999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Aclass of extended ishikawa iterative processes in Banachspaces for nonexpansive mappings

2016-11-30 01:29:39,

,

(School of Mathematics and Systems Science, Shenyang Normal University, Shenyang, 110034, China)

?

Aclass of extended ishikawa iterative processes in Banachspaces for nonexpansive mappings

CHENGCongdian,GUANHongyan

(School of Mathematics and Systems Science, Shenyang Normal University, Shenyang, 110034, China)

The problem whether a iterative process of nonexpansive mappingTin real Banach Spaces converges to its fixed point(IPNMCFP)has be extensively studied. Particularly, in 2004, Xu H K constructed a kind of extended Mann iterative process for nonexpansive mapping T, and by the so called viscosity approximation methods, he proved that the iterative process converges strongly to a fixed point of Tunder the uniformly smooth Banach Spaces. In 2007, Zhang S S developed the work of Xu H K. This paper further studies the problem IPNMCFP. By replacing constants with operators, the Ishikawa iterative process is generalized as a class of extended Ishikowa iterative process. Under some conditions, the strong convergence of the iterative process is proved in the viscosity approximation methods, using the theory of duality mapping and variational inequality. And in a special case the iterative process converges strongly to a fixed point ofTis also proved. For the introduced iterative process involves many kinds of Mann and Ishikawa iterative processes, the main conclusion of the present work extends and generalizes some recent results of this research area.

nonexpansive mapping; fixed point; sequence; Mann iterative process; Ishikawa iterative process

0 Introduction and preliminaries

Throughout the present work, we always assume thatEis a real Banach space,E*is the duality space of E, 〈·,·〉 is the dual pair betweenEandE*, andJ:E→2E*is the normalized duality mapping defined by

(1)

We also assume thatDis a nonempty closed convex subset ofE,T:D→Dis a mapping, andF(T) denotes the set of all the fixed points ofT. In addition, we useΠDrepresenting all the contractions onD, i.e.ΠD={f|f:D→D, and there existsα∈(0,1) such that ‖f(x)-f(y)‖≤α‖x-y‖ for allx,y∈D}.

The following result is well known (see Goebel and Reich[1]).

Proposition Let E be uniformly smooth. Then the duality mappingJdefined by (1) is single valued, and it is uniformly continuous on the bounded subset ofEwith the norm topologies ofEandE*.

Recall that the sequences

(2)

(3)

(4)

(5)

are respectively called Mann iterative process, Ishikawa iterative process, modified Mann iterative process with error and modified Ishikawa iterative process with error ofT, wherex0,u∈Dandn≥0. The problem for these iterative sequences converging to the fixed point ofTwas studied by lots of authors, e.g., Halpern[2], Reich[3], Zhang and Tian[4], Chidume[5], Liu[6], Liu Q H and Liu Y[7], Zhao and Zhang[8]. In particular, Xu[9]generalized (2) to the iterative process

(6)

Under a certain conditions, he proved that {xn} converges strongly to a fixed point ofTand other related results. In 2007, Zhang[10]extended and improved the work of Xu.

Motivated and inspired by the contributions above, the present work addresses the following iterative process.

(7)

Lemma 1[9]LetXbe a uniformly smooth Banach space,Cbe a closed convex subset ofX,T:C→Cbe a nonexpansive withF(T)≠φ, andf∈ΠC. Then {xt} defined byxt=tf(xt)+(1-t)Txtconverges strongly to a point inF(T). If we defineQ:ΠC→F(T) by

(8)

thenQ(f) solves the variational inequality

In particular, iff=u∈Cis a constant, then (8) is reduced to the sunny nonexpansive retraction of Reich fromContoF(T),

Lemma 2[11]LetXbe a real Banach space andJp:X→2X*,1

Lemma 3[6]Let {an},{bn} and {cn} be three nonnegative real sequences satisfying

1 Main results

In this section, we address the strong convergence of the iterative sequence (7).

Lemma 4 Letf,fn∈ΠD,tn∈(0,1), letTbe a nonexpansive mapping, and letznbe the unique solution of the equationz=tnfn(z)+(1-tn)Tzfor alln≥0. Thenzn→Q(f)(defined by (8) ) astn→0 (strongly) if {fn(x)} converges uniformly tof(x) onD.

