999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于數(shù)據(jù)的流程工業(yè)生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法綜述

2017-03-10 05:20:04陳龍劉全利王霖青趙珺王偉
自動(dòng)化學(xué)報(bào) 2017年6期
關(guān)鍵詞:優(yōu)化方法模型

陳龍 劉全利 王霖青 趙珺 王偉

流程工業(yè)是通過(guò)分離、混合、成型或物理、化學(xué)變化使生產(chǎn)原材料增值的行業(yè),其生產(chǎn)過(guò)程一般是連續(xù)或成批進(jìn)行,主要包括化工、冶金、石油、橡膠、輕工、制藥等[1].現(xiàn)如今我國(guó)流程工業(yè)發(fā)展迅速,主要產(chǎn)品產(chǎn)量居世界前列.以粗鋼生產(chǎn)為例,2015年全球粗鋼產(chǎn)量達(dá)到16.21億噸,其中中國(guó)粗鋼產(chǎn)量達(dá)到8.038億噸,占全球粗鋼總產(chǎn)量的49.6%[2].然而目前我國(guó)流程工業(yè)普遍面臨著過(guò)程結(jié)構(gòu)復(fù)雜,工序設(shè)備多,能耗高等突出問(wèn)題.因此,提高我國(guó)流程工業(yè)自動(dòng)化水平以達(dá)到降低能耗和提高效率的目標(biāo)迫在眉睫.

流程工業(yè)普遍包含諸多重要的生產(chǎn)過(guò)程指標(biāo)或變量,現(xiàn)場(chǎng)操作人員往往會(huì)根據(jù)經(jīng)驗(yàn)對(duì)某些特別關(guān)注的關(guān)鍵指標(biāo)進(jìn)行監(jiān)測(cè),從而調(diào)控整個(gè)生產(chǎn)過(guò)程,最終達(dá)到穩(wěn)定生產(chǎn)的目標(biāo),如高爐煉鐵過(guò)程中鐵水溫度,硅含量[3]以及多種質(zhì)量指標(biāo)[4]等.生產(chǎn)過(guò)程指標(biāo)一般分為兩類,一類是生產(chǎn)過(guò)程運(yùn)行參數(shù),如溫度、壓力等;另一類是定義的生產(chǎn)過(guò)程指標(biāo),如選礦過(guò)程中的精尾礦品位等,而此類指標(biāo)往往與其他過(guò)程變量之間存在著復(fù)雜的非線性關(guān)系.考慮到工業(yè)生產(chǎn)過(guò)程通常具有非線性和大滯后等特征,對(duì)這些指標(biāo)的測(cè)量往往耗時(shí)長(zhǎng),難以檢測(cè),或根本無(wú)法檢測(cè),因此針對(duì)其建立有效的數(shù)學(xué)模型進(jìn)行實(shí)時(shí)預(yù)測(cè)(估計(jì))就顯得尤為重要[5].另一方面,從實(shí)時(shí)生產(chǎn)調(diào)度角度來(lái)講,操作人員希望預(yù)先了解某些關(guān)鍵指標(biāo)的未來(lái)變化趨勢(shì),這也使得指標(biāo)趨勢(shì)預(yù)測(cè)成為目前流程工業(yè)生產(chǎn)過(guò)程監(jiān)控的重要任務(wù)[6?7].傳統(tǒng)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)采用基于機(jī)理建模的方法,此類方法在工藝機(jī)理分析的基礎(chǔ)上,依據(jù)物料平衡、熱量平衡和動(dòng)力學(xué)建立數(shù)學(xué)模型[8].然而機(jī)理建模很大程度上依賴于對(duì)過(guò)程機(jī)理的認(rèn)知,由于工業(yè)生產(chǎn)常具有非平衡、非穩(wěn)定和強(qiáng)非線性等特點(diǎn),此類機(jī)理模型成本高、難度大,其準(zhǔn)確性和可靠性難以保證,往往存在模型精度低和容易失配等問(wèn)題[8].

隨著計(jì)算機(jī)和網(wǎng)絡(luò)技術(shù)的發(fā)展,流程工業(yè)企業(yè)基于監(jiān)控與數(shù)據(jù)采集系統(tǒng)(Supervisory control and data acquisition,SCADA)獲取了大量涉及生產(chǎn)過(guò)程特點(diǎn)、設(shè)備、質(zhì)量和能源的歷史數(shù)據(jù).目前基于數(shù)據(jù)的方法成為較盛行的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法,此類方法通過(guò)建立輸入–輸出數(shù)據(jù)變量間的關(guān)系模型完成預(yù)測(cè)任務(wù),而無(wú)需對(duì)生產(chǎn)過(guò)程的反應(yīng)或動(dòng)力學(xué)等機(jī)理信息進(jìn)行研究.通常基于數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)過(guò)程包含三個(gè)方面,即 1)特征(變量)選擇;2)預(yù)測(cè)模型建立;3)模型參數(shù)優(yōu)化.特征(變量)選擇過(guò)程指從大量的候選輸入特征中挑選出與預(yù)測(cè)指標(biāo)最相關(guān)的特征作為預(yù)測(cè)模型的輸入變量.通常數(shù)據(jù)特征選擇包括經(jīng)驗(yàn)知識(shí)手動(dòng)選擇和基于數(shù)據(jù)分析的選擇方法.基于經(jīng)驗(yàn)知識(shí)的方法雖然方便快捷,但時(shí)常會(huì)因經(jīng)驗(yàn)不足出現(xiàn)錯(cuò)選漏選或特征冗余的情況.基于數(shù)據(jù)的預(yù)測(cè)建模可采用機(jī)器學(xué)習(xí)方法(如人工神經(jīng)網(wǎng)絡(luò)[9]、支持向量機(jī)[10]等)來(lái)完成,與機(jī)理模型不同的是此類方法只關(guān)注模型的輸入和輸出.模型的輸入是選擇的相關(guān)特征變量,模型輸出即是待預(yù)測(cè)的關(guān)鍵指標(biāo).預(yù)測(cè)模型參數(shù)選取對(duì)模型精度影響較大,模型參數(shù)優(yōu)化過(guò)程通常以減小預(yù)測(cè)誤差為目標(biāo),使模型獲得較好的預(yù)測(cè)精度.最常見(jiàn)的模型參數(shù)優(yōu)化方法有基于梯度的方法,如梯度下降法[11]、共軛梯度法[11]等;智能優(yōu)化方法如遺傳算法[12]、模擬退火算法[13]等.圖1給出了基于數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法的基本流程.

圖1 基于數(shù)據(jù)生產(chǎn)關(guān)鍵指標(biāo)預(yù)測(cè)的基本流程圖Fig.1 A flow chart of data-based prediction on performance indicators in process industry

本文針對(duì)目前基于數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)在上述三個(gè)方面進(jìn)行綜述,并結(jié)合當(dāng)前最新的機(jī)器學(xué)習(xí)技術(shù)、自動(dòng)化發(fā)展趨勢(shì)以及工業(yè)過(guò)程的需求,探討基于工業(yè)數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法的可能發(fā)展方向.

1 生產(chǎn)過(guò)程指標(biāo)的特征(變量)選擇

被預(yù)測(cè)的指標(biāo)值往往與生產(chǎn)過(guò)程中的多個(gè)過(guò)程變量相關(guān),進(jìn)行生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)首先需將與被預(yù)測(cè)指標(biāo)最相關(guān)的特征變量從眾多候選變量中挑選出來(lái).以熱軋生產(chǎn)過(guò)程為例,針對(duì)板帶厚度的預(yù)測(cè)問(wèn)題,經(jīng)過(guò)特征選擇最終得到影響板帶厚度的輸入因素多達(dá)20個(gè)[14].基于數(shù)據(jù)的特征選擇根據(jù)是否獨(dú)立于后續(xù)的建模算法,可分為過(guò)濾式(Filter)和封裝式(Wrapper)兩種[15].過(guò)濾式特征選擇的基本思路是采用一種評(píng)價(jià)準(zhǔn)則來(lái)增強(qiáng)特征與輸出的相關(guān)性,削減各個(gè)特征之間的相關(guān)性從而選擇最相關(guān)特征,再將被選擇的最相關(guān)特征參與建模.而封裝式方法則將特征選擇步驟與建模過(guò)程融合,其缺點(diǎn)在于與過(guò)濾式方法相比較為耗時(shí).目前,應(yīng)用在工業(yè)生產(chǎn)過(guò)程中最常見(jiàn)的特征選擇方法有過(guò)濾式方法,如基于相關(guān)性分析的方法[16?19]等;封裝式方法,如變量修剪方法[20]、基于遺傳算法的方法[21]等.

基于相關(guān)性分析的方法如灰色關(guān)聯(lián)分析法[22],其基本思路是通過(guò)線性插值將時(shí)間離散觀測(cè)值轉(zhuǎn)化為分段連續(xù)的折線,進(jìn)而根據(jù)折線的幾何特征構(gòu)造測(cè)度關(guān)聯(lián)程度模型來(lái)評(píng)價(jià)各狀態(tài)變量之間的關(guān)聯(lián)程度.如文獻(xiàn)[23]針對(duì)燒結(jié)過(guò)程中燒結(jié)質(zhì)量的預(yù)測(cè)問(wèn)題,將8個(gè)過(guò)程變量分別與燒結(jié)質(zhì)量進(jìn)行灰色關(guān)聯(lián)分析,并最終挑選了4個(gè)與燒結(jié)質(zhì)量最相關(guān)的因素來(lái)作為預(yù)測(cè)模型的輸入.文獻(xiàn)[24]針對(duì)鋼鐵工業(yè)轉(zhuǎn)爐煤氣系統(tǒng)中煤氣柜位預(yù)測(cè)問(wèn)題提出了一種一致T型灰色關(guān)聯(lián)分析算法來(lái)確定轉(zhuǎn)爐煤氣柜位的主要影響因素.文獻(xiàn)[25]針對(duì)煉焦生產(chǎn)過(guò)程綜合生產(chǎn)指標(biāo)(焦炭質(zhì)量、產(chǎn)量和焦?fàn)t能耗)預(yù)測(cè),采用主元分析和灰色關(guān)聯(lián)分析確定了神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型的輸入輸出因素.針對(duì)硫酸鋅溶液凈化過(guò)程中鈷離子濃度預(yù)測(cè)[26]和高爐爐溫預(yù)測(cè)[27]問(wèn)題,灰色關(guān)聯(lián)方法表現(xiàn)出較好的精度優(yōu)勢(shì).此外,基于F評(píng)分的方法也是一類基于相關(guān)性分析的特征選擇方法[19],該方法通過(guò)定義一種F評(píng)分來(lái)表示每個(gè)輸入特征與輸出之間的相關(guān)程度,F值越大說(shuō)明該特征與輸出的相關(guān)性越大.如文獻(xiàn)[28]針對(duì)高爐爐溫變化趨勢(shì)預(yù)測(cè)問(wèn)題,提出了一種依次驗(yàn)證和F評(píng)分方法相結(jié)合的特征選擇方法,從所有的高爐煉鐵過(guò)程變量中找出與爐溫變化趨勢(shì)最相關(guān)的8個(gè)輸入特征.目前大部分基于相關(guān)性分析的特征選擇方法僅僅分析了候選特征與被預(yù)測(cè)指標(biāo)之間的關(guān)聯(lián)性,而未考慮各輸入特征之間可能存在的聯(lián)系,從而導(dǎo)致選出的特征中存在冗余,也會(huì)在一定程度上影響預(yù)測(cè)模型的建模效率.

