李 芳,鄧子牛,趙 亞,李大志,戴素明
(湖南農(nóng)業(yè)大學園藝園林學院/國家柑橘改良中心長沙分中心,長沙 410128)
柑橘衰退病毒基因p23 RNAi載體的構(gòu)建及轉(zhuǎn)化
李 芳,鄧子牛,趙 亞,李大志,戴素明
(湖南農(nóng)業(yè)大學園藝園林學院/國家柑橘改良中心長沙分中心,長沙 410128)
【目的】構(gòu)建柑橘衰退病毒(Citrus tristeza virus,CTV)含p23的RNAi載體,以獲得具有抗性的柑橘轉(zhuǎn)基因植株。【方法】基于轉(zhuǎn)化病毒基因介導抗性,根據(jù)NCBI公布的CTV基因組序列,查找p23保守序列,設(shè)計并克隆兩條不同長度的片段。對兩條片段和植物表達載體pBI 121進行雙酶切和連接來構(gòu)建RNAi載體。初步預(yù)測所構(gòu)建的載體發(fā)生RNAi抗病毒的可行性。利用農(nóng)桿菌介導的瞬時表達技術(shù)將含RNAi載體的農(nóng)桿菌注射入CTV指示植物墨西哥萊蒙的葉片,利用GUS組織化學染色法觀察葉片中載體發(fā)生瞬時表達的情況。發(fā)生瞬時表達的葉片接種CTV T36基因型,利用酶聯(lián)免疫反應(yīng)(ELISA)檢測病毒含量。同時,提取葉片的RNA并反轉(zhuǎn)錄為cDNA,利用實時熒光定量PCR(q-PCR)檢測CTV p20,通過該基因的表達量反映葉片中的病毒含量。通過農(nóng)桿菌介導的遺傳轉(zhuǎn)化將RNAi載體轉(zhuǎn)入大紅甜橙實生苗上胚軸節(jié)間莖段,抗生素篩選得到的芽嫁接至枳橙實生試管苗。提取大紅甜橙葉片的DNA,通過PCR擴增確定其是否為轉(zhuǎn)基因陽性;目的基因檢測為陽性的植株二次嫁接至溫室保存的酸橙實生苗;根據(jù)插入的p23基因序列設(shè)計q-PCR引物,檢測轉(zhuǎn)基因植株中p23的表達情況。取 CTV T36基因型寄主的帶皮芽,用腹接法接種大紅甜橙轉(zhuǎn)基因植株。取接種后新萌發(fā)枝梢上的葉片,用檢測瞬時表達葉片同樣的方法分析植株的抗病性。對于第1次接種后未檢測出病毒感染的植株,進行第2次接種并檢測分析。【結(jié)果】克隆得到CTV p23 513 bp的長片段和291 bp的短片段,與載體pBI121連接后成功構(gòu)建含發(fā)夾結(jié)構(gòu)的來自病原且能靶向目的基因的RNAi載體,命名為p23-RNAi。注射p23-RNAi的墨西哥萊蒙葉片經(jīng)GUS染色后能夠產(chǎn)生藍色斑點,表明農(nóng)桿菌p23-RNAi可以在葉片中發(fā)生瞬時表達;接種CTV后第15和30天,瞬時表達p23-RNAi的墨西哥萊蒙葉片ELISA檢測結(jié)果均為陰性,同時q-PCR檢測結(jié)果顯示其CTV p20的積累水平和增加速度明顯低于對照植株,表明瞬時表達的p23-RNAi在一定時間內(nèi)可以對CTV的侵染產(chǎn)生抑制。p23-RNAi經(jīng)農(nóng)桿菌介導遺傳轉(zhuǎn)化大紅甜橙獲得抗性芽,通過普通PCR的擴增結(jié)果證明得到7個轉(zhuǎn)基因植株;q-PCR檢測結(jié)果進一步表明7個轉(zhuǎn)基因植株間p23的含量呈現(xiàn)一定差異,植株E的含量最高,其次是C、F、H、A、B和G。接種CTV后,p20的表達量在7個轉(zhuǎn)基因植株間也表現(xiàn)出一定差異,表達量最高的是植株A,其次是G、F、E、B、H、C,且與對照植株相比,呈現(xiàn)不同程度的抗病性。轉(zhuǎn)基因植株對病毒的抗性與外源基因的表達水平?jīng)]有相關(guān)性,外源基因表達水平最高的植株E并沒有表現(xiàn)強的CTV抗性。經(jīng)過兩次病毒接種,轉(zhuǎn)基因植株C在接種后具有完全抗性?!窘Y(jié)論】p23-RNAi載體能引起植物抗柑橘衰退病毒;瞬時表達技術(shù)可快速鑒定RNAi載體的抗病性,有利于篩選高效率的RNAi載體。
