999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

2016-12-07 08:58:47YANGTaoLIUGuangjinZHOUXuan
數學雜志 2016年6期
關鍵詞:南京

YANG Tao,LIU Guang-jin,ZHOU Xuan

(1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

(2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

(3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

YANG Tao1,LIU Guang-jin2,ZHOU Xuan3

(1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

(2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

(3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

Endomorphism algebras in Yetter-Drinfel’d module category over a regular multiplier Hopf algebra are studied in this paper.By the tools of multiplier Hopf algebra and Homological algebra theories,we get that two endomorphism algebras are isomorphic in the Yetter-Drinfel’d module category,which generalizes the results of Panaite et al.in Hopf algebra case.

multiplier Hopf algebra;Yetter-Drinfel’d module;Yetter-Drinfel’d module category

2010 MR Subject Classification:16T05;16T99

Document code:AArticle ID:0255-7797(2016)06-1111-09

1 Introduction

Multiplier Hopf algebra,introduced by Van Daele[1],can be naturally considered as a generalization of Hopf algebra when the underlying algebra is no longer assumed to have a unit.Yetter-Drinfel'd module category,as an important content in Hopf algebras theory, was also studied by Van Daele and his collaborators.All the objects they discussed are (non-degenerate)algebras(see[2]).

However,in the well-known Hopf algebras case,the objects of Yetter-Drinfel'd module category are only vector spaces satisfying some certain conditions.So in[3],the authors gave a new category structure for regular multiplier Hopf algebra A:(α,β)-Yetter-Drinfel'd module categoryAyDA(α,β),in which the objects were vector spaces,generalizing the former notions.

In this paper,we focus our work on(α,β)-Yetter-Drinfel'd module,mainly consider some algebras in Yetter-Drinfel'd modules category and get some isomorphisms.

The paper is organized in the following way.In Section 2,we recall some notions which we will use in the following,such as multiplier Hopf algebras,modules and complete modules for a multiplier Hopf algebras,comodules and(α,β)-Yetter-Drinfel'd modules.

In Section 3,we consider algebras inAyDA(α,β).Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α),coinciding with M as left A-modules,and having a right A-comodule structure given by

2 Preliminaries

Throughout this paper,all spaces we considered are over a fixed field k.We consider A as an algebra with a nondegenerate product,it is possible to construct the multiplier algebra M(A).M(A)is an algebra with identity such that A sits in M(A)as an essential two-sided ideal,it can be also characterized as the largest algebra with identity containing A as an essential ideal.More details about the concept of the multiplier algebra of an algebra,we refer to[1].

An algebra morphism(or homomorphism)?:A-→M(A?A)is called a comultiplication on A if(a?b)=?(a)(1?b)and(a?b)=(a?1)?(b)are elements of A?A for all a,b∈A and if?is coassociative in the sense that the linear mappings:A?A-→A?A obey the relation where id denotes the identity map.

A pair(A,?)of an algebra A with nondegenerate product and a comultiplication?on A is called a multiplier Hopf algebra ifandare bijective(see[1]),(A,?)is regular if and only if the antipode of(A,?cop)is bijective.

Let(A,?,ε,S)be a regular multiplier Hopf algebra and M a vector space.Then M is called a(left-right)(α,β)-Yetter-Drinfel'd module over regular multiplier Hopf algebra A,if

(1)(M,·)is a left unital A-module,i.e.,A·M=M.

(2)(M,Γ)is a(right)A-comodule,where Γ:M→M0(M?A)denotes the right coaction of A on M,M0(M?A)denote the completed module.

(3)Γ and·satisfy the following compatible conditions

By the definition of Yetter-Drinfel'd modules,we can define(left-right)Yetter-Drinfel'd module categoryAyDA(α,β).The other three Yetter-Drinfel'd module categories are similar (more details see[3-5]).

AyDA(id,id)=AyDA,the left-right Yetter-Drinfel'd module category.

3 Endomorphism Algebras

Let A be a regular multiplier Hopf algebra,in this section,we mainly consider(left-right) Yetter-Drinfel'd module categoryAyDAover regular multiplier Hopf algebra A.

Definition 3.1 Let A be a multiplier Hopf algebra and C a unital algebra.C is called a left A-module algebra,if

(1)(C,·)is a left unital A-module,

(2)the module action satisfies

C is called right A-comodule algebra,if

(1)(C,ρ)is a right A-comodule,

(2)the comodule structure map ρ satisfies:for all a∈A,

Let C be a unital associative algebra inAyDA.That means C is an object inAyDA, and the multiplication C?C→C and a unit map ι:k→C satisfying associativity and unit axioms.

