李全旺
一、設疑要有鮮明的針對性和明確的目的性
有些小學數學教師在課堂教學中,不去考慮學生的學情與教材的特點,隨意地設疑,這樣只會讓設疑成為學生課堂學習的一大負擔,與設疑的初衷相違背。如教學《面積和面積單位》,新課導入時,教師組織學生“摸一摸”:數學書的封面和課桌面、作業本的封面和課桌面、自己的手和數學書的封面等,觀察有什么不同之處。教師的本意是結合本節課的重點,通過比較讓學生說出哪個面的面積比較大。可是學生的想法卻不統一,由于沒有規定到底是哪方面的不同,于是就有同學大膽發言:
生1:我發現課桌面比較光滑。
生2:我發現數學書的封面比較粗糙。
生3:我發現數學書的封面沒有課桌面光滑。
案例中教師雖考慮到設疑要從學生身邊的事物出發,體現了新課標“學生是數學學習的主人,數學知識源于生活”的教學理念,但因缺乏明確的指向性,使得學生特別是第一學段的學生無從答起,回答不合教師“心意”,教師不予以合適理答,更容易打擊學生學習的積極性。如果將問題改成:“請同學們摸一摸,比一比,看看它們哪個面的面積比較大?”更能調動學生學習的積極性。
二、設疑要適量
設疑是收集學生反饋信息的重要渠道,也是進行啟發式教學的重要手段。適量的設疑應給予學生充分的思考時間,有利于學生仔細研究設疑所提的問題并掌握課堂教學內容。而“滿堂問”與“滿堂灌”都違背了設疑的適量性原則。“滿堂問”只會造成學生思維的疲憊,使其疲于思考問題,而“滿堂灌”則易造成學生乏于思考,養成不思考的學習習慣,不能培養學生解決問題的能力,與新課標中提倡培養學生數學思考能力相違背。
三、設疑要及時
設疑作為學生提供反饋信息的重要手段,往往要用在學生“心求通而未得,口欲言而未能”的“節骨眼”上,讓學生有機會思考所掌握的新知。在學生還無法表達出所掌握的新知時,教師趁機進行協助,幫助學生加深剛掌握的新知,并從中獲得學生的掌握情況,糾正學生的錯誤觀念,避免其產生思維定式,進而及時調整教學進度。如,教學小學一年級《比一個數多(少)幾的數》,教師引導學生正確解答“飼養小組養了8只黑兔,養的白兔比黑兔少3只,問養了幾只白兔?”后,接著提出這樣一個問題:“飼養小組一共養了8只黑兔,飼養的黑兔比白兔少3只,問養了幾只白兔?”由于這題中也出現“比”“少”二字,受思維定式的影響,有些學生依然用減法列式:8-3=5(只)。此時,教師如果簡單對學生解釋“這里是黑兔比白兔少,知道了黑兔的數量,要求白兔的數量,用加法”,只能讓學生產生刻板記憶,不能理解本節課的重難點。若是在此處設疑,提問學生:“是誰和誰比?哪個多哪個少?求多還是求少?用什么方法?”這時,學生就能自然地回答出這些問題,且在不知不覺中理解重難點。所以教師在進行課堂教學時,要時刻注意學生的思維定式,使用設疑的方式及時糾正學生的錯誤觀念。
四、設疑要具有啟發性
設疑應設在學生要掌握的知識要點上,設在教學內容的關鍵處,即設在解決問題的突破點和知識的銜接點上,使學生產生認知矛盾,激發學生思維的活躍點。
例如,在教學小學二年級上冊“9的乘法口訣”時,學生做這樣兩組題:
4×9+9= 6×9+9= 5×9= 7×9=
只要求算出結果,對二年級的學生而言不僅降低了教學要求,還會讓他們失去繼續運用乘法口訣的興趣,但是直接讓他們說出這兩組算式間的聯系學生可能就難以把握重點了。因此教師可以在學生算完后提問:“誰能模仿這兩組題自己編一組?”這一問,不僅為學生提供了克服困難的機會和思維的方向,也使得學生能從模仿中尋找方法發現規律,引導學生自主的探索、發現,更符合新課標的要求。
設疑應設在教學的重點與難點處,在學生新舊知識交接處,用于啟迪學生發散思維,引起學生豐富的聯想、猜想,以知識和方法的正向遷移培養學生的創造性思維。
五、設疑要關注學生的情感發展
《義務教育數學課程標準》(2011年版)提倡關注學生的主觀情感。有些教師在個別學生注意力不集中時,習慣用設疑的方式引起學生關注,從而回到課堂活動中來。注意力不集中的同學一般學習上也會有些困難,所以在此時對學生進行設疑,應注意問題不能太過復雜,注意考慮學生的認知結構特征,提出些基本的問題,利于學生很快回答出來,并能引起學生學習的興趣,繼續投身課堂的學習中。這樣的設疑不僅利于學生將注意力轉移到課堂,還不會耽誤課堂教學的進程。但也有個別教師在此時設疑所提的問題超出了注意力不集中的學生的認知理解范圍,導致該學生受到班級其他同學的嘲諷,傷害了其自尊心,阻礙了學生主觀情感的發展。
設疑是小學數學課堂中不可缺失的重要環節,對小學生思維的訓練和教師及時掌握學生的反饋信息都有很大幫助。課堂設疑要講究藝術,教師的提問要像一顆顆石子投向平靜的湖面,能激起學生思維的漣漪,有利于發展學生的思維力、想象力、創造力。教師在數學課堂中應該精心設疑,引發學生有價值的思考,從而達到教學效果的最優化。