柑橘衰退病毒;p23;RNAi;大紅甜橙;瞬時表達;遺傳轉(zhuǎn)化
【研究意義】由柑橘衰退病毒(Citrus tristeza virus,CTV)引起的柑橘衰退病嚴重影響柑橘產(chǎn)業(yè)發(fā)展。目前為止,該病害難以防治。田間種植柑橘無病毒苗木受蟲媒傳播影響,很難做到持久性的無毒化。弱毒株交叉保護作用(MSCP)受到株系?;?、寄主、環(huán)境等因素的影響[1],而在柑橘生產(chǎn)應(yīng)用中受到限制。因此,尋找高效的CTV防治方法對于柑橘產(chǎn)業(yè)健康發(fā)展具有重要意義。【前人研究進展】RNA interference(RNAi)系統(tǒng)是植物天然的病毒防御系統(tǒng)。利用RNAi賦予植物對病毒抗性的原理,可人為將與病毒同源的dsRNA導入植物體內(nèi),使其引發(fā)植物體內(nèi)的RNAi機制,阻止病毒的復制擴散。這種抗性途徑具有抗病性強、抗性持久、生物安全性高等特點,已成為植物抗病毒基因工程研究中的一種高效抗性手段[2]。SOLER等[3]將CTV的p23、p20和p25基因片段串聯(lián)構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體,獲得抗CTV的轉(zhuǎn)基因柑橘植株;CHENG等[4]通過兩個不同長度的p20基因片段構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體,也獲得抗CTV的轉(zhuǎn)基因柑橘植株。與SOLER等[3]構(gòu)建的RNAi載體不同,CHENG等[4]選擇病原序列作為內(nèi)含子。VOINNET等[5]報道來自病原的內(nèi)含子序列能提高RNAi效率?!颈狙芯壳腥朦c】已獲得的轉(zhuǎn)基因柑橘植株均未達到完全抗性,利用RNAi獲得柑橘對CTV的抗性有待挖掘更高效的RNAi載體。p23是柑橘衰退病毒的沉默抑制子之一[6-7],是重要的致病因子[8-9],目前,以p23兩個不同長度的片段構(gòu)建發(fā)夾結(jié)構(gòu)RNAi載體尚為空白。RNAi載體產(chǎn)生的抗CTV作用依賴柑橘穩(wěn)定遺傳轉(zhuǎn)化方法進行鑒定,而該方法存在效率低、周期長等困難[10],使得高效率RNAi載體的篩選很難進行?!緮M解決的關(guān)鍵問題】通過選擇合適的插入載體和酶切位點,構(gòu)建以兩個不同長度的p23基因片段形成發(fā)夾結(jié)構(gòu)的RNAi載體。對所構(gòu)建的載體通過瞬時表達技術(shù)和穩(wěn)定遺傳轉(zhuǎn)化技術(shù)鑒定其抗病作用,為篩選高效率RNAi載體提供參考。
試驗于2009—2014年在國家柑橘改良中心長沙分中心完成。
1.1 試驗材料
供試材料包括大紅甜橙 [Citrus sinensis (L.) Osb.]和枳橙 [C. sinensis (L.) Osb.×Poncirus trifoliate (L.)Raf] 種子,1年生酸橙(C. aurantium L.)實生苗,2年生墨西哥萊蒙[C. aurantifolia (Christm.) Swingle;CTV指示植物],CTV毒源為感病3年的冰糖橙(基因型為T36)植株。所有材料均由國家柑橘改良中心長沙分中心提供并保存于溫室。
植物表達載體pBI 121,轉(zhuǎn)化所用的農(nóng)桿菌菌株EHA 105由國家柑橘改良中心長沙分中心提供,載體pGM-T購自天根生化科技(北京)有限公司,所用引物合成及測序均由上海生工生物工程有限公司完成。
1.2 試驗方法
