999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

2016-12-07 08:58:55ZHAODafangYOUXuexiaoHUChangsong
數學雜志 2016年6期
關鍵詞:性質

ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

In this paper,we introduce and investigate the concept of conformable nabla fractional derivative on time scales.By using the theory of time scales,we obtain some basic properties of the conformable nabla fractional derivative,which extend and improve both the results in[9,10]and the usual nabla derivative.

conformable nabla fractional derivative;nabla derivative;time scales

2010 MR Subject Classification:26A33;26E70

Document code:AArticle ID:0255-7797(2016)06-1142-07

1 Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration to arbitrary(non-integer)order.The subject is as old as the calculus of differentiation and goes back to times when Leibniz,Gauss,and Newton invented this kind of calculation.During three centuries,the theory of fractional calculus developed as a pure theoretical field,useful only for mathematicians.Nowadays,the fractional calculus attracts many scientists and engineers.There were several applications of this mathematical phenomenon in mechanics, physics,chemistry,control theory and so on[1-8].

Recently,the authors in[9]defined a new well-behaved simple fractional derivative called the conformable fractional derivative depending just on the basic limit definition of the derivative.Especialy,in[10],Nadia Benkhettou,Salima Hassani and Delfim Torres introduced a conformable time-scale fractional derivative,which providing a natural extension of the conformable fractional derivative.In this paper,we define the conformable nabla fractional derivative on time scales,which give another type of generalization of the conformable fractional derivative and the usual nabla derivative[11-14].

2 Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the subspace topology inherited from the standard topology of R.For a,b∈T we define the closed interval[a,b]Tby[a,b]T={t∈T:a≤t≤b}.For t∈T we define the forward jump operator σ by σ(t)=inf{s>t:s∈T},where inf?=supT,while the backward jump operator ρ is defined by ρ(t)=sup{s<t:s∈T},where sup?=inf T.

If σ(t)>t,we say that t is right-scattered,while if ρ(t)<t,we say that t is leftscattered.If σ(t)=t,we say that t is right-dense,while if ρ(t)=t,we say that t is left-dense.A point t∈T is dense if it is right and left dense;isolated if it is right and left scattered.The forward graininess functionμ(t)and the backward graininess function η(t) are defined byμ(t)=σ(t)-t,η(t)=t-ρ(t)for all t∈T,respectively.If supT is finite and left-scattered,then we define Tk:=TsupT,otherwise Tk:=T;if inf T is finite and right-scattered,then Tk:=Tinf T,otherwise Tk:=T.We set

A function f:T→R is nabla(?)differentiable at t∈Tkif there exists a number f?(t)such that,for each ε>0,there exists a neighborhood U of t such that

for all s∈U.We call f?(t)the?-derivative of f at t.Throughout this paper,α∈(0,1].

3 Conformable Nabla Fractional Derivative

Definition 3.1 Let T be a time scale and α∈(0,1].A function f:T→R is conformable?-fractional differentiable of order α at t∈Tkif there exists a number Tα(f?)(t) such that,for each ε>0,there exists a neighborhood U of t such that

for all s∈U.We call Tα(f?)(t)the conformable?-fractional derivative of f of order α at t and we say that f is conformable?-fractional differentiable if f is conformable?-fractional differentiable for all t∈Tk.

Theorem 3.2 Let T be a time scale,t∈Tkand α∈(0,1].Then we have the following:

(i)If f is conformal?-fractional differentiable of order α at t,then f is continuous at t.

(ii)If f is continuous at t and t is left-scattered,then f is conformable?-fractional differentiable of order α at t with

(iii)If t is left-dense,then f is conformable?-fractional differentiable of order α at t if and only if the limitexists as a finite number.In this case,

(iv)If f is conformal?-fractional differentiable of order α at t,then

Proof (i)The proof is easy and will be omitted.

(ii)Assume that f is continuous at t and t is left-scattered.By continuity,

Hence given ε>0,there exists a neighborhood U of t such that

for all s∈U.It follows that

for all s∈U.Hence we get the desired result

(iii)Assume that f is conformable?-fractional differentiable of order α at t and t is right-dense.Then for each ε>0,there exists a neighborhood U of t such that

for all s∈U.Since ρ(t)=t we have thatfor all s∈U.It follows thatHence we get the desired result.

On the other hand,if the limitexists as a finite number and is equal to J,then for each ε>0,there exists a neighborhood U of t such that

for all s∈U.Since t is right-dense,we have that

Hence f is conformable?-fractional differentiable at t and Tα(f?)(t)=

(iv)If t is left-dense,then η(t)=0 and we have that

If t is left-scattered,then ρ(t)<t,then by(ii)

Corollary 3.3Again we consider the two cases T=R and T=Z.

