999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

2016-12-07 08:59:13ZHANGYanhong
數學雜志 2016年6期

ZHANG Yan-hong

(School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

ZHANG Yan-hong

(School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

In this paper,we study a fourth-order singular boundary value problem.Using the Leggett-Williams fixed point theorem together with constructing a special cone,we establish optimal existence of symmetric positive solutions for a fourth-order singular boundary value problem under certain conditions,which generalizes optimal existence of symmetric positive solutions to singular boundary value problem.

symmetric positive solutions;boundary value problem;cone

2010 MR Subject Classification:34B15;34B25

Document code:AArticle ID:0255-7797(2016)06-1209-06

1 Introduction

We consider existence of symmetric positive solutions for a fourth-order singular boundary value problem:

which describes the deformations of an elastic beam with both endpoints fixed,where f: (0,1)×(0,+∞)→(0,+∞)is conditions and f(t,x)=f(1-t,x)for each(0,1)×(0,+∞). f(t,x(t))may be singular at t=0 and/or t=1.

Here symmetric positive solutions for a fourth-order singular boundary value problem (1)satisfying x(t)=x(1-t)and x(t)>0,t∈(0,1).

Boundary value problems arise in a variety of different areas of applied mathematics and physics(see[1,2]and the references therein).Recently many authors studied the existence of positive solutions for four-order singular boundary value problems for example [3-13]and the references therein.Most of these results are obtained via transforming the four-order boundary value problems into a second-order boundary value problems,and thenapplying the Leray-Schauder continuation method,the topologial degree theory,the fixed point theorems on cones,the critical point theory,or the lower and upper solution method. However results about the existence of symmetric positive solutions to singular boundary value problem(1)are few.Motivated by the results in[9,11]we try to establish optimal existence of symmetric positive solutions to problem(1)by applying Leggett-Williams fixed point theorem.

2 Preliminary

We consider problem(1)in a Banach space C[0,1]equipped with the norm‖x‖=|x(t)|.A function x(t)∈C[0,1]is said to be a concave function if x(τt1+(1-τ)t2)≥ τx(t1)+(1-τ)x(t2)for all t1,t2,τ∈[0,1].We denote

Let K be a cone of C[0,1]and m,n be constants,0<m<n.Define

Let G(t,s)be the Green's function of the corresponding boundary value problem(1),i.e.,

After a simple calculation,we get

(IV)(see[9])q(t)G(τ(s),s)≤G(t,s)≤G(τ(s),s),q(t)=min{t2,(1-t)2},t∈[0,1].

Lemma 2.1(see[14])Let A:K→K be a completely continuous operator,u be a nonnegative continuous concave function on K,and satisfies u(x)≤‖x‖for all x∈In addition,assume that there exist 0<d<m<n≤r satisfy the following conditions:

(iii)u(Ax)>m for x∈K(u,m,r)and‖Ax‖>n; then A has at least three fixed points x1,x2,x3onsatisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

3 Main Results

Theorem 3.1 Suppose the following conditions hold:

(H1)f∈C((0,1)×[0,+∞),[0,+∞)),f(t,x)≤g(t)h(x),g∈C((0,1),[0,+∞)),h∈C([0,+∞),[0,+∞));

then problem(1)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

Proof Denote K={x∈C+[0,1]:x(t)is convex function and x(t)=x(1-t),t∈[0,1]},then K is a cone of C+[0,1].

Define operator A:K→K by Ax(t)=G(t,s)f(s,x(s))ds.Obviously Ax(t)≥ 0,(Ax)''(t)<0 for 0<t<1,and for x∈K,

consequently Ax∈K,that is A:K→K.By Arzela-Ascoli theorem,we can prove A:K→K is completely continuous.

From(H1)and 3)in(H3),for any x∈we know that

Thus condition(i)of Lemma 2.1 holds.

Next from(H1)and 1)in(H3),for any x∈we have

Finally we prove u(Ax)>m for x∈K(u,m,r)and‖Ax‖>4m.

From 2)in(H3),for x∈K(u,m,r)and‖Ax‖>4m,we know that

Therefore condition(iii)of Lemma 2.1 holds too.The proof is completed.

RemarkTheorem 3.1 also holds when nonlinearity f(t,x(t))is nonsingular at t=0 and t=1.

4 Example

Example 4.1The following boundary value problem:

has triple symmetric positive solutions,where

Proof Let f(t,x)=h(x)g(t),g(t)=Obviously g(t)is signular at t=0 and t=1.h(x)∈C[0,+∞).So(H1)holds.

Since

then(H2)holds.

2)In(H3)is immediate,since we may take m=2 then

3)In(H3)is immediate,since we may take r=100>2m=4 then

Thus from Theorem 3.1,we know that problen(2)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<2<u(x2),and‖x3‖>for u(x3)<2.

References

[1]Davis J M,Erbe L H,Henderson J.Multiplicity of positive solutions for higher order Sturm-Liouville problems[J].Rocky Mountain J.Math.,2001,31:169-184.

[2]Liu L S,Sun Y.Positive solutions of singular boundary value problems for differential equations[J]. Acta Math.Sci.Ser.A.Chin.Ed.,2005,25(4):554-563.

[3]Tang Rongrong.A class of fourth-order nonlinear boundary layer solution of singular perturbation boundary value equation[J].J.Math.,2007,27(4):385-390.