1.2.1 柑橘衰退病p23 RNAi載體的構(gòu)建 根據(jù)GenBank公布的CTV基因組的序列,設(shè)計用于p23 RNAi載體構(gòu)建的長片段和短片段的上、下游引物(表1)。以感染CTV的冰糖橙葉片提取的核酸為模板,進行RT-PCR擴增。將擴增產(chǎn)物純化回收,連接克隆載體pGM-T,測序確認后分別命名為pGM-L和pGM-S。提取兩個載體的質(zhì)粒,用內(nèi)切酶Bam HI 和Xba I雙酶切pGM-L和植物表達載體pBI 121,溫度為37℃,回收后用T-4 DNA連接酶連接得到中間載體命名為pBI-L。用內(nèi)切酶Bam HI和Sma I雙酶切pBI-L和pGM-S,溫度為30℃,回收后連接得到RNAi載體,長片段L和短片段S置于CaMV 35 s啟動子的下游,gus基因的上游(圖1)。長片段L為反向插入載體,短片段S為正向插入載體,在轉(zhuǎn)錄后兩者有部分序列可以發(fā)生堿基互補配對,形成發(fā)夾結(jié)構(gòu)的臂,不能發(fā)生互補的長片段的部分序列片段則形成發(fā)夾結(jié)構(gòu)的環(huán),充當內(nèi)含子結(jié)構(gòu)。為檢測p23的長片段和短片段是否正確插入目的載體,提取質(zhì)粒并純化,分別用限制性內(nèi)切酶酶切鑒定,并且進行測序驗證,得到RNAi載體p23-RNAi。用熱激法將p23-RNAi導入農(nóng)桿菌EHA105。

表1 用于RNAi載體構(gòu)建的長片段L和短片段S引物Table1 The primers of segments L and S used for RNAi vector construction

圖1 CTV p23片段連接入p23-RNAiFig. 1 p23 fragments of CTV ligated into plasmid p23-RNAi
1.2.2 p23-RNAi的瞬時表達 以農(nóng)桿菌EHA105為陰性對照,按照瞬時表達體系(暫未公布)將p23-RNAi用注射緩沖液重懸后在28℃培養(yǎng)基靜置培養(yǎng)2 h,用1 mL無菌注射器注射入墨西哥萊蒙的葉片。葉片用GUS組織化學染色法[11]染色觀察。
1.2.3 轉(zhuǎn)基因植株的獲得 p23-RNAi轉(zhuǎn)化大紅甜橙參照敖小平等[12]的方法獲得抗性芽,抗性芽嫁接至試管中25 d苗齡的枳橙實生苗。按照CTAB法提取葉片的DNA為模板,用載體上長片段L的引物進行PCR擴增,篩選的轉(zhuǎn)基因植株嫁接在酸橙實生苗。根據(jù)載體的發(fā)夾結(jié)構(gòu)的環(huán)狀部分設(shè)計引物q-s23-h(F:CACACTCCTATTATTCTCG;R:ATGAATCCCTCGTTATCG),以CsEF1α(F:TTGGACAAGCTCAAGGC TGAACG;R:ATGGCCAGGAGCATCAATGACAGT)為內(nèi)參基因,用q-PCR鑒定轉(zhuǎn)基因植株。
1.2.4 病毒接種 為檢測瞬時表達的p23-RNAi對病毒的抗性反應(yīng),摘取感染CTV的冰糖橙葉片用打孔器打出帶有主脈的圓片,瞬時表達p23-RNAi的墨西哥萊蒙葉片打出的圓片丟棄,帶毒圓片與墨西哥萊蒙葉片的主脈對合后在葉片兩面用膠帶粘好[13]。瞬時表達農(nóng)桿菌EHA105的墨西哥萊蒙葉片為對照。
待轉(zhuǎn)基因大紅甜橙長至30 cm左右時接種CTV。取感染CTV冰糖橙的帶皮芽用腹接法接種至大紅甜橙枝條,每株接種3個芽且全部成活以保證接種成功。以非轉(zhuǎn)基因大紅甜橙同時接種為陽性對照,未接種的為陰性對照。第1次接種后,對于未檢測出病毒感染的轉(zhuǎn)基因植株,同樣的方法進行第2次接種CTV。
1.2.5 抗病性鑒定 取接種CTV后的轉(zhuǎn)基因大紅甜橙新萌發(fā)枝條上的成熟葉片,用酶聯(lián)免疫法和q-PCR兩種方法進行抗病性鑒定。酶聯(lián)免疫法按照試劑盒說明書(ACD VS216-K1)操作;提取葉片的RNA,反轉(zhuǎn)錄后的cDNA為模板,用q-PCR檢測CTV p20[14]的表達量,內(nèi)參基因為nad5[15]。
2.1 RNAi載體的獲得
