999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

生物質灰致沼液氮磷脫除研究

2017-02-08 01:26:59賀清堯王文超晏水平張衍林
農業機械學報 2017年1期
關鍵詞:質量

賀清堯 冉 毅 劉 璐 王文超 晏水平 張衍林

(1.華中農業大學工學院, 武漢 430070; 2.華中農業大學生豬健康養殖協同創新中心, 武漢 430070;3.農業部沼氣科學研究所, 成都 610041)

生物質灰致沼液氮磷脫除研究

賀清堯1,2冉 毅3劉 璐1,2王文超1,2晏水平1,2張衍林1,2

(1.華中農業大學工學院, 武漢 430070; 2.華中農業大學生豬健康養殖協同創新中心, 武漢 430070;3.農業部沼氣科學研究所, 成都 610041)

為降低沼液氮磷脫除的操作費用,提出向沼液中添加生物質灰來輔助氮磷脫除。試驗研究了水稻秸稈、花生殼、棉花秸稈和玉米秸稈4種生物質在600℃下燃燒后的生物質灰對沼液pH值、氨氮濃度和總磷的影響。同時考察了生物質灰添加對沼液化學需氧量、懸浮物質量濃度、濁度及植物生理毒性的影響。結果表明,棉花秸稈灰在沼液中的溶解度最大,為12.97%,而花生殼灰溶解度最低,僅為10.67%。通過Ca2+、Mg2+和OH-等離子的引入,生物質灰添加可部分沉淀沼液中的CO2,提升沼液pH值至9.5~11.0,滿足“熱-吹脫”氨氮脫除工藝對pH值的要求。同時,隨著生物質灰添加量的增加,沼液中總磷含量基本呈現先降低后略微升高的趨勢,當添加100 g/L棉花秸稈灰時,沼液總磷最高脫除率可達78.74%,其質量濃度可由初始值19.66 mg/L降低至4.18 mg/L。這表明生物質灰添加有利于氮磷脫除,理論上可降低氮磷脫除的操作費用。另外,添加生物質灰可在一定程度上降低沼液化學需氧量、懸浮物質量濃度和濁度,其中棉花秸稈灰的綜合表現最優,對三者的降低幅度分別達56.71%、57.24%和77.37%。最后,用添加生物質灰后的沼液富CO2溶液培養大白菜種子,其發芽指數整體大于0.8,表現出較低的植物生理毒性。因此,生物質灰可用于輔助沼液氮磷脫除,有利于沼液后期施用,其中,棉花秸稈灰的效果最優。

生物質灰; 沼液; 氨氮脫除; 總磷; 植物生理毒性

引言

截止2013年,中國已建有15 000多個大中型沼氣工程,其中大多數中等規模沼氣工程用于養豬場的廢棄物處理[1-2],沼液產量巨大[3-4]。沼液一般直接施用于農田,由于豬糞發酵沼液中高營養負荷(如氮、磷等)及豬場附近可用農田面積和用肥季節的限制,大量無法及時消納的豬場沼液可能帶來極大的環境危害[5-6]。現有研究表明,利用“熱-吹脫”法進行沼液氮、磷脫除極具發展前景,尤其是針對高氮、磷含量的沼液(如氮質量濃度為500~8 000 mg/L,磷質量濃度為10~300 mg/L),可同時對氮、磷高效脫除并回收得到肥料,產生一定的經濟效益[2,7-10]。氨氮脫除后的沼液可增大在農田中的施用濃度[11],降低沼液還田處理所需的土地面積。但是,該過程一般需要通過加熱吹脫或直接加堿的方式使沼液pH值達到9~11[7-10]。因此,pH值和溫度被認為是氨吹脫過程中最具經濟敏感性的參數[8-10,12-14]。顯然,通過一種價格低廉的物質來調節沼液pH值可顯著降低該過程的操作費用。生物質灰是生物質燃燒利用后的產物,成本低[15-16]。其水溶液pH值可高達12.0~13.5[17-18],理論上可用于提升沼液pH值。同時,其富含活化的鈣、鋁、鐵等元素,還可參與磷的脫除[17-18],減少磷脫除過程對化學藥品的使用量。但生物質灰添加后可能會影響沼液的植物生理毒性[11,19-20]。因此,本文研究4種典型生物質灰添加對沼液相關水質參數和植物生理毒性的影響,重點分析對沼液氨氮和磷脫除的影響。

1 材料與方法

試驗用稻草秸稈(Rice straw,RS)、棉花秸稈(Cotton stalk,CTS)、玉米秸稈(Corn stalk,CNS)取自華中農業大學試驗田,花生殼(Groundnut shell,GDS)熱解后獲得的炭來自湖北藍焰生態能源有限公司。所有生物質原料均置于馬弗爐中,在600℃空氣氛圍下灼燒2 h,燃燒后產物取出冷卻后粉碎并過100目篩[21-22]。試驗用沼液取自湖北省應城市東馬坊曹大村大型沼氣集中供氣工程,該工程以豬糞為主要原料,配合添加少量的牛糞及生活污水,在35℃下中溫發酵。沼液取回后在常溫((15±5)℃)下密封保存至不再產氣。

4種生物質灰和沼液按固液比0、25、50、100、200 g/L進行混合,用磁力攪拌器在常溫((20±5)℃)下攪拌1 h后,對加入生物質灰分的沼液在4 000 r/min轉速條件下離心操作20 min(TSZ5-WS型低速多管架自動平衡離心機,湖南湘儀離心機儀器有限公司),然后取上清液進行試驗和測試[17-18]。未添加生物質灰時,離心后沼液上清液的水質參數如表1所示。

