尹曉東
現階段,我國的市面上有很多不同的方法來進行機械零件尺寸的測量和研究,采取不同的測量辦法,得出的結果也有著精確度的差異。原始的測量方法是人們通過借助各種測量儀器,如萬能工具顯微鏡和三坐標測量機等,進行人工測量操作。這種方式存在著很多弊端,而計算機視覺檢測技術的應用則可以很好地解決這一問題。所謂視覺檢測就是檢測被測目標時,把圖像當作檢測和傳遞信息的手段或載體加以利用的檢測方法,其目的是從圖像中提取有用的信號,它是以現代光學為基礎,融光電子學、計算機圖像學、信息處理、計算機視覺等科學技術為一體的現代檢測技術。由于計算機視覺系統可以快速獲取大量信息,而且易于與設計信息及加工控制信息集成,基于視覺檢測技術的儀器設備能夠實現智能化、數字化、小型化、網絡化和多功能化,具備在線檢測、實時分析、實時控制的能力在軍事、工業、商業、醫學等領域得到廣泛關注和應用。
一、計算機視覺檢測技術含義
計算機的視覺又叫做機器視覺,通過利用計算機或者是其他的一些機械設備來幫助人們視線事物到圖片的過程,從而進行三維世界的感知活動。計算機的快速發展,離不開神經心理學,心理學和認知科學方面的研究和發展,計算機視覺檢測技術的發展方向就是對周圍的三維空間進行感知和分析。一旦能夠擁有這種能力,計算機不僅能感知到周圍的總體環境,而且,還能夠具有對物體進行描述,識別理解和儲存的能力。
二、計算機視覺檢測的基本原理
要實現人工智能對視覺的計算機處理是很重要的方面在計算機視覺應用領域中如果要讓我們的計算機明白圖像的信息就必須經過一系列的處理過程———數字圖像處理.數字圖像的處理包括5個步驟:圖像預處理(去除噪聲)、分割處理分割后區域、測量、圖像判讀、圖像技術.根據抽象程度和處理方法的不同圖像技術可分為三個層次:圖像處理、圖像分析和圖像理解.這三個層次的有機結合也稱為圖像工程.而計算機視覺(Computer vision)則是用計算機實現人的視覺功能對客觀世界三維場景的感知、識別和理解.視覺檢測按其所處理的數據類型又大致可分為二值圖像、灰度圖像、彩色圖像和深度圖像的視覺檢測.另外還有X射線檢測、超聲波檢測和紅外線檢測。
作為新興檢測技術計算機視覺檢測充分利用了計算機視覺研究成果采用像傳感器來實現對被測物體的尺寸及空間位置的三維測量能較好地滿足現代制造業的發展需求.與一般意義上的圖像處理相比計算機視覺檢測更強調精度、速度和無損性以及工業現場環境下的可靠性.例如基于三角法的主動視覺測量理具有抗干擾能力強、效率高、精度合適等優點非常適合制造業生產現場的在線、非接觸產品檢測及生產監控.對人類視覺感知能力的計算機模擬促進了計算機視覺技術的產生和發展制造業上獲取這些信息的目的有:(1)計算出觀察點到目標物體的距離;(2)得出觀察點到目標物體的運動參數;(3)甚至可以判斷出目標物體的內部特性;(4)推斷出目標物體的表面特征有時要求形成立體視覺。
三、亞像素檢測技術
隨著工業檢測等應用對精度要求的不斷提高,像素級精度已經不能滿足實際檢測的要求,因此需要更高精度的邊緣提取算法,即亞像素算法。亞像素級精度的算法是在經典算法的基礎上發展起來的,這些算法一般需要先用經典算法找出邊緣像素的位置,然后使用周圍像素的灰度值作為判斷的補充信息,利用插值、擬合等方法,使邊緣定位于更加精確的位置。現在的亞像素提取算法很多,如重心法、概率論法、解調測量法、多項式插值法、濾波重建法、矩法等。由于這些算法的精度、抗噪聲能力和運算量各不相同,他們的應用場合也是各不相同的。
邊緣是圖像的基本特征,所謂邊緣是指圖像中灰度存在階躍或尖頂狀變化的像素的集合,邊緣廣泛存在于物體與物體、物體與背景之間。圖像測量是通過處理被測物體圖像中的邊緣而獲得物體的幾何參數的過程,邊緣的定位精度直接影響最終的測量結果。因此,圖像邊緣提取方法是檢測的基礎和關鍵之一。在視覺測量領域中,早期使用的都是像素級邊緣檢測方法,例如常用的梯度算子、Lapacian算子和門式算子等。以上的邊緣檢測方法的精度可以達到像素級精度,即可以判斷出邊緣位于某個像素內,但不能確定邊緣在該像素內的更精確的位置。如果一個像素對應的實際長度較大,就會產生較大的誤差,傳統的整像素邊緣檢測方法就不再適用。
四、計算機視覺檢測技術在機加工零件檢測中的應用要素與過程
(一)曲陣CCD相機
面陣CCD是本項目圖像采集系統中的主要設備之一,其主要功能是采集實驗圖像。該CCD相機主要由CCD感光芯片、驅動電路、信號處理電路、電子接口電路和光學機械接口等構成。
(二)工業定焦鏡頭
在圖像測量系統中,鏡頭的主要作用是將目標聚焦在圖像傳感器的光敏面上。鏡頭的質量直接影響到圖像測量系統的整體性能,合理選擇并安裝光學鏡頭是圖像測量系統設計的重要環節。
(三)數字圖像采集卡
隨著數字信號處理技術和嵌入式處理器技術在圖像采集卡中的應用,使得圖像采集卡向高速度、多功能和模塊化方向不斷發展。這類圖像采集卡不僅具有高速圖像采集功能,同時還具備部分圖像處理功能,因此又可以稱之為圖像處理卡。
(四)標定板
為提高測量精度,需要進行攝像機標定。標定過程中,采用NANO公司的CBC75mm}.0型高精度標定板,外形尺寸為75mmx75mmx3.0mm,圖形為棋盤格,其尺寸為2.0mmx2.0mm,精度為1級,即圖形尺寸精度與圖形位置精度為。
(五)背光源
背光方式只顯示不透明物體的輪廓,所以這種方式用于被測物需要的信息可以從其輪廓得到的場合。因此,為精確提取軸的圖像中的邊緣特征,需采用背光源。為使圖像邊緣更銳利,光源顏色選擇紅色。
五、結語
隨著計算機技術和光電技術的發展,已經出現了一種新的檢測技術—基于計算機視覺的檢測技術,利用CCD攝像機作為圖像傳感器,綜合運用圖像處理等技術進行非接觸測量的方法,被廣泛地應用于零件尺寸的精密測量中。本文以面陣CCD為傳感器,研究了零件在線測量的方法,實現了零件尺寸的圖像邊緣亞像素定位測量,對面陣CCD在高精度測量方面的應用作了進一步的探索和研究,為面陣CCD在復雜零件尺寸高精度測量的實現打下了基礎。
【參考文獻】
[1]馬頌德,張正友.計算機視覺:計算機理論與計算基礎[M].北京:科學出版社,1988.
[2]章毓晉.計算機視覺教程[M].北京:人民郵電出版社,2011.