按照圖1,將p23基因擴增得到的兩個片段插入植物表達載體pBI121,獲得RNAi載體(p23-RNAi)。該載體分別用3組雙酶切反應(yīng)(Bam HI-Xba I、Bam HI-Sma I、Xba I-Sma I)進行分析,發(fā)現(xiàn)酶切片段分別為500、300和800 bp左右,與插入片段大小一致(圖2)。通過對載體插入片段進行測序(結(jié)果未顯示),進一步說明載體構(gòu)建成功。
2.2 RNAi載體瞬時表達的有效性分析
利用農(nóng)桿菌介導的瞬時表達技術(shù),將p23-RNAi載體快速導入葉片。該載體的gus位于插入的發(fā)夾結(jié)構(gòu)下游,共同受CaMV 35S啟動子控制。通過GUS染色,結(jié)果顯示注射p23-RNAi的葉片出現(xiàn)藍色斑點(圖3),說明瞬時表達技術(shù)能引起RNAi載體在墨西哥萊蒙葉片中的表達。
進一步對p23-RNAi瞬時表達所產(chǎn)生的抗病性進行分析,q-PCR結(jié)果顯示所有接種CTV的植株均檢測有病毒感染,并且p20的表達量隨著接種后時間的延長而增加(表2)。但是,在p23-RNAi瞬時表達的葉片中,p20基因積累水平和增加速度明顯低于對照。同時,ELISA檢測顯示,p23-RNAi瞬時表達的葉片均顯示陰性。由此說明,p23-RNAi能在柑橘中干擾CTV侵染。

圖2 Xba I、Bam HI、Sma I組合雙酶切p23-RNAiFig. 2 Double digestion of p23-RNAi with Bam HI, Xba I or Sac I

圖3 GUS染色檢測p23-RNAi載體的瞬時表達Fig. 3 Transient gus expression were observed with Mexican lime leaves by histochemical GUS staining
2.3 轉(zhuǎn)基因大紅甜橙的獲得
通過農(nóng)桿菌遺傳轉(zhuǎn)化,將p23-RNAi穩(wěn)定轉(zhuǎn)入大紅甜橙實生苗。將獲得轉(zhuǎn)基因植株進行PCR鑒定,結(jié)果顯示,7個轉(zhuǎn)基因植株A、B、C、E、F、G、H(D二次嫁接時未成活)均擴增得到特異條帶,大小為513 bp(圖4)。進一步用q-PCR對轉(zhuǎn)基因植株進行內(nèi)含子結(jié)構(gòu)表達分析,發(fā)現(xiàn)7個轉(zhuǎn)基因植株均產(chǎn)生內(nèi)含子結(jié)構(gòu)的表達,且各個植株之間表達量存在顯著差異。其中,轉(zhuǎn)基因植株E表達的內(nèi)含子結(jié)構(gòu)含量最高,其次是C、F、H、A、B和G(圖5)。

表2 p23-RNAi瞬時表達對CTV的抗性反應(yīng)Table2 Resistance to CTV with p23-RNAi transient expression

圖4 轉(zhuǎn)基因大紅甜橙的PCR檢測Fig 4 PCR analysis of transgenic ‘Da Hong’ sweet orange

圖5 q-PCR檢測轉(zhuǎn)基因植株的△Ct值Fig. 5 △Ct value of transgenic plants with q-PCR
2.4 轉(zhuǎn)基因植株對柑橘衰退病的抗性分析
對轉(zhuǎn)基因大紅甜橙植株兩次接種病毒所產(chǎn)生的抗性進行分析,q-PCR結(jié)果顯示,除C外,所有接種CTV的植株均檢測到病毒感染,p20的表達量在不同的植株間表現(xiàn)出差異,植株B和E的表達量較低,但是C幾乎檢測不到基因表達(圖6)。ELISA檢測顯示,C的葉片和未接種的葉片均為陰性。由此說明,轉(zhuǎn)基因植株C對柑橘衰退病毒強毒株系具有完全抗性。

圖6 轉(zhuǎn)基因植株接種后p20相對表達量Fig. 6 p20 relative expression of transgenic plants inoculated with CTV