表1 離心后沼液上清液水質參數(15℃)
Tab.1 Water quality parameters of supernatant fraction of centrifuged biogas slurry

參數數值pH值7.87±0.21電導率/(mS·cm-1)10.61±0.32濁度/NTU467.50±4.77化學需氧量/(mg·L-1)2091±22.49氨氮質量濃度/(mg·L-1)965.81±11.28總固體質量濃度/(mg·L-1)4387±54.37總懸浮物質量濃度/(mg·L-1)421±98.99總磷質量濃度/(mg·L-1)19.66±0.90硬度(以CaCO3計)/(mg·L-1)516.60±46.56

離心后沼液上清液的pH值采用FE20型pH計(梅特勒-托利多國際股份有限公司)測試,電導率用DDS-307A型電導率儀(上海儀電科學儀器股份有限公司)測試,濁度由WZT-1型光電濁度儀(上海勁佳科學儀器有限公司)測試,化學需氧量(Chemical oxygen demand,COD)采用CM-03型便攜式COD水質測定儀(北京雙暉京承電子產品有限公司)測試,沼液氨氮(Total ammonia nitrogen,TAN)和總磷(Total phosphorus,TP)質量濃度采用Smartchem200型全自動間斷式化學分析儀(意大利AMS Alliance公司)測試,總固體(Total solid,TS)質量濃度和懸浮物質量濃度(Suspended solid,SS)則采用重量分析法測試。溶液中鈣(Ca)、鎂(Mg)質量濃度利用火焰法在240AAFS型原子吸收光譜儀(美國安捷倫科技有限公司)上測試。生物質灰首先在CEM Mars6型高通量密閉微波消解系統(美國CEM公司)中全部消解成液體后,再采用240AAFS型原子吸收光譜儀(美國安捷倫科技有限公司)上測試消解液中Ca、Mg和TP含量[23],最后轉換為生物質灰的Ca、Mg和TP含量。

為準確測試生物質灰添后的沼液對植物生理毒性的影響,按照標準方法用CO2注入后(使沼液pH值達到7.0±0.5,便于種子培養)的沼液培養大白菜種子,通過測試大白菜種子的發芽指數來確定沼液對植物的生理毒性[11,19-20]。

2 結果與討論

2.1 生物質灰在沼液中的溶解特性

生物質灰加入沼液后,沼液總固體質量濃度與生物質灰添加量的關系如圖1所示。顯然,總固體質量濃度與固液比呈顯著的線性關系。在忽略沼液中本身已溶解物質含量隨生物質灰添加量變化的前提下,通過擬合線性方程的斜率即可獲得生物質灰溶解于沼液中的固體濃度,進而獲得其在沼液中的溶解度[24]。如水稻秸稈灰溶解于沼液中的固體質量比為117.22 mg/g,即水稻秸稈灰在沼液中的溶解度為11.72%。顯然,棉花秸稈灰的溶解度最大,可達到12.97%,而花生殼灰溶解度最低,為10.67%。

生物質灰溶解度主要與生物質灰的化學成分有關。相關研究對生物質灰的組成成分等均有詳細報道[25-26]。其中棉花秸稈灰中SiO2含量最低,質量分數為7.75%~18.75%,CaO和K2O質量分數可高達70%。其他3種生物質灰中SiO2質量分數較高,可達69.25%(玉米秸稈灰)和82.38%(水稻秸稈灰)。可以推測,棉花秸稈灰溶解度較高的主要原因是由于其堿土金屬含量較高,而其余3種生物質灰則由于其中硅含量較高導致其溶解度較低。從生物質灰添加后沼液的硬度變化(表2)可知,生物質灰添加后使沼液硬度在不同程度上得到提升,其中棉花秸稈灰添加后沼液硬度增加最大,可達1 155.29 mg/L。這表明,相比于其他3種生物質灰,棉花秸稈灰可溶物中Ca2+和Mg2+更多,同時可以說明其溶解了更多的堿土金屬。

圖1 固液比對沼液總固體質量濃度的影響Fig.1 Effect of ratio of biomass ash mass to biogas slurry volume on total solid content of biogas slurry

2.2 生物質灰添加對沼液水質參數的影響

添加不同濃度的4種生物質灰后,沼液電導率、懸浮物質量濃度、濁度及化學需氧量變化情況如表2所示。沼液電導率隨固液比的增加呈線性增長,這表明,生物質灰溶解于沼液中的成分均為強電解質。懸浮物質量濃度、沼液濁度和化學需氧量均隨固液比的增加而降低,其中棉花秸稈灰添加導致沼液的懸浮物質量濃度和化學需氧量降幅最大,分別達到57.24%和56.71%。花生殼灰和棉花秸稈灰添加可使沼液濁度下降77.65%和77.37%。顯然,棉花秸稈灰具有降低沼液懸浮物質量濃度、濁度和化學需氧量的綜合優勢。沼液濁度和化學需氧量下降與沼液中懸浮物質量濃度下降有關,其主要原因可能是生物質灰對沼液中懸浮物或溶液中部分有機物具有一定的吸附作用,或者生物質灰中的部分離子,如鐵離子或鋁離子等對懸浮物具有絮凝作用[18]。顯然,懸浮物質量濃度和濁度的降低有利于沼液的施用,而化學需氧量降低可減輕沼液施用后對土壤環境的影響。