變量修剪算法是一種封裝式特征選擇方法,其思路是基于前饋神經(jīng)網(wǎng)絡(luò)回歸模型從復(fù)雜的初始模型出發(fā),以最小化預(yù)測(cè)誤差為目標(biāo),通過(guò)逐個(gè)將相應(yīng)輸入權(quán)值設(shè)置為零來(lái)剔除不相關(guān)變量[20].該算法在修剪輸入變量的同時(shí)優(yōu)化模型的網(wǎng)絡(luò)結(jié)構(gòu)(隱含節(jié)點(diǎn)數(shù)目).如針對(duì)高爐鐵水硅含量預(yù)測(cè)問(wèn)題,文獻(xiàn)[29?30]分別采用前饋神經(jīng)網(wǎng)絡(luò)模型作為基礎(chǔ)預(yù)測(cè)模型,并采用變量修剪算法來(lái)去除不相關(guān)變量,最終找到了影響鐵水硅含量的主要輸入因素.此外,基于遺傳算法的封裝式方法是將候選特征隨機(jī)構(gòu)造預(yù)測(cè)模型組成種群并進(jìn)行遺傳操作來(lái)選擇最優(yōu)的輸入特征.如文獻(xiàn)[31]提出了一種基于遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡(luò)非線性建模算法,建模過(guò)程中采用遺傳算法同時(shí)最小化預(yù)測(cè)誤差和模型復(fù)雜度兩個(gè)目標(biāo),從而得到最優(yōu)輸入特征組合和網(wǎng)絡(luò)結(jié)構(gòu),并將其應(yīng)用到高爐煉鐵過(guò)程中的鐵水硅含量預(yù)測(cè)問(wèn)題.文獻(xiàn)[21]針對(duì)石油化學(xué)制品工業(yè)中的質(zhì)量指標(biāo)預(yù)測(cè)問(wèn)題,將候選輸入變量隨機(jī)構(gòu)造的一系列預(yù)測(cè)模型組成一個(gè)種群,以最小化預(yù)測(cè)誤差為目標(biāo),通過(guò)類似遺傳算法的策略來(lái)找到最優(yōu)的候選變量組合.封裝式特征選擇方法由于以最小化預(yù)測(cè)誤差為目標(biāo)進(jìn)行特征選擇,其預(yù)測(cè)精度可能優(yōu)于基于相關(guān)性分析的方法,但是由于其在建模過(guò)程中融入了特征選擇步驟,算法的時(shí)間成本也相對(duì)較高.以上針對(duì)特定工業(yè)應(yīng)用的無(wú)論是基于相關(guān)性分析的方法還是封裝式特征選擇方法大都是以離線的方式完成,這對(duì)于具有時(shí)變特性的工業(yè)生產(chǎn)過(guò)程并不總是適合.因此針對(duì)實(shí)際工業(yè)問(wèn)題開(kāi)展實(shí)時(shí)在線式的特征選擇對(duì)基于數(shù)據(jù)的特征選擇方法尚具有一定的挑戰(zhàn).

2 生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)建模

針對(duì)工業(yè)生產(chǎn)過(guò)程建模問(wèn)題,傳統(tǒng)基于物理、化學(xué)機(jī)理建立精確數(shù)學(xué)模型的方法已越來(lái)越困難.而相當(dāng)數(shù)量的工業(yè)企業(yè)每天都在產(chǎn)生并存儲(chǔ)著大量隱含工藝變動(dòng)和設(shè)備運(yùn)行等信息的生產(chǎn)、設(shè)備和過(guò)程數(shù)據(jù),如何有效利用大量的離線、在線數(shù)據(jù)和知識(shí),在難于建立系統(tǒng)機(jī)理模型的情況下,實(shí)現(xiàn)對(duì)生產(chǎn)過(guò)程和設(shè)備的優(yōu)化控制和評(píng)價(jià),已成為迫切需要解決的問(wèn)題.數(shù)據(jù)驅(qū)動(dòng)的方法是解決機(jī)理不明確或含不確定性機(jī)理模型對(duì)象建模問(wèn)題的有效方法[32],此類方法利用離線、在線數(shù)據(jù)來(lái)描述對(duì)象的運(yùn)行規(guī)律和相關(guān)模式,并結(jié)合反映系統(tǒng)參數(shù)、結(jié)構(gòu)等數(shù)據(jù),來(lái)實(shí)現(xiàn)復(fù)雜系統(tǒng)的建模[33].近年來(lái),針對(duì)工業(yè)系統(tǒng)的指標(biāo)預(yù)測(cè)問(wèn)題,已有不少數(shù)據(jù)驅(qū)動(dòng)方法(如迭代學(xué)習(xí)[34]、無(wú)模型自適應(yīng)方法[35]和自適應(yīng)動(dòng)態(tài)規(guī)劃[36]等)被提出.基于數(shù)據(jù)的預(yù)測(cè)建模方法中,根據(jù)是否嵌入了機(jī)理模型,可將建模方法分為基于數(shù)據(jù)的方法和數(shù)據(jù)–機(jī)理相結(jié)合的方法.

2.1 基于數(shù)據(jù)的預(yù)測(cè)建模

機(jī)器學(xué)習(xí)技術(shù)的發(fā)展為基于數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)奠定了建模基礎(chǔ).如針對(duì)煉鐵過(guò)程鐵水硅含量預(yù)測(cè)、產(chǎn)品質(zhì)量指標(biāo)預(yù)測(cè)、選礦生產(chǎn)指標(biāo)預(yù)測(cè)等問(wèn)題[37?39].較為常用的方法如人工神經(jīng)網(wǎng)絡(luò)[40]、支持向量機(jī)[41]、高斯過(guò)程回歸方法[42]以及偏最小二乘回歸方法[43]等.文獻(xiàn)[44]針對(duì)鐵水硅含量預(yù)測(cè),通過(guò)聯(lián)合人工神經(jīng)網(wǎng)絡(luò)和定性分析的方法建立預(yù)測(cè)模型.文獻(xiàn)[45?46]采用人工神經(jīng)網(wǎng)絡(luò)分別對(duì)鋼板軋制過(guò)程中的軋制力和串聯(lián)軋制機(jī)組的震顫進(jìn)行了預(yù)測(cè).文獻(xiàn)[47]針對(duì)高爐煉鐵過(guò)程中的硅含量變化趨勢(shì)預(yù)測(cè),提出了二編碼支持向量機(jī)模型.基于偏最小二乘回歸方法和核偏最小二乘法的預(yù)測(cè)模型也應(yīng)用于化工生產(chǎn)過(guò)程的產(chǎn)品質(zhì)量[48]和銅轉(zhuǎn)爐吹煉過(guò)程的關(guān)鍵操作參數(shù)預(yù)測(cè)[49].基于混沌的多步迭代預(yù)測(cè)和基于AdaBoost的預(yù)測(cè)模型也分別應(yīng)用于鐵水硅含量預(yù)測(cè)[50]和選礦生產(chǎn)指標(biāo)預(yù)測(cè)[51]中.此外,基于數(shù)據(jù)的預(yù)測(cè)模型不僅被應(yīng)用在生產(chǎn)監(jiān)控與調(diào)度需求中,也被應(yīng)用在預(yù)測(cè)優(yōu)化控制中[52?53],而采用基于數(shù)據(jù)的機(jī)器學(xué)習(xí)方法(如人工神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等)來(lái)進(jìn)行預(yù)測(cè)建模是當(dāng)前較為流行的方法[54?58].其基本思路是將當(dāng)前時(shí)刻的系統(tǒng)輸入值和真實(shí)輸出值作為基于數(shù)據(jù)預(yù)測(cè)模型的輸入來(lái)預(yù)測(cè)系統(tǒng)的輸出,并將此預(yù)測(cè)輸出值反饋到系統(tǒng)輸入端以進(jìn)行滾動(dòng)優(yōu)化.此類方法充分利用了機(jī)器學(xué)習(xí)技術(shù)較強(qiáng)的非線性擬合能力,而無(wú)需關(guān)注系統(tǒng)內(nèi)在機(jī)理,具有較強(qiáng)的可應(yīng)用性;但卻需要大量的歷史數(shù)據(jù)來(lái)作為預(yù)測(cè)模型的建模基礎(chǔ).

根據(jù)生產(chǎn)過(guò)程中不同的預(yù)測(cè)需求或不同的生產(chǎn)狀況,基于數(shù)據(jù)的預(yù)測(cè)建模通常有以下幾種分類方法.根據(jù)預(yù)測(cè)時(shí)長(zhǎng)需求,可分為長(zhǎng)期預(yù)測(cè)模型和短期預(yù)測(cè)模型;根據(jù)預(yù)測(cè)輸出指標(biāo)的數(shù)量,可分為多輸出預(yù)測(cè)和單輸出預(yù)測(cè);根據(jù)模型中是否考慮時(shí)滯因素,可以分為時(shí)滯因素模型和非時(shí)滯模型;根據(jù)是否有在線更新模型參數(shù),可分為離線模型和在線模型;根據(jù)是否使用單一的機(jī)器學(xué)習(xí)預(yù)測(cè)模型,可以分為多模型集成和單一模型等.下面將重點(diǎn)綜述幾類預(yù)測(cè)建模問(wèn)題,包括長(zhǎng)期預(yù)測(cè)模型、多輸出模型、時(shí)滯因素模型、在線預(yù)測(cè)模型、集成預(yù)測(cè)模型和時(shí)間序列預(yù)測(cè)模型.