病毒基因介導的抗性是將病毒的一段序列構(gòu)建成RNAi載體,產(chǎn)生的dsRNA在植物內(nèi)與病毒基因發(fā)生沉默產(chǎn)生抗性,在多種植物的抗病毒中已有報道[16-18]。CHENG等[4]曾經(jīng)試圖用柑橘衰退病毒p23的長片段和短片段相連的方式構(gòu)建RNAi載體以用于獲得具有抗性的轉(zhuǎn)基因酸橙,但是p23發(fā)夾結(jié)構(gòu)存在限制性內(nèi)切酶酶切位點Sac I,與植物表達量載體pCAMBIA 2301的酶切位點沖突,使得載體構(gòu)建中止。本研究選用的p23保守區(qū)段,與CHENG等[4]的序列部分片段相同,所設(shè)計RNAi載體的長片段和同源的短片段與植物表達載體pBI 121沒有沖突的酶切位點,使得載體構(gòu)建成功,可以用于p23-RNAi的抗病性檢測。
柑橘的遺傳轉(zhuǎn)化受到多種因素限制,如轉(zhuǎn)化效率低,成本費用高等[19-20],并且長時間的遺傳轉(zhuǎn)化后不一定能獲得具有優(yōu)異性狀的轉(zhuǎn)基因植株[21]。農(nóng)桿菌介導的瞬時表達具有操作簡單、省時、轉(zhuǎn)化效率高等優(yōu)點,可以用于高效、快速的分析基因功能[22-25]。將載體p23-RNAi注射入墨西哥萊蒙葉片,目的基因在進入細胞核后的短時間內(nèi)可以表達,并且持續(xù)一定的時間[26-27]。筆者課題組前期的研究證明,柑橘葉片在注射農(nóng)桿菌后15 d仍然能夠檢測到目的基因。本研究采用先注射p23-RNAi載體然后接種CTV的方式,使得在病毒入侵前就能夠產(chǎn)生特異的siRNA,能夠產(chǎn)生對CTV的抗性[3]。在此筆者發(fā)現(xiàn)瞬時表達技術(shù)能夠檢測p23-RNAi對CTV的抗性,結(jié)果與轉(zhuǎn)基因植株一致,成功預(yù)測了載體的可行性,目前已有多個RNAi載體用于轉(zhuǎn)化病毒基因介導抗性,此方法更有利于篩選優(yōu)質(zhì)載體,避免盲目的遺傳轉(zhuǎn)化,獲得有效的RNAi載體和轉(zhuǎn)基因植株。
轉(zhuǎn)基因植株的抗病性與寄主和病毒沉默抑制子之間的相互作用程度,以及植株的遺傳背景、外界的環(huán)境和植物自身的生長狀態(tài)[28-29]相關(guān),與目的基因的拷貝數(shù)沒有關(guān)聯(lián)[3,22]。本研究通過遺傳轉(zhuǎn)化p23-RNAi載體獲得7個大紅甜橙轉(zhuǎn)基因植株,不同轉(zhuǎn)基因植株間RNAi載體發(fā)夾結(jié)構(gòu)部分的表達量存在差異,這種差異可能與外源基因在轉(zhuǎn)基因植株中的表達量不同有關(guān)。接種病毒后,轉(zhuǎn)基因植株表現(xiàn)出不同的抗病性,這種抗病性的趨勢與外源基因表達量的差異趨勢沒有相關(guān)性。p23表達量最高的轉(zhuǎn)基因植株E并沒有表現(xiàn)出最強的CTV抗性,而表達量稍低的植株C兩次接種后仍然具有完全抗性;同時,轉(zhuǎn)基因植株F的p23表達量與植株C相同,對病毒的抗性結(jié)果卻有較大的差異。這些研究結(jié)果進一步表明,轉(zhuǎn)基因抗性與外源基因的拷貝數(shù)沒有關(guān)聯(lián),與前人研究結(jié)果相符。
成功構(gòu)建了柑橘衰退病的RNAi載體,瞬時表達技術(shù)檢測載體p23-RNAi對柑橘衰退病毒(CTV)具有抗病性。遺傳轉(zhuǎn)化大紅甜橙獲得的7株轉(zhuǎn)基因植株中,植株C對CTV具有完全抗性,為柑橘衰退病的防治提供了資源。
[1] 周彥, 周常勇, 李中安, 王雪峰, 劉科宏. 利用弱毒株交叉保護技術(shù)防治甜橙莖陷點型衰退病. 中國農(nóng)業(yè)科學, 2008, 41(12): 4085-4091.
ZHOU Y, ZHOU C Y, LI Z A, WANG X F, LIU K H. Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica, 2008, 41(12): 4085-4091. (in Chinese)