2.3 生物質灰添加對沼液pH值和氨氮脫除潛力的影響

對于發酵完全的沼液,其中揮發性脂肪酸含量一般遠低于總無機碳(Total inorganic carbon,TIC,主要為CO2、碳酸根離子和碳酸氫根離子),因而沼液中主要為氨氮與TIC之間的化學平衡[7-11]。顯然,沼液pH值可以通過直接熱吹脫的方式降低沼液中CO2的含量而獲得提升,也可以通過添加強堿(如CaO或NaOH)來提升。而沼液pH值的增加可顯著增加沼液中自由氨的含量,由于氨氣的揮發性,沼液中氨氮最終以自由氨的形式從沼液中脫除[7-14]。沼液中自由氨質量濃度計算公式為[7]

(1)

式中CNH3——溶液中自由氨質量濃度,mg/L

CTAN——溶液中總氨氮質量濃度,mg/L

T——溶液溫度,℃

pH——溶液pH值

表2 生物質灰添加對沼液水質參數的影響
Tab.2 Effect of biomass ash dosage on water quality parameters of biogas slurry

生物質灰種類固液比/(g·L-1)電導率/(mS·cm-1)懸浮物質量濃度/(mg·L-1)濁度/NTU化學需氧量/(mg·L-1)硬度/(mg·L-1)無010.61±0.32421±98.99467.5±4.772091.0±22.49516.60±46.562515.08±0.65370±68.71402.3±5.131282.0±5.66290.06±137.44水稻秸稈灰5021.65±0.25250±70.71407.8±21.701169.4±90.51483.26±68.2210034.50±0.35230±84.85281.3±1.531005.6±67.38464.42±167.6120054.20±0.56200±56.57222.5±0.50998.2±16.19653.30±92.89251.51±0.66386±84.85694.8±23.221146.9±4.10615.23±116.18花生殼灰5018.00±0.31321±70.71318.0±11.531061.4±33.09522.82±16.6910027.14±2.02297±41.42193.7±3.751031.3±2.76573.31±81.5320044.67±0.23241±13.14104.5±0.50919.0±8.63780.41±10.462514.46±0.38340±69.71475.8±12.771363.4±23.76897.01±36.34棉花秸稈灰5023.28±0.51310±27.28243.8±1.891180.1±38.391155.29±91.8210033.08±0.45270±83.84149.5±85.301083.3±6.72502.64±167.2120050.80±0.23180±83.84105.8±0.28905.1±61.52981.78±44.252518.66±0.24375±56.57475.0±18.431152.8±67.10513.36±86.18玉米秸稈灰5023.80±0.14330±84.85341.8±5.791161.9±58.34432.31±220.0010035.30±0.78290±42.42317.7±6.371045.7±56.85675.44±49.2120057.70±1.85256±84.85184.3±3.77968.7±56.85748.64±5.66

通過式(1)可知,沼液中自由氨的含量與溶液溫度和pH值呈正相關關系。相關研究表明,pH值和溫度被認為是氨吹脫過程中最具經濟敏感性的參數[8,12-14]。分離條件對氨氮脫除的一級動力學常數k和時間常數τ的影響如表3所示。其中一級動力學常數k反映氨氮脫除過程的速率,而時間常數τ反映氨氮濃度降低到初始濃度約63%時所需時間,可用于評價不同條件下達到相同的氨氮脫出率所需反應時間[27]。從表3中可知,無論采取何種氨氮分離方式,τ均隨pH值的提升而大幅降低。當溶液pH值提升到10.0以上時,pH值對k和τ均無明顯影響。因此,對于溶液氨吹脫的經濟pH值應為9.5~10.0[13,28]。研究表明,沼液pH值需要通過CO2吹脫、添加CaO或NaOH來使其提升到9.5~11.0[7-8,13-14]。顯然,通過一種價格低廉的物質來調節沼液pH值可顯著降低氨吹脫過程的操作費用。

生物質灰添加對溶液pH值的影響如圖2所示。添加生物質灰后,溶液pH值均隨固液比的增加而升高,主要原因在于生物質灰的添加向溶液中引入了大量OH-。其中,同種生物質灰加入純凈水中的pH值要明顯高于添加到沼液中,主要原因在于沼液對堿具有良好的緩沖性[30]。在水溶液中,當固液比大于50 g/L時,固液比增加對pH值的提升效率明顯減弱,可能原因在于較高pH值條件會阻礙部分堿性物質的浸出。而由于沼液的緩沖性,沼液pH值隨固液比的增加而逐步提升。不同種類生物質灰對沼液pH值的提升效果與添加在純凈水中表現基本一致,均是棉花秸稈灰添加后溶液pH值最高,玉米秸稈灰其次,水稻秸稈灰和花生殼灰對溶液pH值提升能力最弱。

表3 分離條件對溶液氨氮分離k和τ的影響
Tab.3 Effect of ammonia nitrogen separation conditions on values ofkandτ