This leads to

Proof Since ‖Txn-xn‖→0, we can choose {tn} such that ‖Txn-xn‖=o(tn). Letznbe the unique solution of the fixed point of equationz=tnfn(z)+(1-tn)Tz. Then {zn} converges strongly toQ(f) by Lemma 4. Letz=Q(f). Then we have

(9)

(10)

On the other hand, we have

(11)

(12)

(Note:zn→zand {xn} is bounded.) and

Substitute in (11) the (12), (13) and (14), we obtain

(15)

(Note: In terms of Proposition 1,jis uniformly continuous on bounded subset.) Combining (10), (11) and (15), we also obtain

This further leads to

By Lemma 2,xn+1→z. This completes the proof.

2 Special cases

Whenβn=1,gn(x)=xandfn(x)=f(x), (7) reduces to (6), and that {fn(x)} converges uniformly tofholds obviously. By Theorem 1, we can immediately obtain the following conclusion, which is the major conclusion of [10, Theorem 1].

In addition,Yao[12]also studied the sequence

(16)

which can be transformed as

Thus, we can easily know the following conclusion holds from Theorem 1, which can be taken as a complementary result of [12, Theorem 3.1].

3 Conclusion

A class of extended Ishikowa iterative process for a nonexpansive mappingTin real Banach Spaces, which involves many kinds of Mann and Ishikawa iterative processes, is introduced and studied. Under some conditions, the strong convergence of the iterative process is proved by the viscosity approximation methods. And in a special case, the iterative process converges strongly to a fixed point ofTis also proved. The main conclusion of the present work extends and generalizes some recent results of this research area.

[ 1 ]GOEBEL K, REICH S. Uniform convexity nonexpansive mappings and hyperbolic geometry [J]. M Dekker, 1984.

[ 2 ]HALPERN B. Fixed points of nonexpansive maps[J]. Bull Amer Math Soc, 1967,73(6):957-961.

[ 3 ]REICH S. Weak convergence theorems for nonexpansive mappings in Banach spaces[J]. J Math Anal Appl, 1979,67(2):274-276.

[ 4 ]ZHANG S S, TIAN Y X. On Halpern’s open question [J]. Acta Mathematica Sinica, Chinese Series, 2005,48(5):979-984.

[ 5 ]CHIDUME C E. Approximation of fixed points of strongly pseudocontractive mappings[J]. Proc Amer Math Soc, 1994,120(2):545-551.

[ 6 ]LIU L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly Accretive mappings in Banach spaces[J]. J Math Anal Appl, 1995,194(1):114-125.

[ 7 ]LIU Q H, LIU Y. Ishikawa iterative sequences for hemi-contractive mappings with error member[J]. Acta Mathematica Sinica, Chinese series, 2006,49(6):1213-1216.

[ 8 ]ZHAO L C, ZHANG S S. Strong convergence theorem for asymptotically nonexpansive mappings with errors in Banach spaces[J]. Acta Mathematica Sinica, Chinese Series, 2008,51(1):99-108.

[ 9 ]XU H K. Viscosity approximation methods for nonexpansive mappings[J]. J Math Anal Appl, 2004,298(1):279-291.

[10]ZHANG S S. Viscosity approximation methods for nonexpansive mappings in Banach spaces[J]. Acta mathematica sinica, Chinese Series, 2007,50(3):485-492.

[11]ZHANG S S. Some problems and results in the study of nonlinear analysis[J]. Nonliear Anal TMA, 1997,30(7):4197-4208.

[12]YAO Y H, CHEN R D , ZHOU H Y. Iterative algorithms to fixed point of nonexpansive mapping[J]. Acta mathematica sinica, Chinese Series, 2007,50(1):139-144.

[13]ZHANG S S, YANG L, LIU J A. Strong convergence theorems for nonexpansive semi-groups in Banach spaces[J]. Applied Mathematics and Mechanics (English Edition), 2007,28(10):1287-1297.

[14]ZHANG S S, LI X R, CHEN Z J. On the problem of nearest common fixed point of nonexpansive mappings[J]. Acta mathematica sinica, Chinese Series, 2006,49(6):1297-1302.