[2] KREUZE J F, KLEIN I S, LáZARO M U, CHUQUIYURI W C,MORGAN G L, MEJíA P G C, GHISLAIN M, VALKONEN J P. RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Molecular Plant Pathology, 2008, 9(5): 589-598.
[3] SOLER N, PLOMER M, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnology Journal, 2012, 10: 597-608.
[4] CHENG C Z, YANG J W, YAN H B, BEI X J, ZHANG Y Y, LU Z M,ZHONG G Y. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains. Journal of Integrative Agriculture, 2015, 14(9): 1767-1777.
[5] VOINNET O, LEDERER C, BAULCOMBE D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000, 103: 157-167.
[6] LU R, FOLIMONOV A, SHINTAKU M, LI W X, FALK B W,DAWSON W O, DING S W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(44): 15742-15747.
[7] COSTA ?, MARQUES N, NOLASCO G. Citrus tristeza virus p23 may suppress systemic silencing but is not related to the kind of viral syndrome. Physiological & Molecular Plant Pathology, 2014, 87: 69-75.
[8] GHORBEL R, LóPEZ C, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral like symptoms. Molecular Plant Pathology, 2001, 2(1): 27-36.
[9] FAGOAGA C, LóPEZ C, MORENO P, NAVARRO L, FLORES R,PE?A L. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Molecular Plant-Microbe Interactions, 2005, 18(5): 435-445.
[10] JONES H D, DOHERTY A, SPARKS C A. Transient transformation of plants. Methods in Molecular Biology, Plant Genomics, 2009, 513: 131-152.
[11] 王關(guān)林, 方宏筠. 植物基因工程. 2版. 北京: 科學出版社, 2002: 831-834. WANG G L, FANG H Y. Plant Genetic Engineering. 2nd ed. Beijing: Science Press, 2002: 831-834. (in Chinese)
[12] 敖小平, 胡新喜, 郭琛, 焦徠, 鄧子牛, 熊興耀. 用rol B基因轉(zhuǎn)化大紅甜橙的初步研究. 湖南農(nóng)業(yè)大學學報 (自然科學版), 2005,31(6): 623-626.
