梁 容,秦 冉,曾冬冬,鄭 希,金曉麗,石春海
(1浙江大學農業與生物技術學院,杭州 310058;2浙江大學農生環測試中心,杭州 310058)
水稻窄卷葉突變體nrl4的表型分析與基因定位
梁 容1,秦 冉1,曾冬冬1,鄭 希2,金曉麗1,石春海1
(1浙江大學農業與生物技術學院,杭州 310058;2浙江大學農生環測試中心,杭州 310058)
【目的】研究水稻卷葉突變體葉形變化的分子機理,鑒定出新的水稻卷葉基因?!痉椒ā坷肊MS誘變秈稻品種浙農34,獲得一個窄卷葉突變體,命名為nrl4(narrow and rolling leaf 4)。在抽穗期隨機選取野生型浙農34和nrl4各10株,對其進行表型觀察和主要農藝性狀調查等,并測定葉綠素含量;同時用Zeiss熒光顯微鏡觀察劍葉中部葉片橫切面維管束的數目并統計泡狀細胞數量。以多代自交穩定的突變體nrl4為母本與野生型浙農34雜交,觀察植物F1和F2葉片表型,統計F2中性狀分離比并作卡方測驗,分析突變表型的遺傳行為。利用nrl4與粳稻品種浙農大104雜交,采用F2分離群體進行基因精細定位。利用定量表達對定位區間內5個預測的基因進行相對表達量的分析?!窘Y果】與野生型相比,窄卷葉突變體nrl4抽穗期時全部葉片卷曲且變窄、葉綠素含量升高;株高稍有增加,結實率增大,籽粒明顯變長、變窄。窄卷葉突變體nrl4功能葉夾角不同程度減小,葉形更為直立。突變體葉近軸表面特有的泡狀細胞數目降低、體積變小,導致葉片向內卷曲。突變體nrl4的葉脈數減少,葉片變窄,中脈一側2個大維管束之間的小維管束平均為4.5個,而野生型為6.0個。遺傳分析表明,突變體nrl4和浙農34雜交的F1表型正常,F2群體中正常植株與窄卷葉突變植株的分離比符合3∶1,表明突變體nrl4的突變性狀受1對隱性核基因控制;利用SSR和InDel分子標記將nrl4定位在水稻第3染色體長臂3M11103和3M1115之間、物理距離約為53 kb的區間。在這一區間內,有5個預測注釋基因,序列比對和表達分析表明在野生型浙農34和突變體nrl4之間,這些基因序列及啟動子序列均未發生變化,但是LOC_Os03g19770在突變體葉片中的表達量顯著增加。【結論】 nrl4葉片變窄與維管束數目減少有關,葉片發生內卷與泡狀細胞數目減少、體積變小有關。水稻窄卷葉突變體nrl4的性狀由1對隱性核基因控制,該基因位于第3染色體InDel標記3M11103和 3M1115物理距離約為53 kb的區間內,預測區間內基因序列及5′UTR區未發現堿基變異,但LOC_Os03g19770在突變體葉片中的表達量達到了野生型植株葉片的17.5倍,推測LOC_Os03g19770為候選基因。
水稻(Oryza sativa L.);窄卷葉突變體(nrl4);表型分析;遺傳分析;基因定位
【研究意義】葉片是植物重要的光合器官,其大小和卷曲度與水稻株型和產量有關。在生產實際中,葉片的適度卷曲可以提高葉片尤其是后期功能葉的直立度,有利于改善水稻植株的受光條件、延緩葉片衰老,提高水稻產量。【前人研究進展】目前,利用突變體研究水稻葉形變化的分子機理已較為普遍,其突變體主要來源于物理方法(如γ射線等)和化學方法(如EMS)的誘變[1]。研究表明,葉片細胞結構(如泡狀細胞)和極性發育異常都會導致葉片卷曲[2-3],按卷曲方向可分為內卷和外卷。迄今,已經定位和克隆了多個與窄葉和卷葉相關的基因,分布于水稻除第8染色體之外的11條染色體上[4]。其中,突變體rl14的卷葉基因位于第10染色體上,編碼了一個未知功能的2OG-Fe (Ⅱ)氧化酶,通過控制次生細胞壁的組分影響著葉片中的水分運輸,進而導致近軸面泡狀細胞體積減小引發葉片向內卷曲[5]。編碼MYB家族的SHAQKYF轉錄因子SLL1[2]/RL9[3]位于第9染色體,也調控著葉片近遠軸發育的極性。