車 洋,楊天池,平國華,林 律
?
寧波地區(qū)耐多藥結(jié)核分枝桿菌喹諾酮耐藥gyr基因突變研究
車 洋,楊天池,平國華,林 律
目的 為闡明寧波地區(qū)耐多藥結(jié)核分枝桿菌(Multiple drug-resistant tuberculosis, MDR-TB)的gyr基因突變特征,深入研究MDR-TB對喹諾酮類藥物耐藥與gyr基因突變特征的關(guān)系。方法 采用1%比例法對MDR-TB進行氧氟沙星藥敏檢測實驗,通過 DNA直接測序法分析MDR-TB的gyr基因突變情況。結(jié)果 120株MDR-TB臨床分離株中有34株對喹諾酮耐藥,總耐藥率為28.33%(34/120)。34株耐喹諾酮菌株中,30株gyr基因發(fā)生突變,突變率為88.24%(30/34)。30株gyr基因發(fā)生突變的菌株中g(shù)yrA基因突變有29株,占96.67%(29/30),突變位點包括90、91和94位氨基酸;gyrB基因突變有2株,其中1株均合并gyrA基因突變,占6.67%(2/30),突變位點包括499和502位氨基酸。結(jié)論 寧波地區(qū)MDR-TB對喹諾酮類藥物耐藥形勢較為嚴峻,gyrA基因突變與MDR-TB對喹諾酮類藥物耐藥相關(guān)。
喹諾酮;gyrA基因;gyrB基因;耐多藥結(jié)核分枝桿菌;耐藥決定區(qū)
Supported by the Natural Science Foundation of Ningbo (No. 2015A610195) and the Public Health Detection Technology Laboratory of Zhejiang Province
耐多藥結(jié)核病(multidrug-resistant tuberculosis, MDR-TB)的產(chǎn)生及傳播加劇了結(jié)核病疫情,是目前結(jié)核病防控工作的重點和難點。由于同時對一線抗結(jié)核藥物中抗菌活性最高的異煙肼和利福平同時耐藥, MDR-TB治療方案中作為核心藥物的喹諾酮類的有效性就顯得更為重要。喹諾酮類藥物由于研發(fā)較早,抗菌效果好,且在臨床上應(yīng)用廣泛,導致耐該類藥物的結(jié)核分枝桿菌的產(chǎn)生。喹諾酮類藥物藥物機理主要是通過作用于細菌的DNA促旋酶,抑制細菌促旋酶活性干擾細菌DNA正常復制,導致細菌死亡[1-3]。目前的研究顯示DNA促旋酶的編碼基因gyr基因的突變是導致結(jié)核分枝桿菌對喹諾酮類藥物耐藥的主要分子機制,突變區(qū)域位于喹諾酮耐藥決定區(qū)(QRDR)[4-5]。本研究通過DNA直接測序?qū)幉ǖ貐^(qū)耐多藥結(jié)核分枝桿菌gyr基因突變情況進行分析,探討本地區(qū)耐多藥結(jié)核病喹諾酮類藥物耐藥產(chǎn)生與gyr基因突變的關(guān)系。
1.1 菌株來源 120例耐多藥結(jié)核分枝桿菌臨床分離株來源于2014-2015年寧波地區(qū)11個縣(市)、區(qū)耐藥監(jiān)測期間收集的痰培養(yǎng)陽性菌株,按照中國防癆協(xié)會《結(jié)核病診斷實驗室檢驗規(guī)程》[6]相關(guān)要求,對培養(yǎng)陽性菌株進行菌種鑒定生化實驗并采用1%比例法進行4種一線抗結(jié)核藥物的耐藥檢測,對同時耐異煙肼和利福平的結(jié)核分枝桿菌確定為耐多藥臨床分離株。結(jié)核分枝桿菌H37RV標準株由中國疾病預防控制中心提供。
1.2 氧氟沙星藥敏試驗 所用氧氟沙星為Sigma產(chǎn)品,使用時按照廠家提供的純度和效價計算用量,氧氟沙星在培養(yǎng)基的終濃度為2.0 μg/mL[7]。藥敏試驗所用培養(yǎng)基的配方、制備,操作步驟和結(jié)果判斷等均參照《結(jié)核病診斷實驗室檢驗規(guī)程》[6]。
1.3 DNA制備 采用CTAB法[8],提取完成的DNA樣本置-20 ℃保存?zhèn)溆谩?/p>
1.4 PCR擴增gyrA基因QRDR區(qū):引物序列:F5′-TCGACTATGCGATGAGCGTG-3′,R5′-CG-ATGCGTAAACCGACCC-3′, 目的片段860 bpgyrB基因QRDR區(qū):引物序列:F 5′-CCGCTGTGATCTCGGTGAAG-3′, R 5′-AGACCCTTGTACCGCTGAATG-3′,目的片段780 bp。PCR反應(yīng)條件:95 ℃ 5 min,95 ℃ 30 s,58.5 ℃ 30 s,72 ℃ 40 s,30次循環(huán),72 ℃ 3 min。PCR反應(yīng)體系:DNA模板1 μL(50 ng),2×Taq PCR MasterMix 10 μL(TIANGEN),上下游引物各 1 μL(20 mmol/L), ddH2O 7 μL。
1.5 序列測定 PCR產(chǎn)物送上海桑尼生物科技有限公司測序。
1.6 分析方法 使用MegAlign軟件對基因測序結(jié)果進行分析。