1)長(zhǎng)期預(yù)測(cè)模型

流程工業(yè)生產(chǎn)中為了達(dá)到生產(chǎn)資源的合理配置,通常需要一個(gè)相對(duì)長(zhǎng)期生產(chǎn)規(guī)劃(如天、月等),因此對(duì)生產(chǎn)過(guò)程指標(biāo)的長(zhǎng)期預(yù)測(cè)就顯得尤為重要.短期預(yù)測(cè)一般采用單步迭代的方法,然而此方法應(yīng)用在長(zhǎng)期預(yù)測(cè)問(wèn)題時(shí)預(yù)測(cè)誤差會(huì)隨著迭代步數(shù)的增加而積累,導(dǎo)致最終的誤差很大[59?61].如文獻(xiàn)[61]針對(duì)轉(zhuǎn)爐煤氣流量的長(zhǎng)期預(yù)測(cè),提出了一種基于鋼鐵生產(chǎn)狀態(tài)估計(jì)的轉(zhuǎn)爐煤氣流量長(zhǎng)期預(yù)測(cè)方法,通過(guò)特征提取和特征融合得到全局性特征,利用全局性特征來(lái)實(shí)現(xiàn)轉(zhuǎn)爐煤氣流量的長(zhǎng)期預(yù)測(cè).文獻(xiàn)[62]提出粒度時(shí)間序列的概念,并采用模糊聚類方法構(gòu)造時(shí)間粒度以進(jìn)行長(zhǎng)期趨勢(shì)預(yù)測(cè).針對(duì)鋼鐵能源系統(tǒng)的副產(chǎn)煤氣流量長(zhǎng)期預(yù)測(cè)問(wèn)題,文獻(xiàn)[63]提出了一種基于粒度計(jì)算的長(zhǎng)期預(yù)測(cè)方法,通過(guò)對(duì)工業(yè)原始數(shù)據(jù)根據(jù)過(guò)程操作工藝進(jìn)行時(shí)間上的粒度劃分,采用動(dòng)態(tài)時(shí)間彎曲技術(shù)和模糊聚類產(chǎn)生類別實(shí)現(xiàn)長(zhǎng)期預(yù)測(cè).而文獻(xiàn)[64]針對(duì)鋼鐵工業(yè)中氧氮能源系統(tǒng)的調(diào)度問(wèn)題,采取了預(yù)測(cè)–調(diào)度兩階段的調(diào)度方法,其中長(zhǎng)期預(yù)測(cè)部分同樣采用了基于時(shí)間粒度劃分的方法.

基于時(shí)間粒度劃分的方法雖然可以有效地避免單步迭代預(yù)測(cè)帶來(lái)的誤差積累問(wèn)題,但是以上文獻(xiàn)中的時(shí)間粒度劃分都是采用人工劃分的方式,極度依賴于人工經(jīng)驗(yàn),粒度劃分的效果很難科學(xué)評(píng)判,而且難以推廣到其他工業(yè)應(yīng)用,有一定的局限性.因此更智能的自動(dòng)劃分方法以及更合理的粒度劃分評(píng)判方法是目前研究的重點(diǎn)[63].

2)多輸出預(yù)測(cè)模型

工業(yè)生產(chǎn)過(guò)程往往需要同時(shí)關(guān)注多個(gè)關(guān)鍵預(yù)測(cè)指標(biāo),分別對(duì)各個(gè)指標(biāo)建立預(yù)測(cè)模型的方法會(huì)丟失被預(yù)測(cè)指標(biāo)之間的內(nèi)在關(guān)聯(lián)耦合信息,從而導(dǎo)致預(yù)測(cè)精度不高.如鋼鐵工業(yè)轉(zhuǎn)爐煉鋼生產(chǎn)中,文獻(xiàn)[24,65]針對(duì)兩個(gè)轉(zhuǎn)爐煤氣柜柜位預(yù)測(cè),考慮兩個(gè)煤氣柜之間的相互關(guān)聯(lián)影響,建立了多輸出最小二乘支持向量機(jī)預(yù)測(cè)模型.文獻(xiàn)[66]針對(duì)轉(zhuǎn)爐煤氣柜柜位的長(zhǎng)期預(yù)測(cè)問(wèn)題,提出采用基于粒度計(jì)算的協(xié)作式模糊聚類方法建立了兩柜位長(zhǎng)期預(yù)測(cè)模型.文獻(xiàn)[67]針對(duì)高爐煉鐵過(guò)程中的四個(gè)關(guān)鍵質(zhì)量指標(biāo)(鐵水溫度、硅含量、硫含量和磷含量)的預(yù)測(cè)問(wèn)題,建立了基于建模精度綜合評(píng)價(jià)與遺傳參數(shù)優(yōu)化的鐵水質(zhì)量多輸出支持向量回歸動(dòng)態(tài)預(yù)測(cè)模型.文獻(xiàn)[68]采用多輸出最小二乘支持向量機(jī)同時(shí)預(yù)測(cè)氧化鋁蒸發(fā)過(guò)程的全堿濃度、氧鋁濃度和苛堿濃度.在以上的工業(yè)預(yù)測(cè)應(yīng)用中多輸出預(yù)測(cè)模型都提高了模型預(yù)測(cè)精度.

3)時(shí)滯因素模型

流程工業(yè)生產(chǎn)過(guò)程通常具有時(shí)滯性,輸入變量的變化往往需要經(jīng)過(guò)一段時(shí)間才能反映到被預(yù)測(cè)指標(biāo)上,如選礦過(guò)程、鋼鐵生產(chǎn)過(guò)程等.一方面預(yù)測(cè)建模需將輸入變量的時(shí)滯性考慮在預(yù)測(cè)建模中;另一方面被預(yù)測(cè)指標(biāo)本身通常具有連續(xù)性,其當(dāng)前時(shí)刻取值與歷史時(shí)刻值有著相互關(guān)聯(lián),考慮輸入輸出閉環(huán)聯(lián)系,通常需將被預(yù)測(cè)指標(biāo)歷史時(shí)刻的變量值作為模型的輸入特征來(lái)進(jìn)行建模.如文獻(xiàn)[69]針對(duì)高爐煤氣系統(tǒng)柜位波動(dòng)的建模問(wèn)題,將前一時(shí)刻的高爐煤氣柜柜位值添加到預(yù)測(cè)模型的輸入向量中進(jìn)行了T-S模糊預(yù)測(cè)建模.對(duì)于煉鋼轉(zhuǎn)爐煤氣柜柜位預(yù)測(cè),也需要將歷史時(shí)刻的柜位值反饋到輸入變量中以形成輸入輸出閉環(huán)聯(lián)系[24,65].文獻(xiàn)[70?71]分別針對(duì)高爐煉鐵過(guò)程多元鐵水質(zhì)量預(yù)測(cè)問(wèn)題和鐵水溫度預(yù)測(cè)問(wèn)題,考慮到煉鐵過(guò)程中的時(shí)滯性質(zhì),將相關(guān)輸入輸出變量的時(shí)序和時(shí)滯關(guān)系融合到建模過(guò)程.文獻(xiàn)[31]考慮了5小時(shí)的輸入延遲影響,針對(duì)高爐鐵水硅含量預(yù)測(cè)問(wèn)題,將輸入變量的時(shí)滯影響考慮到模型中,提高了預(yù)測(cè)精度.然而此種考慮輸入延遲的方法的關(guān)鍵在于選定輸入變量的延遲時(shí)間,這對(duì)于模型的性能有著重要影響.但目前文獻(xiàn)中通常基于人工經(jīng)驗(yàn)來(lái)手動(dòng)選取延遲時(shí)間,預(yù)測(cè)模型建模的效果往往是難以保證的.

4)在線預(yù)測(cè)模型

在線模型是將采集的新樣本不斷參與到現(xiàn)有模型的再訓(xùn)練中,此類預(yù)測(cè)模型的內(nèi)部參數(shù)會(huì)根據(jù)新樣本實(shí)時(shí)更新,模型會(huì)實(shí)時(shí)反映新的工況,從而提高預(yù)測(cè)精度.如文獻(xiàn)[72]針對(duì)選礦過(guò)程精礦品位的預(yù)測(cè)問(wèn)題,提出了一種自適應(yīng)在線支持向量機(jī)預(yù)測(cè)模型.模型依據(jù)新工況樣本對(duì)現(xiàn)有樣本集統(tǒng)計(jì)特性的影響,引入了模型參數(shù)自適應(yīng)調(diào)整機(jī)制,并采用在線迭代學(xué)習(xí)機(jī)制更新模型.文獻(xiàn)[73]針對(duì)濕法煉鋅凈化過(guò)程中雜質(zhì)離子濃度預(yù)測(cè)問(wèn)題,提出了基于在線支持向量回歸的離子濃度預(yù)測(cè)模型.另外,文獻(xiàn)[74]針對(duì)全廠級(jí)的產(chǎn)品質(zhì)量指標(biāo)預(yù)測(cè)問(wèn)題,提出了一種根據(jù)訓(xùn)練樣本的統(tǒng)計(jì)特性能在線更新參數(shù)的支持向量機(jī)預(yù)測(cè)模型.文獻(xiàn)[75]針對(duì)轉(zhuǎn)爐煤氣系統(tǒng)中煤氣柜柜位和煤氣流量的預(yù)測(cè)問(wèn)題,提出了一種基于最小二乘支持向量機(jī)預(yù)測(cè)模型.其中模型的參數(shù)優(yōu)化采用了一種并行化的粒子群和并行驗(yàn)證方法,實(shí)現(xiàn)了模型參數(shù)快速的在線更新.

5)集成預(yù)測(cè)模型

單一的機(jī)器學(xué)習(xí)預(yù)測(cè)模型通常有性能不穩(wěn)定,對(duì)模型參數(shù)敏感,易過(guò)擬合等缺點(diǎn).而采集的工業(yè)數(shù)據(jù)通常可看作是幾種不同的生產(chǎn)狀態(tài)相疊加而產(chǎn)生的序列,因此單一預(yù)測(cè)模型并不能完全反映多狀態(tài)數(shù)據(jù)的變化特性.如文獻(xiàn)[76]針對(duì)赤鐵礦選生產(chǎn)率預(yù)測(cè)問(wèn)題,提出使用多個(gè)最小二乘支持向量機(jī)模型對(duì)聚類后的數(shù)據(jù)(每一類可以看作一個(gè)工況)進(jìn)行建模再進(jìn)行加權(quán)組合.文獻(xiàn)[77]針對(duì)濕法煉鋅凈化過(guò)程中鈷離子濃度預(yù)測(cè)問(wèn)題,基于集成建模思想將兩個(gè)單一支持向量機(jī)子模型進(jìn)行加權(quán)集成.文獻(xiàn)[78?79]分別針對(duì)非線性工業(yè)時(shí)間序列預(yù)測(cè)和高爐鐵水硅含量的預(yù)測(cè)問(wèn)題,都考慮到單個(gè)神經(jīng)網(wǎng)絡(luò)模型易過(guò)擬合的特點(diǎn),提出使用Bootstrap方法將多個(gè)網(wǎng)絡(luò)模型集成來(lái)構(gòu)造預(yù)測(cè)區(qū)間 (方差和均值),以增強(qiáng)模型的穩(wěn)定性.針對(duì)針鐵礦法沉鐵過(guò)程反應(yīng)器出口亞鐵離子和鐵離子濃度的預(yù)測(cè)問(wèn)題,文獻(xiàn)[80]提出將基于改進(jìn)差分進(jìn)化算法參數(shù)優(yōu)化的最小二乘支持向量機(jī)預(yù)測(cè)模型和過(guò)程神經(jīng)網(wǎng)絡(luò)模型集成來(lái)進(jìn)行預(yù)測(cè).集成模型提高了單一預(yù)測(cè)模型的穩(wěn)定性和預(yù)測(cè)精度,但是模型的參數(shù)眾多,通常較為復(fù)雜,同時(shí)也增加了模型訓(xùn)練時(shí)間.因此,此類模型大多不適用于在線模型.

