.Key Laboratory of Ecological Utilization of Multi-metallic Mineral of Education Ministry, Northeastern University, Shenyang 110819, China)

Aimed at a local raw materials (pellets, coke and coal) of COREX in China, the packing of multi-size non-spherical particle was studied by physical and numerical simulations. First of all, the physical parameters of each raw material were determined by physical experiment, including particle size distribution, apparent density, bulk density, frictional coefficient, recovery coefficient, elastic modulus, shear modulus and Poisson's ratio, etc. Then, the packing angle of the binary mixture was determined through the physical experiment and the numerical simulation to construct the real particle shape. So a coefficient of the rotary friction was obtained. And by using the coefficient, effect of the ternary mixing packing was investigated. The repose angle and the voidage information were gained through the ternary mixing model for the pellet ore, multi-size coke and coal to mutually mix. It is believed that the authors’ date have an important role to the practical process.

discrete element method (DEM); mixture packing; numerical simulation

10.14186/j.cnki.1671-6620.2017.01.004

TF 557

A

1671-6620(2017)01-0019-06

猜你喜歡
實驗
我做了一項小實驗
記住“三個字”,寫好小實驗
我做了一項小實驗
我做了一項小實驗
記一次有趣的實驗
有趣的實驗
小主人報(2022年4期)2022-08-09 08:52:06
微型實驗里看“燃燒”
做個怪怪長實驗
NO與NO2相互轉化實驗的改進
實踐十號上的19項實驗
太空探索(2016年5期)2016-07-12 15:17:55
主站蜘蛛池模板: 在线观看av永久| 中文字幕精品一区二区三区视频| av免费在线观看美女叉开腿| 久久窝窝国产精品午夜看片| AV老司机AV天堂| 亚洲综合久久成人AV| 久久久久亚洲精品成人网| 亚洲最黄视频| 71pao成人国产永久免费视频| 国产极品美女在线播放| 热re99久久精品国99热| 最新亚洲av女人的天堂| 亚洲区视频在线观看| 免费激情网址| 国产精品极品美女自在线网站| 在线欧美a| 欧美成人手机在线视频| 国产欧美精品专区一区二区| 凹凸精品免费精品视频| 中美日韩在线网免费毛片视频| 亚洲欧美综合精品久久成人网| 国产H片无码不卡在线视频| 亚州AV秘 一区二区三区| 9966国产精品视频| 99精品国产电影| 亚洲国产成人精品无码区性色| 亚洲国产精品一区二区高清无码久久| 国产精品自在线拍国产电影| 亚洲天堂视频网| 国产成人无码AV在线播放动漫| 99色亚洲国产精品11p| 欧美成人精品一级在线观看| 国产成人综合日韩精品无码首页| 国产网站黄| 亚洲午夜国产片在线观看| 日本道综合一本久久久88| 香港一级毛片免费看| 高清无码手机在线观看| 91精品专区| 日韩欧美综合在线制服| 亚洲国产日韩在线成人蜜芽| 重口调教一区二区视频| 99ri精品视频在线观看播放| 亚洲综合精品第一页| 国产亚洲精品无码专| 波多野结衣二区| 久久女人网| 欧美亚洲国产日韩电影在线| 亚洲中文字幕精品| 国产精品部在线观看| 日韩在线视频网| 国产噜噜噜| 亚洲无码久久久久| 免费jizz在线播放| 国产成人91精品| 91麻豆国产视频| 99无码熟妇丰满人妻啪啪| 午夜视频日本| 丁香五月婷婷激情基地| 午夜激情婷婷| 波多野结衣中文字幕一区二区| 欧美精品亚洲二区| 中文字幕第4页| 波多野结衣第一页| 亚洲一区国色天香| 国产又粗又猛又爽视频| 小说 亚洲 无码 精品| 免费人欧美成又黄又爽的视频| 亚洲婷婷六月| 国产欧美日韩va| 国产流白浆视频| 亚洲国产av无码综合原创国产| 国产综合欧美| 成年免费在线观看| 国产成人一区免费观看| 日韩中文精品亚洲第三区| 日韩一级二级三级| 亚洲综合婷婷激情| 国产真实乱人视频| 日本免费新一区视频| 999精品色在线观看| 午夜毛片免费看|