1.7 統(tǒng)計學處理 采用SPSS 13.0軟件進行數(shù)據(jù)統(tǒng)計處理,率的比較采用χ2檢驗,以P<0.05為差異有統(tǒng)計學意義。
2.1gyrA和gyrB基因的PCR擴增結(jié)果 用Premier 5.0自行設(shè)計的引物擴增120例寧波地區(qū)耐多藥結(jié)核分枝桿菌臨床分離株和H37RV標準株的gyrA及gyrB基因的QRDR區(qū),擴增產(chǎn)物片段長分別為860 bp,780 bp(圖1,圖2)。

M: DNA marker; 1: negative control; 2-5: the clinical isolates; 6: H37RV.圖1 PCR擴增gyrA基因的QRDR區(qū)Fig.1 PCR product of gyrA QRDRs

M: DNA marker; 1: negative control; 2-5: the clinical isolates; 6: H37RV.圖2 PCR擴增gyrB基因的QRDR區(qū)Fig.2 PCR product of gyrB QRDRs
2.2 基因測序分析
2.2.1gyrA基因突變分析 H37RV標準株的gyrA基因未見突變。120株MDR-TB臨床分離株的第95位點均由AGC→ACC。86株喹諾酮敏感菌株中有9株發(fā)生了gyrA基因突變,主要分布在90和94位(除95位外);34株喹諾酮耐藥株中有29株發(fā)生了gyrA基因突變,主要分布在90,91,和94位點(除95位外),具體突變情況(表1)。
2.2.2gyrB基因突變分析 H37RV標準株的gyrB基因未見突變。120株MDR-TB臨床分離株中有3株發(fā)生突變,2株為喹諾酮耐藥菌株,突變類型為499位AAC→GAC(Asn→Asp),502位AAG→CAG(Lys→Gln),其中502位突變那株伴隨gyrA 94位突變。1株喹諾酮敏感菌株gyrB基因突變類型為495位GCC→GCA(無義突變)。
表1 MDR-TB臨床分離株gyrA基因突變特點
Tab.1 Characteristics of gyrA gene mutations of MDR-TB clinical isolates
2.3 耐多藥結(jié)核分枝桿菌中喹諾酮耐藥情況與gyr基因突變的關(guān)系 在34例耐喹諾酮的耐多藥結(jié)核分枝桿菌中g(shù)yr基因突變30例,突變率88.24%(30/34);在86例喹諾酮敏感的耐多藥菌株中g(shù)yr基因突變10例,突變率11.63%(10/86)。耐多藥菌株中喹諾酮耐藥的菌株gyr基因突變率明顯高于耐多藥但喹諾酮敏感的菌株,兩者之間差異有統(tǒng)計學意義(χ2=64.350,P<0.05)(表2)。
表2 耐多藥菌株中對喹諾酮耐藥情況及與gyr基因突變的關(guān)系
Tab.2 Relationship between quinolone resistant with mutations in the gyr gene in MDR-TB clinical isolates

喹諾酮類耐藥情況quinoloneresistantgyr基因突變情況mutationofgyrgenes無突變(no)有突變(yes)總計totalχ2值P值喹諾酮類敏感resistant76108664.350<0.05喹諾酮類耐藥susceptible43034
就耐多藥肺結(jié)核患者而言,二線抗結(jié)核藥物是治療的首選。由于喹諾酮類藥物具備吸收效果好,不良反應(yīng)小,價格便宜等優(yōu)點已被WHO納入耐多藥結(jié)核病臨床治療的核心方案。但是隨著該種藥物的廣泛使用,對該藥物耐受的結(jié)核分枝桿菌產(chǎn)生并傳播,給耐多藥肺結(jié)核病疫情的防控及臨床治療效果帶來了極大的影響。因此對耐多藥結(jié)核分枝桿菌開展喹諾酮類藥物耐藥機制的相關(guān)研究對疫情的防控及臨床化療方案的合理制定都具有重要的意義。
本次研究顯示,120例耐多藥結(jié)核分枝桿菌中有34例對喹諾酮類耐藥,耐藥率高達28.33%(34/120),提示本地區(qū)耐多藥結(jié)核病對喹諾酮類藥物耐藥較為嚴重,這可能是由于本地區(qū)喹諾酮類藥物的長期不合理應(yīng)用所致。因此,在耐多藥患者治療前應(yīng)先開展喹諾酮類藥物的耐藥性檢測,根據(jù)實驗結(jié)果再結(jié)合臨床用藥,有利于提高臨床治療效果,減少耐藥產(chǎn)生。