Proposition 3.2 C is a unital algebra inAyDAif and only if C is an object inAyDAand C is a left A-module algebra and a right Aop-comodule algebra.

We denote by Copthe usual opposite algebra,with the multiplication c·c'=c'c for all c,c'∈C,and bythe A-opposite algebra,which means C as an object inAyDA,but with the multiplicationfor all c,c'∈C,i.e.,the opposite of C in the categoryAyDA.

Proposition 3.3 By above notation,if C is an algebra inAyDA,thenis an algebra inAyDA.

Proposition 3.4 If C,D are algebras inAyDA,then C?D is also an algebra inAyDAwith the following structures

Proof It is obvious.Indeed,this algebra structure on C?D given above is just the braided tensor product of C and D in the braided tensor categoryAyDA.

We now introduce the endomorphism algebras associated to(α,β)-Yetter-Drinfel'd modules.

Proposition 3.5 Let α,β∈Aut(A)and M∈AyDA(α,β)be finite dimensional.Then

(1)End(M)is an algebra inAyDAwith structures

for all a,a'∈A,u∈End(M)and m∈M.

(2)End(M)opis an algebra inAyDAwith structures

for all a,a'∈A,u∈End(M)opand m∈M.

Proof We only prove(1)here,(2)is similar.For(1),we first show that End(M)is an object inAyDA.In the following,we show the main process:the compatible condition ofAyDA,i.e.,

It holds,since

and

Then we need to show that the product defined in(1)is A-linear and A-colinear.

and

It is easy to get a·id=ε(a)id and ρ(id)=id?1,where id is the unit in End(M).This completes the proof.

Remark here that

are equivalent.

Proposition 3.6 Let α,β∈Aut(A),and M∈AyDA(α,β).Define a new object M'as follows:M'coincides with M as left A-modules,and has a right A-comodule structure

given by

for all a'∈A and m∈M,where

and ρ is the comodule structure of M.Then

Proof We can get the conclusion by direct computation.

this implies M'∈AyDA(αβ-1α,α).

Theorem 3.7 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α)as above.Define the map

for all u∈End(M)and m∈M'.Then τ is an isomorphism of algebras inAyDA.

Proof Similar to the proof of Proposition 4.10 in[6].

First,τ is a homomorphism,since for u,v∈End(M),

Second,τ is A-linear,since

Third,τ is A-colinear.To prove this,we have to show that ρτ=(τ?l)ρ,where ρ is the A-comodule structure of End(M')op.Denote ρ(v)(1?a)=v(0)?v(1)a,we have to prove

for all a∈A,

Finally,we will show that τ is bijective,we define

for v∈End(M')op.We can check that ττ-1=τ-1τ=id and τ-1is A-linear and A-colinear.

This completes the proof.

The definition of τ is meaningful.Because for finite i,there is an e∈A such that eai=aifor all i=1,···,n.Here

where ρ is the right A-comodule structure of End(M).

From Proposition 3.5 and the notion◇M defined in Section 3 of[5],we can get the following results:

Proposition 3.8 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Then End(M)opEnd(◇M)as algebras inAyDA.

Proof Denote the map ?:End(M)op-→End(◇M)by ?(u)=u?for u∈End(M)op.It is an algebra isomorphism.

The map ? is A-linear,the proof is similar as in Proposition 4.11 in[6].Then we need to show ? is A-colinear.Indeed,by Proposition 3.5 and the structures of◇M,we can compute as follows:for all u∈End(M)op,f∈◇M,m∈M,and a∈A,

and

From all above,we use the adapted Sweedler notation,it seems that the definitions and proofs are similar as in the(weak)Hopf algebra case(see,e.g.[7]).However,we should notice the‘cover’technique introduced in[8].

References

[1]Van Daele A.Multiplier Hopf algebras[J].Trans.American Math.Soc.,1994,342(2):917-932.

[2]Delvaux L.Yetter-Drinfel’d modules for group-cograded multiplier Hopf algebras[J].Commun.Algebra,2008,36(8):2872-2882.

[3]Yang T,Wang S H.Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Commun.Algebra,2011,39(9):3073-3089.

[4]Delvaux L,Van Daele A,Wang Shuanhong.Bicrossproducts of multiplier Hopf algebras[J].J.Algebra,2011,343(1):11-36.

[5]Yang T,Zhou X,Ma T S.On braided T-categories over multiplier Hopf algebras[J].Commun. Algebra,2013,41(8):2852-2868.

[6]Panaite F,Van Oystaeyen F.Quasi-elementary H-Azumaya algebras arising from generalized(anti) Yetter-Drinfel’d modules[J].Appl.Categ.Struct.,2009,19(5):803-820.