6)時(shí)間序列預(yù)測(cè)模型

2.2 基于數(shù)據(jù)與機(jī)理的集成預(yù)測(cè)建模

基于數(shù)據(jù)的機(jī)器學(xué)習(xí)預(yù)測(cè)模型在描述輸入輸出非線性關(guān)系方面優(yōu)勢(shì)明顯,但此類方法在先驗(yàn)知識(shí)處理、模型計(jì)算復(fù)雜度等方面仍然存在局限性.為彌補(bǔ)基于數(shù)據(jù)建模方法的缺點(diǎn),基于機(jī)理模型和數(shù)據(jù)模型相結(jié)合的方法是一種有益的嘗試.一類方案是將機(jī)理模型和基于數(shù)據(jù)的誤差補(bǔ)償方法相結(jié)合來(lái)構(gòu)造預(yù)測(cè)模型[84?85].該類方法適用于反應(yīng)機(jī)理相對(duì)明確的工業(yè)過(guò)程,以基于動(dòng)力學(xué)、熱力學(xué)以及物料平衡、能量平衡的機(jī)理模型作為集成建模主體,利用生產(chǎn)數(shù)據(jù)建立誤差補(bǔ)償模型,補(bǔ)償主體模型輸出與實(shí)際輸出的差值.如文獻(xiàn)[84]針對(duì)針鐵礦法沉鐵過(guò)程出口亞鐵離子濃度預(yù)測(cè),采用并聯(lián)方式集成了沉鐵過(guò)程的機(jī)理模型和基于最小二乘支持向量機(jī)的輸出誤差補(bǔ)償模型.文獻(xiàn)[85]針對(duì)文獻(xiàn)[84]中的方法構(gòu)建了亞鐵離子濃度預(yù)測(cè)模型的在線參數(shù)更新策略.文獻(xiàn)[86]分析爐內(nèi)電熱轉(zhuǎn)換關(guān)系,利用能量守恒原理建立了產(chǎn)品單噸能耗機(jī)理模型,提出了由基于機(jī)理分析的單噸能耗主模型和基于神經(jīng)網(wǎng)絡(luò)的誤差補(bǔ)償模型組成的產(chǎn)品單噸能耗混合預(yù)報(bào)模型.文獻(xiàn)[87?88]基于機(jī)理模型和神經(jīng)網(wǎng)絡(luò)誤差補(bǔ)償模型相結(jié)合的建模形式,分別預(yù)測(cè)了濕法煉鋅過(guò)程中的鈷離子濃度和氧化鋁冶煉過(guò)程中的生料漿質(zhì)量,所提方法都提高了單獨(dú)使用機(jī)理預(yù)測(cè)模型的預(yù)測(cè)精度.另外一類是將機(jī)器學(xué)習(xí)模型融合到基于有限元分析的鋼板軋制機(jī)理模型中以降低有限元分析的時(shí)間消耗,其中機(jī)器學(xué)習(xí)模型的訓(xùn)練數(shù)據(jù)來(lái)源于有限元模擬過(guò)程.如文獻(xiàn)[89]采用有限元分析和神經(jīng)網(wǎng)絡(luò)相結(jié)合的建模方法對(duì)軋鋼過(guò)程中的閉合孔隙進(jìn)行預(yù)測(cè).文獻(xiàn)[90]結(jié)合軋制過(guò)程機(jī)理分析和基于數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型來(lái)預(yù)測(cè)軋鋼過(guò)程中的軋制力,以提高預(yù)測(cè)精度.此外,還有一種方案是將軋制過(guò)程的精確數(shù)學(xué)模型和數(shù)據(jù)模型相結(jié)合.如文獻(xiàn)[91?92]針對(duì)軋制力預(yù)測(cè),分別將貝葉斯推理和神經(jīng)網(wǎng)絡(luò)模型與軋制過(guò)程的精確數(shù)學(xué)模型相結(jié)合預(yù)測(cè)了軋制力.

此類方法僅適用于機(jī)理過(guò)程相對(duì)明確的生產(chǎn)過(guò)程,而現(xiàn)代生產(chǎn)過(guò)程越來(lái)越復(fù)雜,大部分生產(chǎn)過(guò)程并沒(méi)有一個(gè)清晰的機(jī)理模型.因此,此類建模方法的應(yīng)用受到了一定的限制.將復(fù)雜生產(chǎn)過(guò)程中的局部精確機(jī)理模型與數(shù)據(jù)模型相結(jié)合是未來(lái)一個(gè)研究方向.

3 預(yù)測(cè)模型的參數(shù)優(yōu)化

基于數(shù)據(jù)的預(yù)測(cè)模型通常包含重要的參數(shù),其選取對(duì)于預(yù)測(cè)模型的性能有著重要影響(如最小二乘支持向量機(jī)的核函數(shù)參數(shù)和懲罰因子、神經(jīng)網(wǎng)絡(luò)中隱含層神經(jīng)元個(gè)數(shù)以及學(xué)習(xí)率等).針對(duì)此類參數(shù)的優(yōu)化方法有基于梯度的方法和智能優(yōu)化方法等.

3.1 基于梯度的優(yōu)化方法

基于梯度的優(yōu)化方法利用目標(biāo)函數(shù)的梯度信息進(jìn)行優(yōu)化,是機(jī)器學(xué)習(xí)中使用較為廣泛的方法.該方法可以建立明確的優(yōu)化搜索方向,但對(duì)初始值較敏感,易陷入局部最優(yōu).常用的基于梯度的方法有梯度下降法、共軛梯度法等[11].在工業(yè)應(yīng)用中通常會(huì)將基于梯度的優(yōu)化方法和其他方法相結(jié)合,更好地優(yōu)化模型參數(shù),如與基于噪聲估計(jì)的方法[93?94],與基于誤差密度函數(shù)估計(jì)的方法[95],與網(wǎng)格搜索算法[96]相結(jié)合等.

預(yù)測(cè)誤差一般被認(rèn)為由工業(yè)數(shù)據(jù)噪聲和預(yù)測(cè)模型的欠精確共同導(dǎo)致,若將預(yù)測(cè)誤差的方差逼近噪聲方差,那么相當(dāng)于將模型的誤差逼近于零,這樣求得模型參數(shù)將會(huì)有最優(yōu)的預(yù)測(cè)性能.如文獻(xiàn)[93]考慮工業(yè)噪聲對(duì)參數(shù)的影響,提出采用一種基于噪聲估計(jì)和共軛梯度方法來(lái)優(yōu)化最小二乘支持向量機(jī)預(yù)測(cè)模型中的核函數(shù)參數(shù)和懲罰因子.文獻(xiàn)[94]同樣采用該方法優(yōu)化基于核回歸的區(qū)間預(yù)測(cè)模型中的懲罰因子、核函數(shù)權(quán)重以及核函數(shù)的寬度等參數(shù).通過(guò)控制誤差概率密度函數(shù)形狀進(jìn)行參數(shù)優(yōu)化是另一類有效的思路.如文獻(xiàn)[95]針對(duì)選礦過(guò)程中的混合精礦品位預(yù)測(cè)問(wèn)題,將誤差的概率密度函數(shù)表示成最小二乘支持向量機(jī)模型參數(shù)(核函數(shù)的寬度和懲罰因子)的函數(shù),通過(guò)調(diào)節(jié)此類參數(shù)來(lái)得到預(yù)期的誤差概率密度函數(shù),從而達(dá)到優(yōu)化模型參數(shù)的目的.此外,在基于交叉驗(yàn)證的網(wǎng)格搜索參數(shù)優(yōu)化方法中會(huì)存在反復(fù)求逆,同時(shí)缺乏指導(dǎo)的網(wǎng)格遍歷搜索會(huì)消耗大量時(shí)間,無(wú)法滿足現(xiàn)場(chǎng)實(shí)時(shí)性要求且優(yōu)化結(jié)果也不理想.而基于梯度的優(yōu)化方法會(huì)指導(dǎo)優(yōu)化方向,但同時(shí)有易陷入局部最優(yōu)的缺點(diǎn).因此文獻(xiàn)[96]將以上兩種方法相結(jié)合,針對(duì)焦?fàn)t煤氣柜位預(yù)測(cè),提出了一種基于網(wǎng)格搜索和梯度法相結(jié)合的參數(shù)優(yōu)化方法.該方法采用基于快速留一法導(dǎo)出網(wǎng)格梯度搜索方向來(lái)避免普通網(wǎng)格搜索方向的盲目性,從而快速獲得了較優(yōu)的模型參數(shù).再如文獻(xiàn)[97]將遺傳算法和梯度下降法相結(jié)合進(jìn)行參數(shù)優(yōu)化應(yīng)用于煤氣柜位預(yù)測(cè)問(wèn)題.

以上基于梯度的參數(shù)優(yōu)化方法與其他方法相結(jié)合能夠獲得更好的參數(shù)優(yōu)化結(jié)果,然而此類方法存在運(yùn)算時(shí)間長(zhǎng)的缺點(diǎn),大多不適用于工業(yè)生產(chǎn)的在線參數(shù)優(yōu)化,只能進(jìn)行離線應(yīng)用.