水稻oul1突變體由于其ROC5被敲除,導致葉片外卷[6];水稻ROC5和擬南芥GLABRA2同源,均編碼具有亮氨酸拉鏈保守結構域的蛋白,對影響葉片形態的泡狀細胞的發育起負調控作用。水稻突變體acl1的卷葉基因編碼一個無保守結構域的功能未知蛋白,該基因突變后會導致近軸面的泡狀細胞數量增加,使葉片外卷[7]。SRL1通過負向調節編碼水稻液泡H+-ATPase亞基和H+-焦磷酸酶基因的表達,抑制近軸面的泡狀細胞形成,葉片向內卷曲[8]。利用SSR標記,劉晨等[9]將內卷葉基因rl16(t)定位在第9染色體長臂51 kb的區間內;陳濤等[10]以輻恢838/nrl(t)為定位群體,將nrl(t)突變體的卷葉基因定位于水稻第11染色體短臂末端約160 kb長度的范圍內。窄葉基因NAL1控制著水稻生長素的極性運輸和維管束排列模式,該基因突變后植株表現出窄葉、矮化;水稻nal9突變體在整個生育期都表現出窄葉的表型,并且苗期葉片呈淺綠色、株高變矮、穗變小以及分蘗增加等[11]。卷葉突變體rl10(t)[12]、rl11(t)[13]、nal3(t)[14]、nal2[15]、rl14[5]和窄卷葉突變體nrl1[16]等也都表現出窄葉的特征?!颈狙芯壳腥朦c】盡管目前與水稻葉片寬度或卷曲度有關的基因定位和克隆的研究較多,但葉片變窄、變卷的分子機理研究尚有待于進一步的深化;而且上述窄葉、卷葉或者窄卷葉材料往往伴隨著一些影響高產的不利性狀,如育性下降、株型矮小等,使其應用價值降低。因此發現和鑒定出葉片適度卷曲、具有一定育種利用價值的突變體材料以及相應的新基因具有明顯的現實意義。秈稻浙農34經甲基磺酸乙酯(EMS)誘變獲得的窄卷葉突變體nrl4(narrow and rolling leaf 4),表現為葉片內卷且變窄,葉色變深,株高增加,主穗結實率增大,千粒重增加,可作為新的育種材料加以研究。【擬解決的關鍵問題】本研究通過開發新的InDel標記,對新的窄卷葉突變體nrl4進行表型分析和基因定位,旨在為下一步基因克隆提供一定的理論基礎,也可為研究水稻葉片發育的分子機制提供新的種質資源。
1.1 試驗材料
秈稻品種浙農34經EMS誘變后,經篩選和連續多代自交得到能穩定遺傳的窄卷葉突變體nrl4。2013年夏在浙江大學試驗農場用窄卷葉突變體nrl4分別與粳稻品種浙農大104、野生型秈稻品種浙農34雜交,得到F1,F1自交得F2;2014年夏在杭州種植親本、F2群體。對遺傳分析群體進行表型觀察,統計葉片正常與卷曲的植株數,進行卡方檢驗;采集F2定位群體中的窄卷葉植株葉片進行基因定位。
1.2 農藝性狀考察
抽穗期隨機選取野生型和突變體各10株,分別統計其株高(cm)、主穗總粒數(粒)、整株結實率(%)、千粒重(g)等農藝性狀。測定劍葉、倒二葉和倒三葉的葉長(cm)和葉寬(cm,葉片展開時最寬處)。同時計算功能葉的葉片卷曲指數(leaf rolling index,LRI)[17],LRI=(Lw-Ln)/Lw,其中,Lw為葉片展開時最寬處的寬度,Ln為葉片最寬處自然卷曲后兩葉緣之間的距離;并且測量功能葉的葉夾角,即葉脈近軸面與莖稈之間的夾角。
1.3 組織切片觀察
在抽穗期分別取野生型浙農34和突變體nrl4的鮮葉,徒手切片后在NIKON顯微鏡下觀察,結束后用FAA固定液體(70%乙醇90 mL、40%甲醛5 mL和冰醋酸5 mL)固定,經脫水、透明、石蠟包埋。取10 μm的橫切片,用番紅、固綠染色,在Zeiss熒光顯微鏡下觀察、照相,應用Image-Pro Plus6.0軟件測量出每平方毫米泡狀細胞數量[18]。
1.4 葉綠素含量分析