[4]Alves E,Ma T F,Pelicer M L.Monotone positive solutions for a fourth order equation with nonlinear boundary conditions[J].Nonl.Anal.TMA,2009,71:3834-3841.

[5]Graef J R,Yang B.Positive solutions of a nonlinear fourth order boundary value problem[J].Comm. Appl.Nonl.Anal.,2007,14(1):61-73.

[6]Ma H L.Symmetric positive solutions for nonlocal boundary value problems of fourth order[J].Nonl. Anal.,2008,68:645-651.

[7]Liu B.Positive solutions of fourth-order two-point boundary value problems[J].Appl.Math.Comput.,2004,148:407-420.

[8]Ma R,Wang H.On the existence of positive solutions of fourth-order ordinary differential equations[J].Appl.Anal.,1995,59:225-231.

[9]Pei M,Chang S K.Monotone iterative technique and symmetric positive solutions for a fourth-order boundary value problem[J].Math.Comput.Model.,2010,51:1260-1267.

[10]Yang B.Positive solutions for the beam equation under certain boundary conditions,electron[J].J. Diff.Equ.,2005,78:1-8.

[11]Yao Q.Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J].Appl. Math.Lett.,2004,17:237-243.

[12]Zhang X P.Existence and iteration of monotone positive solutions for an elastic beam with a corner[J].Nonl.Anal.RWA,2009,10:2097-2103.

[13]Jankowski T,Jankowski R.Multiple solutions of boundary-value problems for fourth-order differential equations with deviating arguments[J].J.Optim.The.Appl.,2010,146:105-115.

[14]Guo D J,Lakashmikantham V.Nonlinear problems in abstract cones[M].New York:Academic Press,1988.

一類四階奇異邊值問題對稱正解的最優存在性

張艷紅

(福州大學數學與計算機科學學院,福建福州350108)

本文研究了一類四階奇異邊值問題.通過建立一個特定的錐,利用Leggett-Williams不動點定理,從而在一定的條件下得到一類四階奇異邊值問題對稱正解的最優存在性,推廣了奇異邊值問題對稱正解的最優存在性的結果.

對稱正解;邊值問題;錐

MR(2010)主題分類號:34B15;34B25O175

?date:2014-10-14Accepted date:2015-07-06

Supported by the Science and Technology Development Fund of Fuzhou University(2014-XQ-30).

Biography:Zhang Yanhong(1976-),female,born at Fuzhou,Fujian,associate professor,major in differential equation.

主站蜘蛛池模板: 亚洲AV电影不卡在线观看| 亚洲一级色| 日韩欧美中文| 香蕉伊思人视频| 亚洲视频欧美不卡| 国内自拍久第一页| 四虎影视8848永久精品| 国产福利在线免费观看| 国产一区二区三区精品久久呦| 午夜视频在线观看区二区| 日韩AV手机在线观看蜜芽| 久久性妇女精品免费| 刘亦菲一区二区在线观看| 啦啦啦网站在线观看a毛片| 久久国产乱子伦视频无卡顿| 91精品国产自产91精品资源| 亚洲人成日本在线观看| 国产在线麻豆波多野结衣| 啦啦啦网站在线观看a毛片 | 国产日韩欧美精品区性色| 干中文字幕| 欧美色99| 麻豆精品国产自产在线| 成人免费一级片| 久久久久亚洲av成人网人人软件| 欧美日韩一区二区三区四区在线观看| 免费人成在线观看视频色| 一级毛片在线播放免费观看| 最新国产成人剧情在线播放| 狠狠综合久久| 青青青国产精品国产精品美女| av色爱 天堂网| 国产精品浪潮Av| 亚洲性视频网站| 国产经典免费播放视频| 国产精品视频免费网站| 亚洲an第二区国产精品| 中文无码日韩精品| 久久五月视频| 成年看免费观看视频拍拍| 综合五月天网| 国产欧美日本在线观看| 狠狠干综合| 激情六月丁香婷婷四房播| 久久99热这里只有精品免费看| 日韩欧美综合在线制服| 国产精品亚洲一区二区在线观看| 精品一區二區久久久久久久網站| 一级高清毛片免费a级高清毛片| 国内黄色精品| 久久精品丝袜高跟鞋| 亚洲三级成人| 亚洲中文无码av永久伊人| 免费又爽又刺激高潮网址| 日韩免费毛片视频| 欧美成人午夜视频| 国产成人精品一区二区三在线观看| 亚洲无码A视频在线| 亚洲男人的天堂网| 久久久久久尹人网香蕉| 欧洲在线免费视频| 谁有在线观看日韩亚洲最新视频| 欧美一区二区自偷自拍视频| 国产成年无码AⅤ片在线| 中文字幕 91| 看看一级毛片| 国产精品极品美女自在线| 色综合手机在线| 尤物视频一区| 欧类av怡春院| 人人看人人鲁狠狠高清| 99久久亚洲综合精品TS| 国产乱人伦AV在线A| 亚洲专区一区二区在线观看| 在线日韩日本国产亚洲| 日韩无码视频专区| 亚洲福利网址| 欧美一级特黄aaaaaa在线看片| 又污又黄又无遮挡网站| 97青青青国产在线播放| 久夜色精品国产噜噜| 又粗又硬又大又爽免费视频播放|