(i)If T=R,then f:R→R is conformable?-fractional differentiable of order α at t∈R if and only if the limitexists as a finite number.In this case,

If α=1,then we have that Tα(f?)(t)=f?(t)=f'(t).

(ii)if T=Z,then f:Z→R is conformable?-fractional differentiable of order α at t∈Z with

If α=1,then we have that Tα(f?)(t)=f(t)-f(t-1)=?f(t),where?is the usual backward difference operator.

Example 3.4If f:T→R is defined by f(t)=C for all t∈T,where C∈R is constant,then Tα(f?)(t)≡0.

(ii)if f:T→R is defined by f(t)=t for all t∈T,then Tα(f?)(t)=ρ(t)1-α.If α=1, then Tα(f?)(t)≡1.

Example 3.5If f:T→R is defined by f(t)=t2for all t∈T:=from Theorem 3.2(ii)we have that f is conformable?-fractional differentiable of order α at t∈T with

Theorem 3.6 Assume f,g:T→R are conformable?-fractional differentiable of order α at t∈Tk,then

(i)for any constant λ1,λ2,the sum λ1f+λ2g:T→R is conformable?-fractional differentiable of order α at t with Tα((λ1f+λ2g)?)(t)=λ1Tα(f?)(t)+λ2Tα(g?)(t);

(ii)if f and g are continuous,then the product fg:T→R is conformable?-fractional differentiable of order α at t with

Proof (i)The proof is easy and will be omitted.

(ii)Let 0<ε<1.Define

then 0<∈?<1.f,g:T→R are conformable?-fractional differentiable of order α at t. Then there exists neighborhoods U1and U2of t with

for all s∈U1and

for all s∈U2.

From Theorem 3.2(i),there exists neighborhoods U3of t with|f(t)-f(s)|≤∈?for all s∈U3.

Let U=U1∩U2∩U3.Then we have for all s∈U

Thus Tα(fg)?(t)=f(t)Tα(g?)(t)+Tα(f?)(t)g(ρ(t)).The other product rule formula follows by interchanging the role of functions f and g.

(iii)From Example 3.4,we have that Tα(t)=Tα(1)?(t)=0.Therefore

and consequently Tα(

(iv)We use(ii)and(iii)to calculate

Theorem 3.7 Let c be constant and m∈N.

(i)For f defined by f(t)=(t-c)m,we have that

Proof (i)We prove the first formula by induction.If m=1,then f(t)=t-c,and clearly Tα(f?)(t)=ρ(t)1-αholds by Example 3.4 and Theorem 3.6(i).Now we assume that

holds for f(t)=(t-c)mand let F(t)=(t-c)m+1=(t-c)f(t).We use Theorem 3.6(ii) to obtain

Hence part(i)holds.

Example 3.8 If f:T→R is defined by f(t)=we have that f is conformable?-fractional differentiable of order α at t∈T with

References

[1]Miller K,Ross B.An introduction to the fractional calculus and fractional differential equations[M]. New York:Wiley,1993.

[2]Oldham K B,Spanier J.The fractional calculus[M].New York,London:Academic Press,1974.

[3]Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.

[4]Herrmann R.Fractional calculus:an introduction for physicists[M].Singapore:World Sci.,2014.

[5]Sabatier J,Agrawal O P,Machado J A T.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].Berlin:Springer,2007.

[7]Meilanov R P,Magomedov R A.Thermodynamics in fractional calculus[J].J.Engin.Phys.Thermophys.,2014,87(6):1521-1531.

[8]Carpinteri A,Cornetti P,Alberto Sapora.Nonlocal elasticity:an approach based on fractional calculus[J].Meccanica,2014,49(11):2551-2569.

[9]Khalil R,Al Horani M,Yousef A,Sababheh M.A new definition of fractional derivative[J].J. Comput.Appl.Math.,2014,264:57-66.

[10]Benkhettou N,Hassani S,Torres D F M.A conformable fractional calculus on arbitrary time scales[J].J.King Saud Univ.Sci.,2016,28:93-98.

[11]Hilger S.Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Wurzburg:Universtat Wurzburg,1988.

[12]Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math.,1990,18:18-56.

[13]Bohner M,Peterson A.Dynamic equations on time scales:an introduction with applications[M]. Boston:Birkhauser,2001.

[14]Bohner M,Peterson A.Advances in dynamic equations on time scales[M].Boston:Birkhauser,2004.