分離條件原溶液初始pH值溫度/℃氣液比/(L·L-1·min-1)k/h-1τ/h文獻序號熱吹脫牛糞發酵液7.83~11.0476~1020.0115~1.20700.8285~86.9565[10]沼氣吹脫食品廢棄物發酵液7.90~8.3035~700.125~0.2500.0009~0.0062161~1111[27]9.95~9.9955~700.125~0.2500.0053~0.027037~1897.20371.00.00677147.719.0371.00.0136973.05空氣吹脫豬場廢水10.0371.00.0335229.83[28]11.0371.00.0452422.1049.0371.0~10.00.01266~0.165626.05~78.99空氣吹脫合成氨液11.020~500.5556~5.55600.0323~0.62901.5898~30.9597[29]9.305020.09011.11空氣吹脫人體尿液10.05020.1666.024[13]10.55020.1486.7611.05020.1606.25

圖2 生物質灰添加對純水和沼液pH值影響Fig.2 Effect of biomass ash dosage on pH value of pure water and biogas slurry

生物質灰對溶液pH值提升效果的差異主要源于生物質灰中自身堿金屬含量的差異性[25-26]。影響溶液pH值的主要原因在于生物質灰中Ca和Mg的浸出,增加了溶液中OH-濃度[30]。4種生物質灰中Ca和Mg的含量(質量比)如圖3所示,其中棉花秸稈灰和玉米秸稈灰中Ca和Mg含量較高,與二者在溶液中pH值較高表現一致。這進一步說明溶液pH值主要受灰分中Ca和Mg浸出的影響。

圖3 生物質灰中Ca、Mg和TP的含量Fig.3 Contents of Ca, Mg, TP in biomass ash

生物質灰添加后沼液中總氨氮質量濃度和自由氨質量濃度變化如圖4所示。隨著生物質灰添加量的增加,沼液氨氮質量濃度略微下降,其中棉花秸稈灰添加后其降低幅度稍大,原因是棉花秸稈灰添加后沼液pH值較高(11.06),導致部分氨氮以自由氨的形式揮發損失。隨著固液比的增加,沼液中自由氨質量濃度增加。其中,添加棉花秸稈灰對沼液自由氨質量濃度影響最明顯,玉米秸稈灰次之。顯然,自由氨質量濃度增加,采用“熱-吹脫”氨氮脫除技術將能獲得更高的氨氮脫除率。

圖4 生物質灰添加對沼液氨氮質量濃度的影響及沼液pH值與CO2負荷的關系Fig.4 Relationship between CO2 loading and pH value of biogas slurry and effect of biomass ash dosage on ammonia nitrogen content

由式(1)可知,沼液中自由氨質量濃度增加的主要原因是沼液pH值大幅增加。而沼液pH值與沼液中CO2負荷的降低有顯著的線性關系(如圖4所示),除水稻秸稈灰R2=0.50外,其余3種灰分R2均不小于0.90。顯然,生物質灰添加后,對沼液中CO2有一定的去除作用。其去除機理主要是生物質灰中浸出的Ca2+、Mg2+等沉淀沼液中原生的CO2[30]。這再次說明沼液pH值的提升主要受生物質灰中Ca、Mg浸出的影響。但是,從圖4也可看出,生物質灰對沼液CO2的去除效果并不理想,去除率不到50%。因此,還應該對生物質灰進行預處理或選取合適的生物質灰,使其中Ca2+、Mg2+能夠更多地引入沼液中,如通過強堿預處理生物質灰[31]。

由于需要研究生物質灰添加后沼液對植物的生理毒性,因此本文并未研究生物質灰添加后對沼液氨吹脫的影響。而通過上面的分析和圖2可知,當棉花秸稈灰添加量大于25 g/L、玉米秸稈灰添加量達100 g/L、花生殼灰和水稻秸稈灰添加量達200 g/L時均可使沼液pH值提升至9.5以上。顯然,生物質灰添加能夠滿足“熱-吹脫”過程高效脫氨所需pH值,可極大地促進“熱-吹脫”過程對沼液氨氮的脫除效果,減少沼液pH值提升階段的操作費用。

2.4 生物質灰添加對沼液總磷的脫除

生物質灰添加對沼液總磷含量的影響如表4所示。4種生物質灰對沼液總磷均有一定的去除效果,棉花秸稈灰添加量為100 g/L時對沼液中總磷的去除率最高,可達78.74%,而水稻秸稈和玉米秸稈灰對沼液總磷的去除效果最差,均低于60%。除玉米秸稈對沼液中總磷的去除率隨添加量的增加呈增加趨勢外,其余3種生物質灰均在添加量為100 g/L時對沼液總磷的去除率達到最高,而添加量達到200 g/L時對沼液總磷的去除率呈現下降趨勢。

表4 生物質灰添加對純凈水和沼液中Ca、Mg和TP的影響
Tab.4 Effect of biomass ash dosage on Ca, Mg and TP concentration in pure water and biogas slurry