結(jié)核分枝桿菌耐喹諾酮類藥物的主要原因是藥物作用靶位的改變,目前研究顯示喹諾酮類藥物作用靶位是細菌的DNA促旋酶編碼基因gyr,該基因發(fā)生突變是喹諾酮類藥物耐藥最主要的分子機制,本次研究結(jié)果也證實了這一點:耐多藥結(jié)核分枝桿菌菌株中喹諾酮類耐藥的菌株中g(shù)yr基因突變率明顯高于耐多藥但喹諾酮類敏感的菌株,兩者之間差異有統(tǒng)計學意義,這與相關(guān)研究一致[4-5]。根據(jù)研究資料顯示,gyrA基因的突變頻率在不同菌株間差異較大,據(jù)報道gyrA基因突變率最高達100%[9-10],最低僅為10.3%[11],國內(nèi)相關(guān)研究顯示gyrA基因突變率均在50%以上[12-17],本次實驗顯示對喹諾酮耐藥的耐多藥菌株中g(shù)yrA基因突變率為100%(95位點均發(fā)生突變),與國內(nèi)研究相符。不同研究發(fā)現(xiàn)的gyrA基因突變類型存在較大差異,這種差異可能是由于耐藥結(jié)核分枝桿菌菌株的基因型不同或不同的藥物環(huán)境選擇造成的。本次研究顯示,120例納入研究的耐多藥菌株的gyrA基因95位點均由AGC突變?yōu)锳CC,也進一步驗證了gyrA基因95位點突變與基因的遺傳多態(tài)性有關(guān),而對喹諾酮類藥物耐藥關(guān)系不大。除了95位點外,gyrA基因突變株中,以94位點突變比例及突變類型為最多,這與相關(guān)研究結(jié)果相符[18-20]。
對gyrB基因突變導致喹諾酮類耐藥的相關(guān)研究較少,有研究顯示gyrB基因突變率及類型也相差較大[21-22]。本研究顯示,對喹諾酮類藥物耐藥的耐多藥菌株中,gyrB基因突變率僅為5.88%(2/34),且1例發(fā)生gyrB基因突變的菌株伴有g(shù)yrA基因突變。gyrB基因的突變位點分布在495,499和502,與以往的研究報道完全不同。
綜上所述,本地區(qū)耐多藥結(jié)核分枝桿菌對喹諾酮類藥物耐藥主要與gyr基因突變有關(guān),且主要是gyrA基因發(fā)生突變,建議可通過對gyrA基因的快速檢測來對喹諾酮類耐藥情況進行預測。gyrB基因雖然也發(fā)生了一定比例的突變但不是喹諾酮耐藥的主要分子機制對其進行檢測仍存在一定的價值。針對gyrA基因95位的基因多態(tài)性及gyrB基因相對較高的保守性這些現(xiàn)象的深入探討,有助于結(jié)核分枝桿菌的遺傳分型研究。
[1] Shandil RK, Jayaram R, Kaur P, et al. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin againstMycobacteriumtuberculosis: evaluation ofinvitroand pharmacodynamic indices that best predict in vivo efficacy[J]. Antimicrob Agents Chemother, 2007, 51(2): 576-582. DOI: 10.1128/AAC.00414-06
[2] Piersimoni C, Lacchini C, Penati V, et al. Validation of the agar proportion and 2 liquid systems for testing the susceptibility ofMycobacteriumtuberculosisto moxifloxacin[J]. Diagn Microbiol Infect Dis, 2007, 57(3): 283-287. DOI: 10.1016/j.diagmicrobio.2006.08.018
[3] Peloquin CA, Hadad DJ, Molino LP, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis[J]. Antimicrob Agents Chemother, 2008, 52(3): 852-857. DOI: 10.1128/AAC.01036-07
[4] Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection[J]. J Antimicrob Chemother, 2003, 51(5): 1109-1117. DOI: 10.1093/jac/dkg222
[5] Morgan-Linnell SK, Becnel Boyd L, Steffen D, et al. Mechanisms accounting for fluoroquinolone resistance inEscherichiacoliclinical isolates[J]. Antimicrob Agents Chemother, 2009, 53(1): 235-241. DOI: 10.1128/AAC.00665-08
[6] China Anti-tuberculosis Association Foundation Committe. Laboratory testing procedures for tuberculosis diagnosis[M]. Beijing: China education culture publishing House, 2006. (in Chinese)