[15]Zhao Dafang,Ye Guoju.C-integral and denjoy-C integral[J].Comm.Korean.Math.Soc.,2007, 22(1):27-39.

[16]Zhao Dafang,Ye Guoju.On strong C-integral of Banach-valued functions[J].J.Chungcheong Math. Soc.,2007,20(1):1-10.

[17]Zhao Dafang.On the C1-integral[J].J.Math.,2011,31(5):823-828.

[18]Zhao Dafang,Li Biwen.A note on the C-integral[J].J.Math.,2011,31(4):594-598.

關于時標上的適應Nabla分數階導數

趙大方,游雪肖,胡長松

(湖北師范大學數學與統計學院,湖北黃石435002)

本文研究了時標上的適應Nabla分數階導數的問題.利用時標理論,獲得了關于適應Nabla分數階導數的若干重要性質.這些結果推廣并改進了文獻[9,10]中的有關結論以及一般Nabla導數的性質.

適應Nabla分數階導數;Nabla導數;時標

MR(2010)主題分類號:26A33;26E70O174.1

?date:2016-01-22Accepted date:2016-04-22

Supported by Educational Commission of Hubei Province of China (Q20152505).

Biography:Zhao Dafang(1982-),male,born at Linyi,Shandong,master,major in Henstock integral theory.

猜你喜歡
性質
含有絕對值的不等式的性質及其應用
MP弱Core逆的性質和應用
弱CM環的性質
一類非線性隨機微分方程的統計性質
數學雜志(2021年6期)2021-11-24 11:12:00
隨機變量的分布列性質的應用
一類多重循環群的剩余有限性質
完全平方數的性質及其應用
中等數學(2020年6期)2020-09-21 09:32:38
三角函數系性質的推廣及其在定積分中的應用
性質(H)及其攝動
九點圓的性質和應用
中等數學(2019年6期)2019-08-30 03:41:46
主站蜘蛛池模板: 久久精品人人做人人爽电影蜜月| 久久毛片网| 亚洲一区色| 日本成人一区| 精品久久777| 亚洲av无码成人专区| 日本一本在线视频| 人妻少妇乱子伦精品无码专区毛片| 日本一区二区不卡视频| 天天综合色网| 福利在线免费视频| 午夜福利网址| 十八禁美女裸体网站| 女人18毛片一级毛片在线 | a毛片免费在线观看| 国产亚洲精品va在线| 国外欧美一区另类中文字幕| 国产精品2| 午夜福利在线观看成人| 国产SUV精品一区二区| 波多野结衣一区二区三区四区| 一级黄色片网| 亚洲精品国产首次亮相| 青青青国产视频手机| 熟女视频91| 在线国产你懂的| 最近最新中文字幕免费的一页| 狼友视频国产精品首页| 99精品免费欧美成人小视频 | 91极品美女高潮叫床在线观看| 青青青亚洲精品国产| 午夜激情婷婷| 激情在线网| 国产成人精品综合| 国产精品欧美亚洲韩国日本不卡| 茄子视频毛片免费观看| 国产成人三级| 国产爽歪歪免费视频在线观看| 91毛片网| 99视频在线免费观看| 91在线中文| 精品五夜婷香蕉国产线看观看| 一本久道热中字伊人| 日韩精品无码免费一区二区三区| 免费看美女自慰的网站| 国产欧美日韩综合在线第一| 精品无码国产自产野外拍在线| 美女毛片在线| 亚洲首页在线观看| 中日无码在线观看| 成人国产三级在线播放| 在线观看亚洲精品福利片| 欧美另类图片视频无弹跳第一页| 亚洲一区免费看| 青青草原国产av福利网站| 色窝窝免费一区二区三区| 亚洲人成在线免费观看| 免费毛片视频| 国产精品人人做人人爽人人添| 亚洲人网站| 久久久久久久蜜桃| 91青草视频| 成人精品免费视频| 亚洲视频a| 亚洲无码日韩一区| 亚洲成综合人影院在院播放| 在线观看国产精品一区| 久久久久亚洲av成人网人人软件| 亚洲精品波多野结衣| 国产视频欧美| 一本一道波多野结衣一区二区| 99久视频| 美女被操91视频| 成人精品亚洲| 国产主播福利在线观看| 国产成人免费观看在线视频| 青青草原国产| 性色在线视频精品| 在线播放国产一区| 亚洲欧美一区二区三区蜜芽| 亚洲AⅤ永久无码精品毛片| 亚洲国产中文欧美在线人成大黄瓜|