生物質灰種類固液比/(g·L-1)純凈水沼液Ca質量濃度/(mg·L-1)Mg質量濃度/(mg·L-1)TP質量濃度/(mg·L-1)Ca質量濃度/(mg·L-1)Mg質量濃度/(mg·L-1)TP質量濃度/(mg·L-1)無0000.0075±0.001710.42±0.1441.88±12.1919.66±0.9水稻秸稈灰251.46±0.466.18±0.597.16±0.026.44±0.1040.28±0.2119.74±0.64501.25±0.275.42±0.138.83±0.095.64±0.4347.81±0.4519.72±0.461003.83±0.762.38±0.0810.64±0.054.12±0.3259.05±0.598.01±0.252006.44±0.640.80±0.0112.34±0.092.46±0.3463.48±2.4713.76±0.39花生殼灰255.47±0.8212.89±1.011.14±0.013.81±0.2748.07±0.6217.32±0.27504.40±0.2613.34±0.641.33±0.014.30±0.7359.92±6.349.94±0.291001.96±0.4511.76±0.161.44±0.056.62±0.8550.61±0.325.49±0.232004.06±0.817.33±0.072.87±0.038.39±1.3685.39±1.358.65±0.20棉花秸稈灰255.58±1.061.22±0.040.03±0.019.11±0.25105.42±1.4410.89±0.32508.72±0.760.88±0.030.14±0.019.82±0.51105.73±1.097.99±0.1210010.54±0.180.94±0.210.17±0.018.75±0.4054.47±0.354.18±0.212007.97±0.790.82±0.080.54±0.027.25±0.78101.69±1.416.39±0.04玉米秸稈灰2513.96±0.373.22±0.070.11±0.016.69±0.7854.34±1.9820.51±0.425011.70±0.365.02±0.020.19±0.014.12±0.6663.06±0.5915.38±0.5510010.79±1.932.47±0.050.18±0.021.16±0.5773.21±1.9810.49±0.2120010.20±0.242.16±0.120.22±0.010.28±0.2465.14±0.249.25±0.23

為探究生物質灰中Ca、Mg和TP在水中的浸出,按相同的添加量和方式將生物質灰加入純凈水中并測試水溶液中Ca、Mg、TP的含量。生物質灰分別添加到純凈水和沼液中,對溶液中Ca、Mg和TP質量濃度的影響如表4所示。生物質灰添加到純凈水中時,水溶液中TP質量濃度隨固液比的增加而升高,其中水稻秸稈灰加入純水中TP質量濃度可達到12.34 mg/L。花生殼灰其次,棉花秸稈灰和玉米秸稈灰浸出液的TP質量濃度最低,二者均低于1 mg/L。4種灰中TP含量如圖3所示,雖然水稻秸稈灰中TP的含量最低,棉花秸稈灰中TP含量最高,但是在純凈水中的浸取濃度卻相反。這說明水稻秸稈灰的磷更容易浸出或釋放到溶液中,棉花秸稈灰和玉米秸稈灰中的磷則不易浸出,意味著后兩者更適合溶液中磷的脫除。

生物質灰加入到純凈水后,溶液的Ca質量濃度整體在1~10 mg/L范圍內。其中,加入水稻秸稈灰后,Ca含量隨固液比增加而升高;加入花生殼灰和玉米秸稈灰后,Ca含量隨固液比增加而降低;而加入棉花秸稈灰后,呈現出先升高后降低的趨勢。水溶液中Mg的含量隨生物質灰添加量的增加整體上呈降低趨勢。溶液中Ca、Mg含量變化的差異性,一方面與生物質灰中本身Ca、Mg含量的差異性有關;另一方面則是由于溶液pH值升高,導致Ca2+、Mg2+在溶液中溶解度降低[17]。這說明保持溶液穩定的pH值或可增加灰中Ca、Mg的浸出。而由圖2可知,生物質灰加入到沼液中恰好可比純凈水中pH值更低,或可改善Ca、Mg的浸出。

由表4可知,沼液中Mg質量濃度則隨生物質灰的添加有明顯的上升,說明沼液相對穩定的pH值可能有利于增強Mg從灰分中浸出。但是沼液中Ca質量濃度并沒有在原沼液的基礎上增加,Ca質量濃度除隨花生殼灰添加量呈升高趨勢外,隨其余3種灰添加量的增加均呈降低趨勢。說明生物質灰的添加可降低沼液中Ca的含量。

生物質灰添加量達到200 g/L時,沼液中磷含量反而上升,可能原因在于Ca2+的浸出速率小于TP的浸出速率,從而導致TP含量的上升[15]。對于棉花秸稈灰,由于添加量為200 g/L時,其溶液中pH值較高(達11.07),導致溶液中Ca2+和Mg2+溶解度降低,或高pH值下不利于沼液中磷的沉淀[18]。雖然生物質灰添加有利于沼液中磷的去除,但是,添加濃度較高,更多的Ca和Mg元素并未浸出。還應該在Ca2+、Mg2+浸出、生物質灰中磷浸出、溶液pH值及溶液中碳酸鹽含量上加以適當調控。本研究的4種生物質灰分中,花生殼灰和棉花秸稈灰對沼液磷的脫除具有優勢。

2.5 生物質灰添加后沼液的植物生理毒性

通過向沼液中直接鼓入CO2調節pH值至中性后,進行大白菜種子的發芽試驗。以大白菜種子的發芽指數評價沼液對植物的急性生理毒性,如圖5所示。一般情況下,增加沼液的總固體質量濃度、化學需氧量、CO2負荷、氨氮含量等會引起種子的發芽指數降低[11]。而沼液中的促生長因子,如吲哚乙酸、赤霉素等含量的增加,在一定范圍內會引起種子的發芽指數升高[2,11]。大白菜種子發芽指數小于0.6表明沼液對植物的生理毒性較大,抑制植物生長,發芽指數大于0.8表明沼液有促進植物生長的作用[11,19]。