中國防癆協(xié)會基礎(chǔ)委員會.結(jié)核病診斷實驗室檢驗規(guī)程[M].北京:中國教育文化出版社,2006.
[7] World Health Organization. Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs[S]. World Health Organization, Geneva, Switzerland, 2008.
[8] Van Embden JD, Cave MD, Crawford JT, et al. Strain identification ofMycobacteriumtuberculosisby DNA fingerprinting: recommendations for a standardized methodology[J]. J Clin Microbiol, 1993, 31(2): 406-409.
[9] Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence ofMycobacteriumtuberculosisgyrAandgyrBgenes and detection of quinolone resistance mutations[J]. Antimicrob Agents Chemother, 1994, 38(4): 773-780. DOI: 10.1128/AAC.38.4.773
[10] Umubyeyi AN, Rigouts I, Shamputa IC, et al. Limited fluoroquinolone resistance amongMycobacteriumtuberculosisisolates from Rwanda: results of a national survey[J]. J Antimicrob Chemother, 2007, 59(5): 1031-1033. DOI: 10.1093/jac/dkm038
[11] Siddiqi N, Shamim M, Hussain S, et al. Molecular characterization of multidrug-resistant isolates ofMycobacteriumtuberculosisfrom Patients in North India[J]. Antimicrob Agents Chemother, 2002, 46(2): 443-450. DOI: 10.1128/AAC.46.2.443-450.2002
[12] Zhao MC, Bao L, Wu YH, et al. Study on the gene mutation of quinolone-resistantMycobacteriumtuberculosisisolated from Sichuan Province[J]. J Sichuan Univ (Med Sci Ed), 2004, 35(3): 313-315. (in Chinese)
趙明才,鮑郎,吳悅涵,等.四川地區(qū)結(jié)核分枝桿菌喹諾酮耐藥基因突變研究[J].四川大學學報(醫(yī)學版),2004,35(3):313-315.
[13] An HR, Wang W, Li HM, et al. Studies of gene of quinolone-resistant inMycobacteriumtuberculosisisolates by PCR-SSCP[J]. Chin J Antibiotics, 2005, 30(2): 103-106. (in Chinese)
安慧茹,王巍,李洪敏,等.結(jié)核分枝桿菌耐喹諾酮分子機制的研究[J].中國抗生素雜志,2005,30(2):103-106.
[14] Huang TS, Kunin CM, Shin-Jung Lee S, et al. Trends in fluoroquinolone resistance ofMycobacteriumtuberculosiscomplex in a Taiwanese medical centre: 1995-2003[J]. J Antimicrob Chemother, 2005, 56(6): 1058-1062. DOI: 10.1093/jac/dki353
[15] Li HM, Jang P, Wang W, et al. Analysis of mutation of quinolonesgyrAgenes in silicotuberculosis[J]. Infect Dis Info, 2006,19(1): 28-29. (in Chinese)
李洪敏,姜平,王巍,等.矽肺結(jié)核病耐喹諾酮gyrA基因情況分析[J].傳染病信息,2006,19(1):28-29.
