李萬慶++左紅++孟文清++陳明欣



摘要: 為客觀、合理地進行氣膜薄殼鋼筋混凝土穹頂儲倉的工期預測,提出了基于PSO-SVR的預測方法。采用粒子群算法(particle swarm optimization,PSO)對支持向量回歸機(support vector regression,SVR)的參數進行優化,并運用優化后的支持向量回歸機對氣膜薄殼鋼筋混凝土穹頂儲倉的工期進行預測。通過實例驗證表明:PSO-SVR模型的預測效果優于遺傳算法(GA-SVR)和串聯型灰色神經網絡(SGNN)。
Abstract: In order to forecast the duration on thin-shell concrete dome using inflated forms objectively and reasonably, the artical presents a prediction method named PSO-SVR. Using PSO to optimize the parameter of SVR, and forecasting the duration on thin-shell concrete dome using inflated forms by support vector regression which is optimized. The example show that the prediction effect of PSO-SVR model is better than genetic algorithm (GA-SVR) and series of grey neural network (SGNN).
關鍵詞: 氣膜薄殼鋼筋混凝土穹頂儲倉;工期預測;PSO-SVR
Key words: thin-shell concrete dome using inflated forms;forecasting of the duration;PSO-SVR
中圖分類號:TU722 文獻標識碼:A 文章編號:1006-4311(2017)05-0035-03