3.2 基于智能優(yōu)化的方法

智能優(yōu)化算法是一類啟發(fā)式優(yōu)化算法[98?100],此類方法都是從任一解出發(fā),按照某種機(jī)制,以一定的概率在整個(gè)求解空間中探索最優(yōu)解.智能優(yōu)化算法廣泛應(yīng)用于基于數(shù)據(jù)的預(yù)測(cè)模型參數(shù)優(yōu)化問(wèn)題[97,101?104],且多數(shù)應(yīng)用以最小化預(yù)測(cè)誤差為優(yōu)化目標(biāo).如文獻(xiàn)[101?102]分別針對(duì)高爐鐵水硅含量預(yù)測(cè)問(wèn)題,提出一種基于混沌粒子群優(yōu)化的支持向量回歸機(jī)參數(shù)優(yōu)化算法.文獻(xiàn)[103]針對(duì)銅閃速熔煉過(guò)程中冰銅溫度、冰銅品位及渣中鐵硅質(zhì)量比三個(gè)關(guān)鍵工藝指標(biāo)的預(yù)測(cè),采用了實(shí)數(shù)編碼的加速遺傳算法來(lái)優(yōu)化投影尋蹤回歸預(yù)測(cè)模型的參數(shù).針對(duì)石油工業(yè)中的二氧化碳腐蝕率的預(yù)測(cè)問(wèn)題,有學(xué)者采用了模擬退火算法來(lái)優(yōu)化最小二乘支持向量機(jī)預(yù)測(cè)模型的參數(shù)[104].文獻(xiàn)[65,75]分別采用粒子群算法和并行粒子群算法優(yōu)化了最小二乘支持向量機(jī)的參數(shù).文獻(xiàn)[82]采用模擬退火算法優(yōu)化了基于核函數(shù)動(dòng)態(tài)貝葉斯網(wǎng)的核函數(shù)參數(shù).此外,遺傳算法還被用來(lái)優(yōu)化支持向量機(jī)的參數(shù)[26,67].上述智能算法雖然在參數(shù)優(yōu)化過(guò)程中容易獲得全局最優(yōu)解,但是它們應(yīng)用在工業(yè)生產(chǎn)過(guò)程參數(shù)優(yōu)化問(wèn)題中依然存在較高的不確定性,沒(méi)有最優(yōu)搜索方向以及計(jì)算復(fù)雜度較高等缺點(diǎn).

4 結(jié)論與展望

現(xiàn)有基于數(shù)據(jù)的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法盡管研究成果已較為豐碩,但是依然存在以下問(wèn)題.1)現(xiàn)有模型雖然對(duì)于工況穩(wěn)定的生產(chǎn)指標(biāo)預(yù)測(cè)有著較好的預(yù)測(cè)效果,然而多數(shù)生產(chǎn)過(guò)程是時(shí)變過(guò)程,且經(jīng)常受人為干擾.而現(xiàn)有預(yù)測(cè)模型本身大多不能自動(dòng)地識(shí)別工業(yè)過(guò)程中的時(shí)變特性,進(jìn)而導(dǎo)致基于數(shù)據(jù)的預(yù)測(cè)模型精度不高.因此,通過(guò)工業(yè)大數(shù)據(jù)分析方法有效識(shí)別這種時(shí)變特性是一個(gè)關(guān)鍵研究問(wèn)題.2)對(duì)于一個(gè)特定的預(yù)測(cè)模型,其預(yù)測(cè)結(jié)果的誤差通常是由工業(yè)噪聲以及模型本身的不準(zhǔn)確兩部分因素導(dǎo)致.鑒于工業(yè)噪聲難以避免,因此消除模型本身所帶來(lái)的誤差也是一個(gè)值得研究的問(wèn)題.

鄉(xiāng)建主體的多元化導(dǎo)致了鄉(xiāng)建類型的多元化,不同主體來(lái)自不同的社會(huì)階層,站在不同的立場(chǎng),自然形成了多樣的理念與實(shí)踐。但多元化的主體都不可避免的要直面鄉(xiāng)村的現(xiàn)狀問(wèn)題,并且以解決問(wèn)題為目標(biāo)確定鄉(xiāng)建內(nèi)容和方式,因此以“問(wèn)題——目標(biāo)——實(shí)踐”模式為導(dǎo)向來(lái)分析鄉(xiāng)建的類型更具有通用性,論文提出鄉(xiāng)建的四大類型為:以經(jīng)濟(jì)可持續(xù)為目標(biāo)的產(chǎn)業(yè)發(fā)展、以社會(huì)可持續(xù)為目標(biāo)的社區(qū)重構(gòu)、以文化可持續(xù)為目標(biāo)的文化復(fù)興、以生態(tài)可持續(xù)為目標(biāo)的環(huán)境保護(hù)。

近年來(lái)也有一些新的機(jī)器學(xué)習(xí)方法在工業(yè)過(guò)程指標(biāo)預(yù)測(cè)方面的研究進(jìn)展值得關(guān)注.深度學(xué)習(xí)技術(shù)是機(jī)器學(xué)習(xí)領(lǐng)域新的研究方向,在語(yǔ)音識(shí)別、計(jì)算機(jī)視覺(jué)等領(lǐng)域取得了突破性的進(jìn)展應(yīng)用,盡管深度學(xué)習(xí)在時(shí)間序列預(yù)測(cè)問(wèn)題方面已有探索[105?108],但在特定工業(yè)預(yù)測(cè)應(yīng)用方面的研究還很少.通過(guò)采用深度學(xué)習(xí)自動(dòng)提取得到層次化的工業(yè)數(shù)據(jù)特征表示,再基于挖掘到的深層次生產(chǎn)特征構(gòu)造工業(yè)長(zhǎng)期預(yù)測(cè)模型是未來(lái)預(yù)測(cè)方法可能的一個(gè)研究方向.但目前還存在以下2個(gè)難點(diǎn):1)深度學(xué)習(xí)模型參數(shù)選取;2)深度學(xué)習(xí)特征評(píng)價(jià).

無(wú)模型預(yù)測(cè)逐漸成為學(xué)者研究的焦點(diǎn)[109?110],其特點(diǎn)是無(wú)需依賴具體的預(yù)測(cè)模型,而是通過(guò)統(tǒng)計(jì)觀測(cè)數(shù)據(jù)的方法來(lái)估計(jì)未來(lái)數(shù)據(jù)的變化趨勢(shì).此方法可有效消除由預(yù)測(cè)模型帶來(lái)的模型誤差,因此,將無(wú)模型預(yù)測(cè)方法應(yīng)用到工業(yè)生產(chǎn)過(guò)程實(shí)際預(yù)測(cè)問(wèn)題(如長(zhǎng)期預(yù)測(cè)等)是未來(lái)另一個(gè)值得研究的方向.

知識(shí)自動(dòng)化是近年來(lái)自動(dòng)化領(lǐng)域發(fā)展的新方向[111],基于知識(shí)的預(yù)測(cè)方法在某些領(lǐng)域也已形成具體的應(yīng)用[112?114].生產(chǎn)過(guò)程知識(shí)表示與獲取,以及基于生產(chǎn)知識(shí)的預(yù)測(cè)模型構(gòu)建等是基于知識(shí)自動(dòng)化的生產(chǎn)過(guò)程指標(biāo)預(yù)測(cè)方法的關(guān)鍵研究?jī)?nèi)容.

自適應(yīng)動(dòng)態(tài)規(guī)劃方法利用一個(gè)函數(shù)近似結(jié)構(gòu)(例如神經(jīng)網(wǎng)絡(luò)、模糊模型、多項(xiàng)式等)來(lái)估計(jì)代價(jià)函數(shù),用于按時(shí)間正向求解動(dòng)態(tài)規(guī)劃問(wèn)題[115],基于此方法的工業(yè)過(guò)程預(yù)測(cè)也形成一些具體應(yīng)用[116?117].將來(lái)基于自適應(yīng)動(dòng)態(tài)規(guī)劃預(yù)測(cè)方法的一個(gè)研究方向是深入探究將抽象為智能體的生產(chǎn)過(guò)程與外部環(huán)境信息相交互的機(jī)制融入預(yù)測(cè)建模過(guò)程以提高預(yù)測(cè)精度.

1 Gui Wei-Hua,Wang Cheng-Hong,Xie Yong-Fang,Song Su,Meng Qing-Feng,Ding Jin-Liang.The necessary way to realize great-leap-forward development of process industries.Bulletin of National Natural Science Foundation of China,2015,(5):337?342(桂衛(wèi)華,王成紅,謝永芳,宋蘇,孟慶峰,丁進(jìn)良.流程工業(yè)實(shí)現(xiàn)跨越式發(fā)展的必由之路.中國(guó)科學(xué)基金,2015,(5):337?342)

2中商智業(yè).2016年度全球鋼鐵生產(chǎn)大數(shù)據(jù)分析[Online],available: http://mt.sohu.com/20161110/n472825318.shtml,November 10,2016.

4 Kim S I,Kim K E,Park E K,Song S W,Jung S.Estimation methods for efficiency of additive in removing impu-rity in hydrometallurgical puri fication process.Hydrometallurgy,2007,89(3?4):242?252

5 Shang Xiu-Qin,Lu Jian-Gang,Sun You-Xian.Genetic programming based two-term prediction model of iron ore burning through point.Journal of Zhejiang University(Engineering Science),2010,44(7):1266?1269,1281(商秀芹,盧建剛,孫優(yōu)賢.基于遺傳規(guī)劃的鐵礦燒結(jié)終點(diǎn)2級(jí)預(yù)測(cè)模型.浙江大學(xué)學(xué)報(bào)(工學(xué)版),2010,44(7):1266?1269,1281)

6 Zhang B,Yang C H,Li Y G,Wang X L,Zhu H Q,Gui W H.Additive requirement ratio prediction using trend distribution features for hydrometallurgical puri fication processes.Control Engineering Practice,2016,46:10?25

7 Zhao J,Liu Q L,Wang W,Pedrycz W,Cong L Q.Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry.IEEE Transactions on Neural Networks and Learning Systems,2012,23(3):439?450

8 Zhou Xiao-Jun,Yang Chun-Hua,Gui Wei-Hua.Modeling and control of nonferrous metallurgical processes on the perspective of global optimization.Control Theory&Applications,2015,32(9):1158?1169(周曉君,陽(yáng)春華,桂衛(wèi)華.全局優(yōu)化視角下的有色冶金過(guò)程建模與控制.控制理論與應(yīng)用,2015,32(9):1158?1169)

9 Remes A,Vaara N,Saloheimo K,Koivo H.Prediction of concentrate grade in industrial gravity separation plantcomparison of rPLS and neural network.IFAC Proceedings Volumes,2008,41(2):3280?3285

10 Wang Jun-Kai,Qiao Fei,Zhu Jun,Ni Jia-Cheng.SVR-based predictive models of energy consumption and performance criteria for sintering.Journal of Tongji University(Natural Science),2014,42(8):1256?1260(王俊凱,喬非,祝軍,倪嘉呈.基于支持向量機(jī)的燒結(jié)能耗及性能指標(biāo)預(yù)測(cè)模型.同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(8):1256?1260)