[16] Jang P, Wang GY, Feng B, et al. Analysis of mutation of quinolonesgyrAgenes in coal workers pneumoconiosis[J]. Chin J Ind Hyg Occup Dis, 2006, 24(2): 124-125. (in Chinese)
姜平,王國揚,馮柏,等.煤工塵肺結(jié)核耐喹諾酮類分離株gyrA基因突變的研究[J].中華勞動衛(wèi)生職業(yè)病雜志,2006,24(2):124-125.
[17] Wang JH, Li HM, An HR, et al. Analysis of the mutation on quinolonesgyrAgenes withM.tuberculosis[J]. Chin J Lab Diagn, 2008, 12(2): 175-177. (in Chinese)
王金河,李洪敏,安慧茹,等.分析結(jié)核病耐喹諾酮gyrA基因變化的規(guī)律[J].中國實驗診斷學,2008,12(2):175-177.
[18] Chan RC, Hui M, Chan EW, et al. Genetic and phenotypic characterization of drug-resistantMycobacteriumtuberculosisisolates in Hong Kong[J]. J Antimicrob Chemother, 2007, 59(5): 866-873. DOI: 10.1093/jac/dkm054
[19] Shi R, Zhang J, Li C, et al. Emergence of ofloxacin resistance inMycobacteriumtuberculosisclinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing[J]. J Clin Microbiol, 2006, 44(12): 4566-4568. DOI: 10.1128/JCM.01916-06
[20] Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance inMycobacteriumtuberculosisisolates: associated genetic mutations and relations to antimicrobial exposure[J]. J Antimicrob Chemother, 2007, 59(5): 860-865. DOI: 10.1093/jac/dkm061
[21] Mokrousov I, Otten T, Manichva O, et al. Molecular characterization of ofloxacin-resistantMycobacteriumtuberculosisstrains from Russia[J]. Antimicrob Agents Chemother, 2008, 52(8): 2937-2939. DOI: 10.1128/AAC.00036-08
[22] Yin X, Yu Z. Mutation characterization ofgyrAandgyrBgenes in levofloxacin-resistantMycobacteriumtuberculosisclinical isolates from Guangdong Province in China[J]. J Infect, 2010, 61(2): 150-154. DOI: 10.1016/j.jinf.2010.05.001
Quinolone resistance andgyrgene mutations in multi-drug resistant ofMycobacteriumtuberculosisin Ningbo, China
CHE Yang, YANG Tian-chi, PING Guo-hua, LIN Lü
(NingboMunicipalCenterforDiseaseControlandPrevention,Ningbo315010,China)
To analyze the characteristics ofgyrgene mutations in clinical isolates from the patients with multi-drug resistant tuberculosis (MDR-TB) and the relation between MDR-TB with quinolone resistance andgyrgene mutations, the susceptibility of the MDR-TB clinical isolates to quinolones was tested by the proportion method. Thegyrgene mutations of MDR-TB strains were detected by PCR and the following direct DNA sequencing. Results showed that there were 34 strains with quinolone resistance in 120 MDR-TB clinical isolates. The quinolones resistance rate was 28.33%. There were 30 withgyrmutations in 34 MDR-TB with quinolone resistance. Of 30 quinolone resistant MDR-TB withgyrmutations, 29 mutated at condon 90, 91 and 94 ofgyrAgene. For 2gyrBmutations, 1 was associated withgyrAgene mutations. The mutations sites of gyrB were at condon 499 and 502 ofgyrBgene. This study shows that the situation of MDR-TB with quinolone resistance is very serious. The mechanism of quinolone resistance in MDR-TB is mainly in connection with the mutation ofgyrgene.
quinolone;gyrAgene;gyrBgene; multi-drug resistantMycobacteriumtuberculosis; resistant determining
10.3969/j.issn.1002-2694.2016.010.006
寧波市自然科學基金(No.2015A610195)、浙江省公共衛(wèi)生應(yīng)急檢測關(guān)鍵技術(shù)重點實驗室開放基金資助
浙江省寧波市疾病預防控制中心結(jié)核病防制所,寧波 315010
Email: chey@nbcdc.org.cn
R378.91
A
1002-2694(2016)10-0880-05
2016-06-06;
2016-08-11