AO X P, HU X X, GUO C, JIAO L, DENG Z N, XIONG X Y. Genetic transformation of ‘Dahong’ sweet orange with rol B gene. Journal of Hunan Agricultural University (Natural Sciences), 2005,31(6): 623-626. (in Chinese)
[13] BLUE R L, ROISTACHER C N, CARTIA G, CALAVAN E C. Leaf-disc grafting-a rapid indexing method for detection of some citrus viruses//Proceedings of the Seventh IOCV Conference. University of California, Riverside, 1976: 207-212.
[14] 劉紅光, 王中康, 曹月青, 夏玉先, 殷幼平. 應(yīng)用常規(guī)RT-PCR和熒光定量RT-PCR 檢測柑桔衰退病毒. 植物病理學報, 2008, 38(1): 24-30.
LIU H G, WANG Z K, CAO Y E, XIA Y X, YIN Y P. Detection of Citrus tristeza virus using conventional and fluorescence quantitative RT-PCR assays. Acta Phytopathologica Sinica, 2008, 38(1): 24-30. (in Chinese)
[15] MENZEL W, JELKMANN W, MAISS E. Detection of four apple viruses by multiplex RT-PCR analysis assays with coamplification of plant mRNA as internal control. Journal of Virological Methods, 2002,99: 81-92.
[16] YADAV J S, OGWOK E, WAGABA H, L. PATIL B, BAGEWADI B,ALICAI T, GAITAN-SOLIS E, TAYLOR N J, FAUQUET C M. RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Molecular Plant Pathology, 2011, 12(7): 677-687.
[17] PATIL B L, OGWOL E, WAGABA H, MOHAMMED I U, YADAV, J S, BAGEWADI B, TAYLOR N J, KREUZE J F, MARUTHI M N,ALICAI T, FAUQUET C M. RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Molecular Plant Pathology, 2011, 12(1): 31-41.
[18] FAGOAGA C, LóPEZ C, MENDOZA A H D, MORENO P,NAVARRO L, FLORES R, PE?A L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology, 2006, 60: 153-165.
[19] KAPILA J, RYCKE R D, MONTAGU M V, ANGENON G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 1997, 122(1): 101-108.
[20] ALMEIDA W A B, MOUR?O FILHO F A A, PINO L E,BOSCARIOL R L, RODRIGUEZ A P M, MENDES B M J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science, 2003, 164: 203-211.
[21] LóPEZ C, CERVERA M, FAGOAGA C, MORENO P, NAVARRO L,F(xiàn)LORES R, PE?A L. Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Molecular Plant Pathology, 2010,11(1): 33-41.
[22] BHASKAR P B, VENKATESHWARAN M, WU L, ANé J M,JIANG J M. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE,2009, 4(6): e5812.
[23] LLAVE C, KASSCHAU K D, CARRINGTON J C. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13401-13406.[24] XU K D, HUANG X H, WU M M, WANG Y, CHANG Y X, LIU K,ZHANG JU, ZHANG Y, ZHANG F L, YI L M, LI T T, WANG R Y,TAN G X, LI C W. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE, 2014, 9(1): e83556.
[25] SENDIN L N, FILIPPONE M P, ORCE I G, RIGANO L, ENRIQUE R, PE?A L, VOJNOV A A, MARANO M R, CASTAGNARO A P. Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathology, 2012, 61: 648-657.
[26] WYDRO M, KOZUBEK E, LEHMANN P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica, 2006, 53(2): 289-298.
[27] KIM M J, BAEK K, PARK C M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports, 2009, 28: 1159-1167.
[28] PANG S Z, JAN F J, CARNEY K, STOUT J, TRICOLI D M,QUEMADA H D, GONSALVES D. Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. The Plant Journal, 1996, 9(6): 899-909.
[29] KALANTIDIS K, PSARADAKIS S, TABLER M, TSAGRIS M. The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Molecular Plant-Microbe Interactions, 2002,15(8): 826-833.