11 Asorey-Cacheda R,Garcia-Sanchez A J,Garcia-Sanchez F,Garcia-Haro J.A survey on non-linear optimization problems in wireless sensor networks.Journal of Network and Computer Applications,2017,82:1?20

12 Korayem M H,Hoshiar A K,Nazarahari M.A hybrid co-evolutionary genetic algorithm for multiple nanoparticle assembly task path planning.International Journal of Advanced Manufacturing Technology,2016,87(9?12):3527?3543

13 Xavier-De-Souza S,Suykens J A K,Vandewalle J,Bolle D.Coupled simulated annealing.IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2010,40(2):320?335

14 Ding S X,Yin S,Peng K X,Hao H Y,Shen B.A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill.IEEE Transactions on Industrial Informatics,2013,9(4):2239?2247

15 Wang L P,Wang Y L,Chang Q.Feature selection methods for big data bioinformatics:a survey from the search perspective.Methods,2016,111:21?31

16 Jiang Zhao-Hui,Yin Ju-Ping,Gui Wei-Hua,Yang Chun-Hua.Prediction for blast furnace silicon content in hot metal based on composite differential evolution algorithm and extreme learning machine.Control Theory&Applications,2016,33(8):1089?1095(蔣朝輝,尹菊萍,桂衛(wèi)華,陽(yáng)春華.基于復(fù)合差分進(jìn)化算法與極限學(xué)習(xí)機(jī)的高爐鐵水硅含量預(yù)報(bào).控制理論與應(yīng)用,2016,33(8):1089?1095)

17 Singh V,Tathavadkar V,Rao S M,Raju K S.Predicting the performance of submerged arc furnace with varied raw material combinations using arti ficial neural network.Journal of Materials Processing Technology,2007,183(1):111?116

18 Zhao J,Wang W,Liu Y,Pedrycz W.A two-stage online prediction method for a blast furnace gas system and its application.IEEE Transactions on Control Systems Technology,2011,19(3):507?520

19 Chen Y W,Lin C J.Combining SVMs with various feature selection strategies.Feature Extraction.Berlin Heidelberg:Springer,2006.315?324

21 Wang D,Liu J,Srinivasan R.Data-driven soft sensor approach for quality prediction in a re fining process.IEEE Transactions on Industrial Informatics,2010,6(1):11?17

22 Deng Ju-Long.A Tutorial on Grey System Theory.Wuhan:Huazhong University of Science and Technology Press,1990.(鄧聚龍.灰色系統(tǒng)理論教程.武漢:華中理工大學(xué)出版社,1990.)

23 Wang J S,Wang W.A predictive model of sinter chemical composition and its application.In:Proceedings of the 6th World Congress on Intelligent Control and Automation.Dalian,China:IEEE,2006.4856?4860

24 Zhang Xiao-Ping,Zhao Jun,Wang Wei,Feng Wei-Min,Chen Wei-Chang.Multi-outputleastsquaressupportvector-machine for level prediction in Linz Donaniz gas holder,Control Theory&Applications,2010,27(11):1463?1470(張曉平,趙珺,王偉,馮為民,陳偉昌.轉(zhuǎn)爐煤氣柜位的多輸出最小二乘支持向量機(jī)預(yù)測(cè).控制理論與應(yīng)用,2010,27(11):1463?1470)

25 Wang Wei,Wu Min,Lei Qi,Cao Wei-Hua.An improved neural network method for the prediction of comprehensive production indices in coking process,Control Theory&Applications,2009,26(12):1419?1424(王偉,吳敏,雷琪,曹衛(wèi)華.煉焦生產(chǎn)過(guò)程綜合生產(chǎn)指標(biāo)的改進(jìn)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法.控制理論與應(yīng)用,2009,26(12):1419?1424)

26 Yan Mi-Ying,Gui Wei-Hua,Yang Chun-Hua.Prediction on research on cobalt ion concentration based on gray correlation and improved support vector machine.Chinese Journal of Scienti fic Instrument,2011,32(5):961?967(晏密英,桂衛(wèi)華,陽(yáng)春華.基于灰色關(guān)聯(lián)和改進(jìn)SVM 的鈷離子濃度預(yù)測(cè)研究.儀器儀表學(xué)報(bào),2011,32(5):961?967)

27 Li Ai-Lian,Zhao Yong-Ming,Cui Gui-Mei.Prediction model of blast furnace temperature based on ELM with grey correlation analysis.Journal of Iron and Steel Research,2015,27(11):33?37(李愛(ài)蓮,趙永明,崔桂梅.基于灰色關(guān)聯(lián)分析的ELM 高爐溫度預(yù)測(cè)模型.鋼鐵研究學(xué)報(bào),2015,27(11):33?37)

28 Gao C H,Jian L,Luo S H.Modeling of the thermal state change of blast furnace hearth with support vector machines.IEEE Transactions on Industrial Electronics,2012,59(2):1134?1145

30 Nurkkala A,Pettersson F,Saxn H.Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace.Industrial&Engineering Chemistry Research,2011,50(15):9236?9248

32 Hou Zhong-Sheng,Xu Jian-Xin.On data-driven control theory:the state of the art and perspective.Acta Automatica Sinica,2009,35(6):650?667(侯忠生,許建新.數(shù)據(jù)驅(qū)動(dòng)控制理論及方法的回顧和展望.自動(dòng)化學(xué)報(bào),2009,35(6):650?667)

33 Shi Yun-Tao,Yang Zhen-An,Li Zhi-Jun,Sun De-Hui,Liu Da-Qian.Method of hybrid system modeling and optimizing control based on data-driven.Journal of System Simulation,2013,25(11):2709?2716(史運(yùn)濤,楊震安,李志軍,孫德輝,劉大千.基于數(shù)據(jù)驅(qū)動(dòng)的混雜系統(tǒng)建模與優(yōu)化控制研究.系統(tǒng)仿真學(xué)報(bào),2013,25(11):2709?2716)

34 Bu Xu-Hui,Yu Fa-Shan,Hou Zhong-Sheng,Wang Fu-Zhong.Iterative learning control for a class of linear discretetime switched systems.Acta Automatica Sinica,2013,39(9):1564?1569(卜旭輝,余發(fā)山,侯忠生,王福忠.一類線性離散切換系統(tǒng)的迭代學(xué)習(xí)控制(英文).自動(dòng)化學(xué)報(bào),2013,39(9):1564?1569)

35 Hou Zhong-Sheng,Dong Hang-Rui,Jin Shang-Tai.Modelfree adaptive control with coordinates compensation for automatic car parking systems.Acta Automatica Sinica,2015,41(4):823?831(侯忠生,董航瑞,金尚泰.基于坐標(biāo)補(bǔ)償?shù)淖詣?dòng)泊車(chē)系統(tǒng)無(wú)模型自適應(yīng)控制.自動(dòng)化學(xué)報(bào),2015,41(4):823?831)

36 Wang Kang,Li Xiao-Li,Jia Chao,Song Gui-Zhi.Optimal tracking control for slag grinding process based on adaptive dynamic programming.Acta Automatica Sinica,2016,42(10):1542?1551(王康,李曉理,賈超,宋桂芝.基于自適應(yīng)動(dòng)態(tài)規(guī)劃的礦渣微粉生產(chǎn)過(guò)程跟蹤控制.自動(dòng)化學(xué)報(bào),2016,42(10):1542?1551)

37 Wang B,Fang Y,Sheng J F,Gui W H,Sun Y.BTP prediction model based on ANN and regression analysis.In:Proceedings of the 2nd International Workshop on Knowledge Discovery and Data Mining.Moscow,Russia:IEEE,2009.108?111

38 Nakhaei F,Mosavi M R,Sam A,Vaghei Y.Recovery and grade accurate prediction of pilot plant flotation column concentrate:neural network and statistical techniques.International Journal of Mineral Processing,2012,110?111:140?154

39 Nakhaei F,Sam A,Mosavi M R,Zeidabadi S.Prediction of copper grade at flotation column concentrate using Arti ficial Neural Network.In:Proceedings of the 10th IEEE International Conference on Signal Processing(ICSP).Beijing,China:IEEE,2010.1421?1424

40 Er M J,Liao J,Lin J Y.Fuzzy neural networks-based quality prediction system for sintering process.IEEE Transactions on Fuzzy Systems,2000,8(3):314?324

41 Jian L,Gao C H,Li L,Zeng J S.Application of least squares support vector machines to predict the silicon content in blast furnace hot metal.ISIJ International,2008,48(11):1659?1661

42 Jiang S L,Liu M,Lin J H,Zhong H X.A predictionbased online soft scheduling algorithm for the real-world steelmaking-continuouscasting production.Knowledge-Based Systems,2016,111:159?172

43 Bhattacharya T.Prediction of silicon content in blast furnace hot metal using partial least squares(PLS).ISIJ International,2005,45(12):1943?1945

44 Chen J.A predictive system for blast furnaces by integrating a neural network with qualitative analysis.Engineering Applications of Arti ficial Intelligence,2001,14(1):77?85

45 Rath S,Singh A P,Bhaskar U,Krishna B,Santra B K,Rai D,Neogi N.Arti ficial neural network modeling for prediction of roll force during plate rolling process.Materials and Manufacturing Processes,2010,25(1?3):149?153

46 Haghani A,Khoogar A R,Kumarci F.Predicting strip tearing in cold rolling tandem mill using neural network.International Journal of Advanced Design and Manufacturing Technology,2015,8(1):67?75

47 Jian L,Gao C H.Binary coding SVMs for the multiclass problem of blast furnace system.IEEE Transactions on Industrial Electronics,2013,60(9):3846?3856

48 Vanlaer J,Gins G,Van Impe J F M.Quality assessment of a variance estimator for partial least squares prediction of batch-end quality.Computers&Chemical Engineering,2013,52(52):230?239

49 Song Hai-Ying,Gui Wei-Hua,Yang Chun-Hua,Peng Xiao-Qi.Application of dynamical prediction model based on kernel partial least squares for copper converting.The Chinese Journal of Nonferrous Metals,2007,17(7):1201?1206(宋海鷹,桂衛(wèi)華,陽(yáng)春華,彭小奇.基于核偏最小二乘法的動(dòng)態(tài)預(yù)測(cè)模型在銅轉(zhuǎn)爐吹煉中的應(yīng)用.中國(guó)有色金屬學(xué)報(bào),2007,17(7):1201?1206)

50 Gao C H,Chen J M,Zeng J S,Liu X Y,Sun Y X.A chaos-based iterated multistep predictor for blast furnace ironmaking process.AIChE Journal,2009,55(4):947?962