[7]Zhou X,Yang T.Kegel’s theorem over weak Hopf group coalgebras[J].J.Math.,2013,33(2):228-236.

[8]Van Daele A.Tools for working with multiplier Hopf algebras[J].Arabian J.Sci.Engin.,2008, 33(2C):505-527.

正則乘子Hopf代數上Yetter-Drinfel'd模范疇中的自同構代數

楊濤1,劉廣錦2,周璇3

(1.南京農業大學理學院,江蘇南京210095)
(2.南京農業大學動物醫學院,江蘇南京210095)
(3.江蘇第二師范學院數學與信息技術學院,江蘇南京210013)

本文研究了正則乘子Hopf代數上Yetter-Drinfel’d模范疇中自同構代數的問題.利用乘子Hopf代數以及同調代數理論中的方法,獲得了Yetter-Drinfel’d模范疇中兩個自同構代數是同構的結果,推廣了Panaite等人在Hopf代數中的結果.

乘子Hopf代數;Yetter-Drinfel’d模;Yetter-Drinfel’d模范疇

MR(2010)主題分類號:16T05;16T99O153.3

?date:2014-03-24Accepted date:2014-11-11

Supported by National Natural Science Foundation of China(11226070; 11326063).

Biography:Yang Tao(1984-),male,born at Huaian,Jiangsu,doctor,major in Hopf algebras.

猜你喜歡
南京
南京比鄰
“南京不會忘記”
環球時報(2022-08-16)2022-08-16 15:13:53
南京大闖關
江蘇南京卷
學生天地(2020年31期)2020-06-01 02:32:22
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
南京·鴻信云深處
金色年華(2017年7期)2017-06-21 09:27:54
南京院子
電影(2017年1期)2017-06-15 16:28:04
又是磷復會 又在大南京
南京:誠實書店開張
南京、南京
連環畫報(2015年8期)2015-12-04 11:29:31
主站蜘蛛池模板: 在线观看亚洲国产| 亚洲日本精品一区二区| 91po国产在线精品免费观看| 日本手机在线视频| 91成人在线免费视频| 午夜视频免费试看| 色爽网免费视频| 三上悠亚在线精品二区| 亚洲无线国产观看| 天堂在线www网亚洲| 中国美女**毛片录像在线| 亚洲欧美国产五月天综合| a级毛片免费在线观看| 欧美怡红院视频一区二区三区| 91在线国内在线播放老师| 婷婷99视频精品全部在线观看| 无码日韩视频| 亚洲成人精品久久| 国产精品免费露脸视频| 免费 国产 无码久久久| 视频一本大道香蕉久在线播放| 99视频精品全国免费品| 波多野结衣第一页| 亚洲中文在线看视频一区| 五月激情婷婷综合| 精品视频91| 天堂亚洲网| 久久五月视频| 国产不卡一级毛片视频| 日本91视频| 中文无码精品A∨在线观看不卡| 午夜无码一区二区三区在线app| 东京热av无码电影一区二区| 精品视频免费在线| 欧美亚洲网| 黄色在线不卡| 四虎永久在线视频| 国产日韩欧美中文| 亚洲中文无码av永久伊人| 日韩无码黄色| 国产精品分类视频分类一区| 国产精品美女网站| 国产精品人人做人人爽人人添| 国产偷倩视频| 不卡无码h在线观看| 日韩人妻精品一区| 一级不卡毛片| 毛片手机在线看| 欧美天堂在线| 国产激爽爽爽大片在线观看| 亚洲品质国产精品无码| 国产黄色免费看| 久久久亚洲色| 成年女人18毛片毛片免费| 99视频在线观看免费| 男人天堂亚洲天堂| 在线无码九区| 一本色道久久88亚洲综合| 国产精品专区第1页| 99精品国产高清一区二区| 国产在线八区| 久久人人97超碰人人澡爱香蕉 | 丰满人妻中出白浆| 55夜色66夜色国产精品视频| 手机在线国产精品| 日韩精品专区免费无码aⅴ| 国产97视频在线| 国产成人h在线观看网站站| P尤物久久99国产综合精品| 国产全黄a一级毛片| 人妖无码第一页| 99热这里只有免费国产精品 | 美女视频黄频a免费高清不卡| 性视频一区| 亚洲精品动漫在线观看| 欧美在线视频不卡第一页| 亚洲国产在一区二区三区| 在线看国产精品| 久久女人网| 91成人在线观看| 日本免费一区视频| 国产乱子精品一区二区在线观看|