(責任編輯 岳梅)
Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23
LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming
(Horticulture and Landscape College, Hunan Agricultural University/National Center for Citrus Improvement (Changsha),Changsha 410128)
【Objective】 The objective of this study is to construct RNAi vector containing p23 gene of Citrus tristeza virus(CTV), and obtain transgenic orange plants with virus resistance. 【Method】 Based on the pathogen-derived resistance and the CTV genome sequences published by NCBI, two specific conserved fragments of p23 with different lengths were cloned. Two segments and vector pBI 121 were double-digested and connected for RNAi construction. Subsequently, to initially estimate the antiviral feasibility, the Mexican lime (CTV indicator plant) leaves were injected with Agrobacterium contained the RNAi vector for transient expression, and observed using GUS histochemical staining method. The leaves were inoculated with CTV T36 isolate, and detected by enzyme-linked immunosorbent assay (ELISA). The RNA of leaves was also extracted and reverse transcript to cDNA. Quantitative real-time PCR (q-PCR) was performed to observe the CTV p20 gene expression which could reflect the virus in hosts. The RNAi vector was also transferred into the epicotyl stem of ‘DA HONG’ sweet orange seedlings via Agrobacterium-mediated transformation. Resistant buds were engrafted onto Carrizo Citrange in vitro seedlings. DNA extracted from the ‘DA HONG’ sweet orange leaves was used as the PCR template to identify the transgenic plants. Plants containing the target gene were re-engrafted onto sour orange seedlings and stored in the greenhouse. The expression of the p23 within the transgenic plants was evaluated by q-PCR. The skin buds of CTV T36 isolate hosts were collected and inoculated onto the transgenic sweet orange. The leaves from the sprouted branch tips were collected and analyzed the pathogen resistance capability with the same method that the transient expression leaves detected. Plants without detectable virus infection after the first inoculation were also inspected and analyzed by the same manner in the second round. 【Result】 Long (513 bp) and short (291 bp) fragments of the p23 were cloned. These p23 fragments are then cloned into the pBI121 vector, named p23-RNAi. This p23-RNAi vector was then delivered in the Mexican lime leaves using the Agrobacterium-mediated transient expression assay. The leaves were identified based on the presence of blue stains after GUS staining, indicating that the Agrobacterium contained vector p23-RNAi may induce transient expression in Mexican lime leaves. On the 15th and 30th day after the CTV inoculation, the ELISA detection results for the transgenic Mexican lime leaves in p23-RNAi plants were all negative, whereas the q-PCR detection results showed that the accumulation level of p20 expression was significantly lower than that of the control plants. It indicated that the transient expression of p23-RNAi may, in a defined period,inhibit the CTV infection. Introduction of p23-RNAi via Agrobacterium-mediated genetic transformation led to the production of resistant buds for the ‘DA HONG’ sweet orange, and PCR amplification confirmed a total of seven transgenic plants. The expression of the p23 in all seven transgenic plants was further confirmed by q-PCR amplification, and the gene expression level exhibited a certain degree of difference, with expression level in plant E being the highest, followed by C, F, H, A, B, and G. After inoculation with CTV, the level of expression of p20 varied among these seven transgenic plants, with plant A having the highest level of p20 expression, followed by G, F, E, B, H and C. The transgenic plants showed higher pathogen resistance, albeit to different degrees,when compared to the control plants. However, the virus resistance degrees in the transgenic plants were not closely related to the expression levels of the exogenous gene. For example, plant E, which had the highest expression level of the exogenous gene, did not exhibit powerful CTV resistance. By contrast, the transgenic plant C displayed complete resistance after the two rounds of virus inoculation. 【Conclusion】The p23-RNAi construct that generated confers plant disease resistance to CTV. Transient expression assay can be applied for the high efficiency identification of resistance and screening for high efficiency RNAi vectors.
Citrus tristeza virus (CTV); p23; RNAi; ‘DA HONG’ sweet orange; transient expression; genetic transformation
2016-04-15;接受日期:2016-08-19
國家自然科學基金(30900972,3157211)、國家公益性行業(yè)(農(nóng)業(yè))科研專項(201203076-06)、湖南省研究生科研創(chuàng)新項目(CX2013B290)
聯(lián)系方式:李芳,E-mail:lifang200709@126.com。通信作者戴素明,Tel:0713-84635302;E-mail:dsm531@126.com