51 Liu C X,Ding J L,Chai T Y.Robust prediction for quality of industrial processes.In:Proceedings of 2014 IEEE International Conference on Information and Automation(ICIA).Hailar,China:IEEE,2014.1172?1175

52 Sossan F,Namor E,Cherkaoui R,Paolone M.Achieving the dispatchability of distribution feeders through prosumers data driven forecasting and model predictive control of electrochemical storage.IEEE Transactions on Sustainable Energy,2016,7(4):1762?1777

53 Xiong Wei,Li Bing,Chen Jun,Zhou Hua-Yu.A selfadaptation approach based on predictive control for SaaS.Chinese Journal of Computers,2016,39(2):364?376(熊偉,李兵,陳軍,周華昱.一種基于預(yù)測(cè)控制的SaaS系統(tǒng)自適應(yīng)方法.計(jì)算機(jī)學(xué)報(bào),2016,39(2):364?376)

54 Reese B M,Collins Jr E G.A graph search and neural network approach to adaptive nonlinear model predictive control.Engineering Applications of Arti ficial Intelligence,2016,55:250?268

55 Han H G,Zhang L,Hou Y,Qiao J F.Nonlinear model predictive control based on a self-organizing recurrent neural network.IEEE Transactions on Neural Networks and Learning Systems,2016,27(2):402?415

56 Feng K,Lu J G,Chen J S.Nonlinear model predictive control based on support vector machine and genetic algorithm.Chinese Journal of Chemical Engineering,2015,23(12):2048?2052

57 Ekkachai K,Nilkhamhang I.Swing phase control of semiactive prosthetic knee using neural network predictive control with particle swarm optimization.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,24(11):1169?1178

58 Wang D C,Lin H.A new class of dual support vector machine NPID controller used for predictive control.IEEJ Transactions on Electrical and Electronic Engineering,2015,10(4):453?457

59 Pedrycz W,Chen S M.Information Granularity,Big Data,and Computational Intelligence.Switzerland:Springer International Publishing,2015.

60 Zhou Z,Xu Z W,Wu W B.Long-term prediction intervals of time series.IEEE Transactions on Information Theory,2010,56(3):1436?1446

61 Tang X Y,Zhao J,Sheng C Y,Wang W.Long term prediction for generation amount of Converter gas based on steelmaking production status estimation.In:Proceedings of the 2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).Beijing,China:IEEE,2014.1088?1095

62 Dong R J,Pedrycz W.A granular time series approach to long-term forecasting and trend forecasting.Physica A:Statistical Mechanics and Its Applications,2008,387(13):3253?3270

63 Zhao J,Han Z Y,Pedrycz W,Wang W.Granular model of long-term prediction for energy system in steel industry.IEEE Transactions on Cybernetics,2016,46(2):388?400

64 Han Z Y,Zhao J,Wang W,Liu Y.A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry.Control Engineering Practice,2016,52:35?45

65 Han Z Y,Liu Y,Zhao J,Wang W.Real time prediction for converter gas tank levels based on multi-output least square support vector regressor.Control Engineering Practice,2012,20(12):1400?1409

66 Han Z Y,Zhao J,Liu Q L,Wang W.Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels.Information Sciences,2016,330:175?185

67 Zhou Ping,Li Rui-Feng,Guo Dong-Wei,Wang Hong,Chai Tian-You.Multi-output support vector regression modeling for multivariate molten iron quality indices in blast furnace iron making process.Control Theory&Applications,2016,33(6):727?734(周平,李瑞峰,郭東偉,王宏,柴天佑.高爐煉鐵過(guò)程多元鐵水質(zhì)量指標(biāo)多輸出支持向量回歸建模.控制理論與應(yīng)用,2016,33(6):727?734)

68 Yang Chun-Hua,Nie Xiao-Kui,Chai Qin-Qin,Gui Wei-Hua.Alumina evaporation concentration prediction based on adaptive weighted LS-SVR.Control Engineering of China,2012,19(2):187?190(陽(yáng)春華,聶曉凱,柴琴琴,桂衛(wèi)華.氧化鋁蒸發(fā)濃度的自適應(yīng)加權(quán)LSSVR 預(yù)測(cè).控制工程,2012,19(2):187?190)

69 Sheng Chun-Yang,Zhao Jun,Wang Wei,Liu Ying.A fuzzy modeling method based on T-S model for blast furnace gas system.Journal of Shanghai Jiaotong University,2012,46(12):1907?1913(盛春陽(yáng),趙珺,王偉,劉穎.基于T-S模型的高爐煤氣系統(tǒng)模糊建模.上海交通大學(xué)學(xué)報(bào),2012,46(12):1907?1913)

70 Song He-Da,Zhou Ping,Wang Hong,Chai Tian-You.Nonlinear subspace modeling of multivariate molten iron quality in blast furnace ironmaking and its application.Acta Automatica Sinica,2016,42(11):1664?1679(宋賀達(dá),周平,王宏,柴天佑.高爐煉鐵過(guò)程多元鐵水質(zhì)量非線性子空間建模及應(yīng)用.自動(dòng)化學(xué)報(bào),2016,42(11):1664?1679)

72 Liu Chang-Xin,Ding Jin-Liang,Jiang Bo,Chai Tian-You.Adaptive online support vector regression prediction model for concentrate grade of the ore-dressing processes.Control Theory&Applications,2014,31(3):386?391(劉長(zhǎng)鑫,丁進(jìn)良,姜波,柴天佑.選礦過(guò)程精礦品位自適應(yīng)在線支持向量預(yù)測(cè)方法.控制理論與應(yīng)用,2014,31(3):386?391)

73 Wang Ling-Yun,Gui Wei-Hua,Liu Mei-Hua,Yang Chun-Hua.Prediction model of ion concentration based on improved online support vector regression.Control and Decision,2009,24(4):537?541(王凌云,桂衛(wèi)華,劉梅花,陽(yáng)春華.基于改進(jìn)在線支持向量回歸的離子濃度預(yù)測(cè)模型.控制與決策,2009,24(4):537?541)

74 Liu C X,Ding J L,Toprac A J,Chai T Y.Data-based adaptive online prediction model for plant-wide production indices.Knowledge and Information Systems,2014,41(2):401?421

75 Zhao J,Wang W,Pedrycz W,Tian X W.Online parameter optimization-based prediction for converter gas system by parallel strategies.IEEE Transactions on Control Systems Technology,2012,20(3):835?845

76 Ding J L,Chai T Y,Cheng W J,Zheng X P.Databased multiple-model prediction of the production rate for hematite ore bene ficiation process.Control Engineering Practice,2015,45:219?229

77 Yan Mi-Ying,Gui Wei-Hua,Yang Chun-Hua.Prediction model of cobalt ion concentration based on intelligent fusion strategy.Control and Decision,2011,26(5):707?711(晏密英,桂衛(wèi)華,陽(yáng)春華.基于智能融合策略的鈷離子濃度預(yù)測(cè)模型.控制與決策,2011,26(5):707?711)

78 Sheng C Y,Zhao J,Wang W,Leung H.Prediction intervals for a noisy nonlinear time series based on a bootstrapping reservoir computing network ensemble.IEEE Transactions on Neural Networks and Learning Systems,2013,24(7):1036?1048

79 Jiang Zhao-Hui,Dong Meng-Lin,Gui Wei-Hua,Yang Chun-Hua,Xie Yong-Fang.Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap.Acta Automatica Sinica,2016,42(5):715?723(蔣朝輝,董夢(mèng)林,桂衛(wèi)華,陽(yáng)春華,謝永芳.基于Bootstrap的高爐鐵水硅含量二維預(yù)報(bào).自動(dòng)化學(xué)報(bào),2016,42(5):715?723)

80 Xiong Fu-Qiang,Gui Wei-Hua,Yang Chun-Hua.Integrated prediction model of iron concentration in goethite method to remove iron process.Control and Decision,2012,27(3):329?334(熊富強(qiáng),桂衛(wèi)華,陽(yáng)春華.針鐵礦法沉鐵過(guò)程鐵離子濃度集成預(yù)測(cè)模型.控制與決策,2012,27(3):329?334)

81 Liu Ying,Zhao Jun,Wang Wei,Wu Yi-Ping,Chen Wei-Chang.Improved echo state network based on data-driven and its application to prediction of blast furnace gas output.Acta Automatica Sinica,2009,35(6):731?738(劉穎,趙珺,王偉,吳毅平,陳偉昌.基于數(shù)據(jù)的改進(jìn)回聲狀態(tài)網(wǎng)絡(luò)在高爐煤氣發(fā)生量預(yù)測(cè)中的應(yīng)用.自動(dòng)化學(xué)報(bào),2009,35(6):731?738)

82 Chen L,Liu Y,Zhao J,Wang W,Liu Q L.Prediction intervals for industrial data with incomplete input using kernelbased dynamic Bayesian networks.Arti ficial Intelligence Review,2016,46(3):307?326

83 Liu Y,Liu Q L,Wang W,Zhao J,Leung H.Data-driven based model for flow prediction of steam system in steel industry.Information Sciences,2012,193:104?114

84 Xie Shi-Wen,Xie Yong-Fang,Yang Chun-Hua,Jiang Zhao-Hui,Gui Wei-Hua.A ferrous iron concentration prediction model for the process of iron precipitation by goethite.Acta Automatica Sinica,2014,40(5):830?837(謝世文,謝永芳,陽(yáng)春華,蔣朝輝,桂衛(wèi)華.針鐵礦法沉鐵過(guò)程亞鐵離子濃度預(yù)測(cè).自動(dòng)化學(xué)報(bào),2014,40(5):830?837)

85 Xie Y F,Xie S W,Chen X F,Gui W H,Yang C H,Caccetta L.An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy.Hydrometallurgy,2015,151:62?72

86 Wu Zhi-Wei,Chai Tian-You,Wu Yong-Jian.A hybrid prediction model of energy consumption per ton for fused magnesia.Acta Automatica Sinica,2013,39(12):2002?2011(吳志偉,柴天佑,吳永建.電熔鎂砂產(chǎn)品單噸能耗混合預(yù)報(bào)模型.自動(dòng)化學(xué)報(bào),2013,39(12):2002?2011)

87 Sun B,Gui W H,Wu T B,Wang Y L,Yang C H.An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential.Hydrometallurgy,2013,140:102?110

88 Yang C H,Gui W H,Kong L S,Wang Y L.Modeling and optimal-setting control of blending process in a metallurgical industry.Computers&Chemical Engineering,2009,33(7):1289?1297

89 Chen J,Chandrashekhara K,Mahimkar C,Lekakh S N,Richards V L.Void closure prediction in cold rolling using finite element analysis and neural network.Journal of Ma-terials Processing Technology,2011,211(2):245?255