整體來說,添加生物質灰分后的沼液富液對植物的生理毒性較小。其中,未添加生物質灰的原沼液培養大白菜種子后的發芽指數大于1,表現出促進植物生長的作用。隨著生物質灰添加濃度的增加,沼液培養大白菜種子后的發芽指數均呈現出先降低后升高的趨勢。棉花秸稈灰與沼液的固液比為50 g/L時種子發芽指數最低(0.766),表現出對植物有一定的生理毒性。花生殼灰、水稻秸稈灰和玉米秸稈灰也分別在固液比為50 g/L、100 g/L和100 g/L附近出現最低的種子發芽指數。種子發芽指數降低的原因可能是沼液中同時存在較高的化學需氧量和總固體質量濃度等。生物質灰分添加量在200 g/L時種子發芽指數均有所上升且均高于0.8,可能是由于沼液化學需氧量等有大幅下降,而TS濃度的增加不足以導致對植物的生理毒性增大。棉花秸稈灰與沼液固液比為200 g/L時,種子發芽指數最高達1.178,與此濃度下沼液中化學需氧量與氨氮含量最低有關。考慮沼液對植物的生理毒性,棉花秸稈灰與沼液固液比應在100 g/L以上。大白菜種子的發芽指數表明,添加生物質灰后不會引起沼液對植物的急性生理毒性增加。

圖5 沼液添加生物質灰分前后的大白菜種子發芽指數Fig.5 Germination index of Chinese cabbage seeds germinated by biogas slurry with or without adding biomass ash

3 結論

(1)生物質灰添加到沼液中,沼液總固體質量濃度呈線性增加。其中棉花秸稈灰具有最大的溶解度,為12.97%,而花生殼灰溶解度最低,僅為10.67%。4種生物質灰對沼液懸浮物濃度、化學需氧量、濁度等均有一定程度的降低作用,有利于沼液的后期利用。

(2)添加生物質灰可使沼液中CO2沉淀,進而提升沼液pH值。當棉花秸稈灰添加量大于25 g/L、玉米秸稈灰添加量達100 g/L、花生殼灰和水稻秸稈灰添加量達200 g/L時均可使沼液pH值提升至9.5以上,能有效提高沼液氨氮脫除潛力,理論上可降低氨氮脫除過程的操作費用。

(3)4種生物質灰對沼液總磷均有一定程度的脫除作用,其中棉花秸稈灰添加量為100 g/L時,對沼液的總磷脫除率最高(78.74%)。但當灰添加量增加到200 g/L時,沼液總磷脫除率出現下降。

(4)生物質灰添加不會導致沼液對植物的急性生理毒性增加。

1 GUO Jianbin, DONG Renjie, CLEMENS Joachim, et al. Kinetics evaluation of a semi-continuously fed anaerobic digester treating pig manure at two mesophilic temperatures[J].Water Research, 2013, 47(15): 5743-5750.

2 LI Xin, GUO Jianbin, DONG Renjie, et al. Properties of plant nutrient: comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure[J]. Science of the Total Environment, 2016, 544(15): 774-781.

3 梁康強,閻中,魏泉源,等.沼氣工程沼液高值的利用研究[J].中國農學通報,2012, 28(32):198-203. LIANG Kangqiang, YAN Zhong, WEI Quanyuan, et al. Research of the high value use of biogas slurry from biogas projects[J]. Chinese Agricultural Science Bulletin, 2012, 28(32): 198-203.(in Chinese)

4 陳超,阮志勇,吳進,等.規模化沼氣工程沼液綜合處理與利用的研究進展[J].中國沼氣,2013, 31(1):25-31. CHEN Chao, RUAN Zhiyong, WU Jin, et al. Research progress on the comprehensive disposal and utilization of biogas slurry from large scale biogas engineering[J]. China Biogas, 2013, 31(1): 25-31.(in Chinese)

5 靳紅梅,常志州,葉小梅,等.江蘇省大型沼氣工程沼液理化特性分析[J].農業工程學報,2011, 27(1):291-296. JIN Hongmei, CHANG Zhizhou, YE Xiaomei, et al. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province[J]. Transactions of the CSAE, 2011, 27(1): 291-296.(in Chinese)

6 沈其林,單勝道,周健駒,等.豬糞發酵沼液成分測定與分析[J].中國沼氣,2014, 32(3):83-86. SHEN Qilin, SHAN Shengdao, ZHOU Jianju, et al. Determination and analysis of composition in biogas slurry produced by swine manure digestion[J]. China Biogas, 2014, 32(3): 83-86.(in Chinese)

8 LIU Liang, PANG Changle, WU Shubiao, et al. Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure[J]. Process Safety and Environmental Protection, 2015, 94(1):350-357.

9 ZHAO Quanbao, MA Jingwei, ZEB Iftikhar, et al. Ammonia recovery from anaerobic digester effluent through direct aeration[J].Chemical Engineering Journal, 2015, 279(1): 31-37.

10 TAO Wendong,UKWUANI Anayo T. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content[J]. Chemical Engineering Journal, 2015, 280(15): 188-196.

11 賀清堯,王文超,蔡凱,等.減壓濃縮對沼液CO2吸收性能和植物生理毒性的影響[J/OL].農業機械學報,2016,47(2):200-207.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20160226&flag=1. DOI: 10.604/j.issn.1000-1298.2016.02.026. HE Qingyao, WANG Wenchao, CAI Kai, et al. Effect of vacuum concentration on CO2absorption performance and phytotoxity of biogas slurry[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 200-207. (in Chinese)

12 JIANG Anping, ZHANG Tianxi, ZHAO Quanbao, et al. Evaluation of an integrated ammonia stripping, recovery, and biogas scrubbing system for use with anaerobically digested dairy manure[J]. Biosystems Engineering, 2014, 199(1): 117-126.