[15]ZHAO L C, ZHANG S S. A viscosity approximation method for generalized equilibrium problems and fixed point problems[J]. Acta Mathematicae Applicatae Sinica, Chinese Series, 2012,35(2):330-345.

1673-5862(2016)02-0201-05

關于巴拿赫空間中非膨脹映射的一類擴展的石川迭代序列

程叢電, 關洪巖

(沈陽師范大學 數學與系統科學學院, 沈陽 110034)

關于巴拿赫空間中非膨脹映射的迭代序列是否收斂到該映射的不動點問題已有許多研究工作;2004年,徐洪坤建立了一種擴展的曼恩迭代序列,并用黏性逼近方法在一致光滑巴拿赫空間的框架下證明了其收斂到該映射的不動點;2007年,張石生推廣與改進了徐洪坤的工作。基于以往有關工作,進一步探討巴拿赫空間中非膨脹映射的迭代序列的收斂性與非膨脹映射的不動點問題。利用算子替換常數值與向量給出了一類擴展的石川迭代序列;基于對偶映射與變分不等式理論,采用黏性逼近方法,證明了該迭代序列的某種強收斂性及一個有關不動點定理。由于所建立的迭代序列概括了多種類型的曼恩和石川迭代序列,此項工作發展與推廣了該領域的許多近期研究成果。

非膨脹映射; 序列; 曼恩(Mann)迭代; 石川(Ishikawa)迭代; 不動點

O177 Document code: A

10.3969/ j.issn.1673-5862.2016.02.016

理論與應用研究

主站蜘蛛池模板: 国产亚卅精品无码| 久久久精品国产亚洲AV日韩| 久久这里只有精品66| 人妻一区二区三区无码精品一区 | 午夜天堂视频| 国产成人精品一区二区免费看京| 99中文字幕亚洲一区二区| 综合人妻久久一区二区精品| 91午夜福利在线观看| 国产18在线播放| 欧美成人午夜影院| 香蕉久人久人青草青草| 亚洲精品免费网站| 亚洲bt欧美bt精品| 99在线观看国产| 中文字幕亚洲另类天堂| 99精品热视频这里只有精品7| 国产综合色在线视频播放线视| 97se亚洲综合| 国产无码性爱一区二区三区| 亚洲第一视频区| 国产第四页| 国产网友愉拍精品| 亚洲无码高清一区| 黑人巨大精品欧美一区二区区| 欧美人与牲动交a欧美精品| 亚洲第一综合天堂另类专| 91高清在线视频| 中文字幕无码制服中字| 人妻无码中文字幕一区二区三区| 动漫精品啪啪一区二区三区| 91精品情国产情侣高潮对白蜜| 国产成人在线无码免费视频| 日韩在线中文| 国产v精品成人免费视频71pao | 真实国产乱子伦视频 | AV网站中文| 99尹人香蕉国产免费天天拍| 国产精品九九视频| 亚洲精品男人天堂| 国产日韩丝袜一二三区| 欧美国产日韩另类| 经典三级久久| 国产九九精品视频| 国产特一级毛片| 亚洲h视频在线| 九九久久精品免费观看| 久久中文字幕2021精品| 亚洲中文字幕国产av| 国产在线视频导航| 欧美亚洲另类在线观看| 欧美乱妇高清无乱码免费| 无码日韩视频| 99青青青精品视频在线| 亚洲一区国色天香| 99久久国产自偷自偷免费一区| 日韩午夜福利在线观看| 亚洲成人www| 91无码人妻精品一区| 国产乱人伦AV在线A| 久久综合九色综合97网| 国产三级精品三级在线观看| 国内精自视频品线一二区| 中文字幕在线看视频一区二区三区| 中文毛片无遮挡播放免费| 国产成人乱无码视频| 97视频在线精品国自产拍| 在线观看亚洲精品福利片| 草草影院国产第一页| 国产91蝌蚪窝| 青青草原国产精品啪啪视频| 国产高清不卡视频| 精品自拍视频在线观看| 久久国产黑丝袜视频| 欧美亚洲第一页| 浮力影院国产第一页| 91青青草视频在线观看的| 日韩精品一区二区三区swag| 久久成人18免费| 动漫精品中文字幕无码| 日本亚洲成高清一区二区三区| 亚洲第七页|