90 Lin J C.Prediction of rolling force and deformation in threedimensional cold rolling by using the finite-element method and a neural network.The International Journal of Advanced Manufacturing Technology,2002,20(11):799?806

91 Nelson A W,Malik A S,Wendel J C,Zipf M E.Probabilistic force prediction in cold sheet rolling by Bayesian inference.Journal of Manufacturing Science and Engineering,2014,136(4):Article No.041006

92 Rath S,Sengupta P P,Singh A P,Marik A K,Talukdar P.Mathematical-arti ficial neural network hybrid model to predict roll force during hot rolling of steel.International Journal of Computational Materials Science and Engineering,2013,2(1):Article No.1350004

93 Zhao J,Liu Q L,Pedrycz W,Li D X.Effective noise estimation-based online prediction for byproduct gas system in steel industry.IEEE Transactions on Industrial Informatics,2012,8(4):953?963

94 Zhao Jun,Du Ya-Nan,Sheng Chun-Yang,Wang Wei.Kernel-based method for predicting online gas flow interval in metallurgical enterprises.Control Theory&Applications,2013,30(10):1274?1280(趙珺,杜雅楠,盛春陽(yáng),王偉.基于核的冶金煤氣流量在線區(qū)間預(yù)測(cè).控制理論與應(yīng)用,2013,30(10):1274?1280)

95 Ding J L,Chai T Y,Wang H.Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.IEEE Transactions on Neural Networks,2011,22(3):408?419

96 Zhang Xiao-Ping,Zhao Jun,Wang Wei,Cong Li-Qun,Feng Wei-Min,Chen Wei-Chang.COG holder level prediction model based on least square support vector machine and its application.Control and Decision,2010,25(8):1178?1183(張曉平,趙珺,王偉,叢力群,馮為民,陳偉昌.基于最小二乘支持向量機(jī)的焦?fàn)t煤氣柜位預(yù)測(cè)模型及應(yīng)用.控制與決策,2010,25(8):1178?1183)

97 Zhang X P,Zhao J,Wang W,Cong L Q,Feng W M.An optimal method for prediction and adjustment on byproduct gas holder in steel industry.Expert Systems with Applications,2011,38(4):4588?4599

98 Kennedy J,Eberhart R C.Particle swarm optimization.In:Proceedings of the 1995 IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995,4:1942?1948

99 Holland J H.Adaptation in Natural and Arti ficial Systems.Ann Arbor:University of Michigan Press,1975.

100 Kirkpatrick S,Gelatt Jr C D,Vecchi M P.Optimization by simulated annealing.Science,1983,220(4598):671?680

101 Tang Xian-Lun,Zhuang Ling,Hu Xiang-Dong.The support vector regression based on the chaos particle swarm optimization algorithm for the prediction of silicon content in hot metal.Control Theory&Applications,2009,26(8):838?842(唐賢倫,莊陵,胡向東.鐵水硅含量的混沌粒子群支持向量機(jī)預(yù)報(bào)方法.控制理論與應(yīng)用,2009,26(8):838?842)

102 Tang X L,Zhuang L,Jiang C J.Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization.Expert Systems with Applications,2009,36(9):11853?11857

103 Liu Jian-Hua,Gui Wei-Hua,Xie Yong-Fang,Wang Ya-Lin,Jiang Zhao-Hui.Key process indicators predicting for copper flash smelting process based on projection pursuit regression.The Chinese Journal of Nonferrous Metals,2012,22(11):3255?3260(劉建華,桂衛(wèi)華,謝永芳,王雅琳,蔣朝輝.基于投影尋蹤回歸的銅閃速熔煉過(guò)程關(guān)鍵工藝指標(biāo)預(yù)測(cè).中國(guó)有色金屬學(xué)報(bào),2012,22(11):3255?3260)

104 Hatami S,Ghaderi-Ardakani A,Niknejad-Khomami M,Karimi-Malekabadi F,Rasaei M R,Mohammadi A H.On the prediction of CO2corrosion in petroleum industry.The Journal of Supercritical Fluids,2016,117:108?112

106 Dalto M.Deep neural networks for time series prediction with applications in ultra-short-term wind forecasting.In:Proceedings of the 2015 IEEE International Conference on Industrial Technology(ICIT).Seville,Spain:IEEE,2015.1657?1663

107 Hirata T,Kuremoto T,Obayashi M,Mabu S,Kobayashi K.A novel approach to time series forecasting using deep learning and linear model.IEEJ Transactions on Electronics Information and Systems,2016,136(3):348?356

108 Hirata T,Kuremoto T,Obayashi M,Mabu S,Kobayashi K.Deep belief network using reinforcement learning and its applications to time series forecasting.In:Proceedings of the 23rd International Conference on Neural Information Processing.Kyoto,Japan:Springer,2016.30?37

109 Torregrossa D,Boudec J Y L,Paolone M.Model-free computation of ultra-short-term prediction intervals of solar irradiance.Solar Energy,2016,124:57?67

110 Runge J,Donner R V,Kurths J.Optimal model-free prediction from multivariate time series.Physical Review E,2015,91(5):Article No.052909

111 Gui Wei-Hua,Chen Xiao-Fang,Yang Chun-Hua,Xie Yong-Fang.Knowledge automation and its industrial application.Scientia Sinica:Informationis,2016,46(8):1016?1034(桂衛(wèi)華,陳曉方,陽(yáng)春華,謝永芳.知識(shí)自動(dòng)化及工業(yè)應(yīng)用.中國(guó)科學(xué):信息科學(xué),2016,46(8):1016?1034)

112 Wu S F V,Hsieh N,Lin L J,Tsai J M.Prediction of self-care behaviour on the basis of knowledge about chronic kidney disease using self-efficacy as a mediator.Journal of Clinical Nursing,2016,25(17?18):2609?2618

113 Waardenberg A J,Homan B,Mohamed S,Harvey R P,Bouveret R.Prediction and validation of protein-protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach.Open Biology,2016,6(9):Article No.160183.

114 Zhai Jing-Mei,Ying Can,Xu Xiao.Surface roughness prediction of integration knowledge modeling into date mining.Computer Integrated Manufacturing Systems,2012,18(5):1046?1053(翟敬梅,應(yīng)燦,徐曉.知識(shí)建模和數(shù)據(jù)挖掘融合的粗糙度預(yù)測(cè)新方法.計(jì)算機(jī)集成制造系統(tǒng),2012,18(5):1046?1053)

115 Wang Kang,Li Xiao-Li,Jia Chao,Song Gui-Zhi.Optimal tracking control for slag grinding process based on adaptive dynamic programming.Acta Automatica Sinica,2016,42(10):1542?1551(王康,李曉理,賈超,宋桂芝.基于自適應(yīng)動(dòng)態(tài)規(guī)劃的礦渣微粉生產(chǎn)過(guò)程跟蹤控制.自動(dòng)化學(xué)報(bào),2016,42(10):1542?1551)

116 Luo X,Lv Y X,Li R X,Chen Y.Web service QoS prediction based on adaptive dynamic programming using fuzzy neural networks for cloud services.IEEE Access,2015,3:2260?2269

117 Zhang Zhi-Gang,Ma Guang-Wen,Ye Wei-Bao,Zhang Jun-Liang.System marginal price forecasting based on adaptive dynamic programming.Computer Engineering,2009,35(5):9?11(張志剛,馬光文,葉偉寶,張軍良.基于自適應(yīng)動(dòng)態(tài)規(guī)劃的系統(tǒng)邊際電價(jià)預(yù)測(cè).計(jì)算機(jī)工程,2009,35(5):9?11)

猜你喜歡
優(yōu)化方法模型
一半模型
超限高層建筑結(jié)構(gòu)設(shè)計(jì)與優(yōu)化思考
民用建筑防煙排煙設(shè)計(jì)優(yōu)化探討
關(guān)于優(yōu)化消防安全告知承諾的一些思考
一道優(yōu)化題的幾何解法
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
3D打印中的模型分割與打包
用對(duì)方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
主站蜘蛛池模板: 国产欧美视频在线| 黄色网址手机国内免费在线观看| 69免费在线视频| 亚洲视屏在线观看| 中文国产成人精品久久一| 国产青青操| 免费毛片全部不收费的| 免费在线国产一区二区三区精品| 国产一级妓女av网站| 老司机午夜精品网站在线观看| 免费国产在线精品一区| 香蕉蕉亚亚洲aav综合| 亚洲AⅤ波多系列中文字幕| 高潮毛片免费观看| 中文字幕在线日本| 人妻21p大胆| 波多野结衣在线一区二区| 国产成人做受免费视频| 92午夜福利影院一区二区三区| 99人妻碰碰碰久久久久禁片| 久久精品国产在热久久2019| 国产一区成人| 日韩无码视频播放| 精品国产成人国产在线| 中文无码精品A∨在线观看不卡| 嫩草影院在线观看精品视频| 99在线观看免费视频| 久久久精品国产SM调教网站| 日韩无码白| 精品福利视频导航| a级毛片毛片免费观看久潮| 久久美女精品国产精品亚洲| 成人亚洲国产| 精品视频福利| 国产精品自在拍首页视频8 | 中文字幕av无码不卡免费| 国产午夜无码片在线观看网站| 91丝袜美腿高跟国产极品老师| 伊人色综合久久天天| 美女亚洲一区| 一本一道波多野结衣一区二区| 国产麻豆精品在线观看| 久久99这里精品8国产| 正在播放久久| 免费AV在线播放观看18禁强制| 午夜福利免费视频| 久久久久久久久18禁秘| 日本尹人综合香蕉在线观看| 欧美国产中文| 五月婷婷导航| 九色综合伊人久久富二代| 无码电影在线观看| 久久国产精品77777| 91网址在线播放| 色悠久久综合| 亚洲自偷自拍另类小说| 九九热这里只有国产精品| 久久www视频| 亚洲成人网在线播放| 一级看片免费视频| 亚洲一道AV无码午夜福利| 91在线一9|永久视频在线| 视频二区亚洲精品| 国产精品香蕉在线| 欧美精品黑人粗大| 高潮毛片无遮挡高清视频播放| 亚洲香蕉在线| 日韩欧美高清视频| 伊人成色综合网| 综合人妻久久一区二区精品| 2024av在线无码中文最新| 91青青草视频在线观看的| 国产精品yjizz视频网一二区| 伊人蕉久影院| 国产日韩丝袜一二三区| 国产91丝袜| 国产91九色在线播放| 国产福利一区在线| 在线视频亚洲色图| 国产国模一区二区三区四区| 国产成年无码AⅤ片在线| 日韩 欧美 小说 综合网 另类|