13 LIU Bianxia,GIANNIS Apostolos, ZHANG Jiefeng, et al. Air stripping process for ammonia recovery from source-separated urine: modeling and optimization[J]. Journal of Chemical Technology and Biotechnology, 2014, 90(12): 2208-2217.

15 TAN Zhongxin, LAGERKVIST Anders. Phosphorus recovery from the biomass ash: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3588-3602.

16 BARBASA Rui, LAPA Nuno, HELENA Lopes, et al. Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters[J]. Journal of Colloid and Interface Science, 2014, 424(15): 27-36.

17 YILDIZ Ergun. Phosphate removal from water by fly ash using crossflow microfiltration [J]. Separation and Purification Technology, 2004, 35(3): 241-252.

18 BARBOSA R, LAPA N, LOPES H, et al. Removal of phosphorus from wastewaters by biomass ashes [J]. Water Science & Technology, 2013, 68(9): 2019-2027.

19 YAN Shuiping, ZHANG Liqiang, AI Ping, et al. CO2absorption by using a low-cost solvent: biogas slurry produced by anaerobic digestion of biomass [J]. Energy Procedia, 2013,37: 2172-2179.

20 EIDE-HAUGMO Ingvild,BRAKSTAD Odd Gunnar, HOFF Karl Anders, et al. Marine biodegradability and ecotoxicity of solvents for CO2-capture of natural gas[J]. International Journal of Greenhouse Gas Control, 2012,9(1): 184-193.

21 WANG Wenlong,ZHENG Yanli,LIU Xin,et al. Characterization of typical biomass ashes and study on their potential of CO2fixation[J]. Energy and Fuels, 2012,26(9): 6047-6052.

22 肖瑞瑞,陳雪莉,王輔臣,等.不同生物質灰的理化特性 [J].太陽能學報,2011, 32(3):364-369. XIAO Ruirui, CHEN Xueli, WANG Fuchen, et al. The physicochemical properties of different biomass ash [J]. Acta Energiae Solaris Sinica, 2011, 32(3): 364-369.(in Chinese)23 張玉玲,王松君,王璞珺,等.微波消解植物灰分與環境土壤中微量元素的ICP-AES方法研究[J].光譜學與光譜分析,2009, 29(8):2240-2243. ZHANG Yuling,WANG Songjun, WANG Pujun, et al. Study of microelements in plant’s ash and environmental soil by microwave digestion ICP-AES [J]. Spectroscopy and Spectral Analysis, 2009,29(8):2240-2243.(in Chinese)

24 ZHANG Yi,HE Fang, GAO Zhenqiang, et al. Effects of ash-forming temperature on recycling property of bottomashes from rice residues [J]. Fuel, 2015, 162: 251-257.

25 VASSILEV Stanislav V,BAXTER David, VASSILEVAChristina G. An overview of the behaviour of biomass during combustion: Part II. ash fusion and ash formation mechanisms of biomass types [J]. Fuel, 2014, 177(A): 152-183.

26 TAO Guangcan, GELADI Paul, LESTANDER Torbj?rn A, et al. Biomass properties in association with plant species and assortments. II: a synthesis based on literature data for ash elements[J]. Renewable and Sustainable Energy Reviews, 2012,16(5): 3507-3522.

27 SERNA-MAZA A, HEAVEN S, BANKS C J. Biogas stripping of ammonia from fresh digestate from a food waste digester[J]. Bioresource Technology, 2015, 190: 66-75.

28 ZHANG Lei, LEE Yong-woo, JAHNG Deokjin. Ammonia stripping for enhanced biomethanization of piggery wastewater[J]. Journal of Hazardous Materials, 2012, 199(15):36-42.

29 DEGERMENCI Nejdet,ATA Osman Nuri, YILDIZ Ergun. Ammonia removal by air stripping in a semi-batch jet loop reactor[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 399-404.

30 LEI Xiaohui, SUGIURA Norio,FENG Chuanping, et al. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification[J]. Journal of Hazardous Materials, 2007,145(3): 391-397.

31 PENGTHAMKEERATI P, SATAPANAJARU T, CHATSATAPATTAYAKUL N, et al. Alkaline treatment of biomass fly ash for reactive dye removal from aqueous solution [J]. Desalination, 2010, 261(1-2): 34-40.

Ammonia Nitrogen and Phosphorous Removal from Biogas Slurry Induced by Biomass Ash Addition

HE Qingyao1,2RAN Yi3LIU Lu1,2WANG Wenchao1,2YAN Shuiping1,2ZHANG Yanlin1,2

(1.CollegeofEngineering,HuazhongAgriculturalUniversity,Wuhan430070,China2.TheCooperativeInnovationCenterforSustainablePigProduction,HuazhongAgriculturalUniversity,Wuhan430070,China3.BiogasInstituteofMinistryofAgriculture,Chengdu610041,China)

In order to reduce the operation cost of ammonia nitrogen and phosphorus removal from biogas slurry (BS) through the “thermal-alkaline stripping” process, biomass ash (BA) addition was put forward to elevate the value of pH and precipitate the phosphorus in BS. Totally four types of BA were added into BS and pure water, including rice straw ash (RS), groundnut shell ash (GDS), cotton straw ash (CTS) and corn straw ash (CNS). Main water qualities of those solutions, including chemical oxygen demand (COD), concentration of suspended solid (SS), total phosphorus (TP) and total ammonia content (TAN), pH values, as well as calcium (Ca) and magnesium (Mg) contents were tested. The germination index (GI) values of Chinese cabbage seeds treated by these biogas slurries after CO2saturated were evaluated as well. Among those BAs, CTS had the highest solubility of about 12.97% and GDS had the lowest value of 10.67%. The results showed that when the BAs were added into the pure water, the pH value of water can reach 10.0~12.5. But when the same dosages of BAs were added into BS, the pH value of BS can only be elevated to 9.5~11.0 from 7.87 due to the good buffering characteristics of BS. The main reason of pH value improvement of BS might be the precipitation of CO2in BS by Ca2+or Mg2+leached from BA. This relatively high pH value could meet the requirement of “thermal-alkaline stripping” process for ammonia nitrogen removal, which may contribute to reducing the operation cost greatly. On the other hand, phosphorus removal efficiency was generally increased with the increase of BA dosage. The highest phosphorus removal efficiency of 78.74% was acquired when 100 g/L CTS was added into BS, but the efficiency was decreased inversely when BA dosage was increased to 200 g/L. The results also showed that when the BA dosage was increased to 200 g/L, the removal efficiency of COD and SS were above 50%. For the higher value of pH and phosphorus removal efficiency obtained by CTS addition, CTS was considered as the optimal type of BA. The germination index of Chinese cabbage seeds treated by CO2-rich BS solutions after BA addition was generally higher than 0.8, implying the low phytotoxicity. Therefore, the addition of BA into BS may be beneficial to ammonia nitrogen and phosphorus removal, and may not result in a rapid increase in phytotoxicity.

biomass ash; biogas slurry; ammonia nitrogen removal; total phosphorus; phytotoxicity

10.6041/j.issn.1000-1298.2017.01.031

2016-06-09

2016-07-14

國家自然科學基金項目(51376078)和中央高校基本科研業務費專項資金項目(2015PY077)

賀清堯(1990—),男,博士生,主要從事沼液及沼氣高質化利用研究,E-mail: qingyao_he@webmail.hzau.edu.cn

晏水平(1980—),男,副教授,主要從事沼氣高質化利用及氣體CO2分離研究,E-mail: yanshp@mail.hzau.edu.cn

S216.4

A

1000-1298(2017)01-0237-08

猜你喜歡
質量
聚焦質量守恒定律
“質量”知識鞏固
“質量”知識鞏固
質量守恒定律考什么
做夢導致睡眠質量差嗎
焊接質量的控制
關于質量的快速Q&A
初中『質量』點擊
質量投訴超六成
汽車觀察(2016年3期)2016-02-28 13:16:26
你睡得香嗎?
民生周刊(2014年7期)2014-03-28 01:30:54
主站蜘蛛池模板: 尤物亚洲最大AV无码网站| 国产高潮流白浆视频| 欧美激情,国产精品| 欧美一级特黄aaaaaa在线看片| www.日韩三级| 九九线精品视频在线观看| 特级毛片免费视频| 自偷自拍三级全三级视频| 日韩av无码DVD| 天天综合天天综合| 免费观看国产小粉嫩喷水| 香蕉国产精品视频| 91精品伊人久久大香线蕉| 在线免费观看AV| 国产理论一区| 最近最新中文字幕在线第一页| 欧美日韩国产在线人| 高清乱码精品福利在线视频| 日韩成人在线网站| 久久亚洲天堂| 日韩激情成人| 三上悠亚一区二区| 国产精品一区二区国产主播| 国产欧美日韩一区二区视频在线| 亚洲一区二区无码视频| 成人午夜网址| 欧美日韩亚洲国产| 久久伊伊香蕉综合精品| 亚洲不卡无码av中文字幕| 久久综合五月婷婷| 亚洲国产欧美国产综合久久| 久久99精品久久久大学生| 国产高清在线精品一区二区三区| 欧美精品啪啪一区二区三区| 最新精品国偷自产在线| 午夜国产不卡在线观看视频| 少妇被粗大的猛烈进出免费视频| 91精品国产福利| 国产日本欧美亚洲精品视| 日本免费精品| 一区二区三区在线不卡免费| 国产欧美日韩专区发布| 无码AV日韩一二三区| 国产精品va免费视频| 久久99国产视频| 伊人成色综合网| 欧美成人看片一区二区三区| 免费女人18毛片a级毛片视频| 中文字幕久久亚洲一区| 亚洲国产天堂久久综合226114| 亚洲天堂777| 麻豆国产精品一二三在线观看| 久久婷婷五月综合97色| 亚洲综合色婷婷中文字幕| 在线观看av永久| 日韩色图在线观看| 草逼视频国产| 99久久国产综合精品2020| 香蕉精品在线| 国产人成午夜免费看| 女人18毛片水真多国产| 日韩美毛片| 国产va在线观看免费| 国产视频只有无码精品| 欧美激情,国产精品| 97成人在线视频| 白浆免费视频国产精品视频| 亚洲色图欧美激情| 欧洲日本亚洲中文字幕| 中文字幕一区二区人妻电影| 婷婷激情亚洲| 亚洲丝袜第一页| 专干老肥熟女视频网站| 中文字幕日韩视频欧美一区| 国产美女自慰在线观看| 在线观看免费人成视频色快速| 伊人久久影视| 欧洲av毛片| 久久人午夜亚洲精品无码区| 精品视频在线观看你懂的一区| 久久综合九九亚洲一区| 亚洲成aⅴ人片在线影院八|