在抽穗期分別取野生型浙農34和突變體nrl4各10株的劍葉,參照Lichtenthaler[19]的方法測定葉綠素含量。取劍葉0.05 g,剪碎后用乙醇和丙酮的1∶1混合液提取葉綠素,用紫外可見分光光度計(型號TU-1810PC)測定上清液在663 nm和645 nm的吸光值,按照Chla=11.24A663-2.04A645、Chlb=20.13A645-4.19A663和Chl(a+b)=7.05A663+18.09A645公式分別測定葉片單位鮮重葉綠素a、葉綠素b和總葉綠素含量。
1.5 基因初定位
在利用浙農大104和突變體nrl4構建的定位群體F2中,隨機選取正常葉和窄卷葉各10株,用CTAB法[20]提取DNA后,分別構建野生型池和突變體池,用BSA(Bulked segregation analysis)法篩選與目的基因連鎖的分子標記。利用在浙農34和浙農大104之間有多態性、均勻覆蓋在水稻12條染色體上的272個InDel和SSR標記,初步確定該窄卷葉基因在染色體上的位置。20 μL PCR反應體系包含2.0 μL 10×PCR buffer、1 μL 50 ng·μL-1DNA模板、0.3 μL 2.5 mmol·L-1dNTPs、15.7 μL ddH2O、0.6 μL 10 μmol·L-1引物和0.4 μL 5 U·μL-1Taq DNA聚合酶。PCR反應程序為94℃5 min;94℃ 30 s,55℃ 30 s,72℃ 30 s,35個循環;72℃ 10 min,4℃保存。PCR產物經6%非變性聚丙烯酰胺凝膠電泳、銀染后觀察[21-23]。
1.6 基因精細定位
從Gramene(http://www.gramene.org/)獲取秈稻品種9311和粳稻品種日本晴目標區間的基因組序列,并通過NCBI序列匹配數據庫(http://blast.stva.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearc h&BLAST_SPEC=blast2seq&LINK_LOC=align2seq)比對,使用DNASTAR和Primer5.0設計開發新的標記。從中選取擴增效果好、多態性明顯的標記,利用F2定位群體中1 809個窄卷葉單株對窄卷葉基因進行精細定位。
1.7 RNA提取、實時熒光定量PCR
提取分蘗盛期野生型和突變型葉片總RNA,經反轉錄合成cDNA第一條鏈,設計引物進行PCR擴增,反應體系及反應條件參照DRR047A定量反轉錄試劑盒說明書(寶生物工程(大連)有限公司)。內參基因選為Actin1(Forward primer:5′-CTTCATAGGAATG GAAGCTGCGGGTA-3′;Reverse primer: 5′-CGACCA CCTTGATCTTCATGCTGCTA-3′),采用2×SYBR Green master mix 熒光染料,20 μL PCR 體系(SYBR?Premix Ex TaqTMII 10 μL、上下游引物各0.8 μL、cDNA 1 μL和RNase/DNase-free water 7.4 μL),設3次重復。熒光PCR反應在Roche LightCycler96實時熒光定量PCR儀上進行。反應條件為95℃ 30 s;95℃ 10 s,60℃ 10 s,72℃ 10 s,共40個循環,應用2-ΔΔCT的方法計算基因表達量的相對變化。引物由擎科生物工程有限公司合成。
2.1 表型分析
與抽穗期野生型植株相比,突變體nrl4的劍葉葉長平均增加6.72%,葉寬平均減少47.62%,全株葉片卷曲,而劍葉、倒二葉、倒三葉的卷曲度分別為為45%、37%和32%。窄卷葉突變體nrl4的劍葉、倒二葉和倒三葉的夾角均小于野生型植株,其株型更為直立。此外,突變體nrl4的其他農藝性狀也有較大的變化,如突變體植株略高于野生型,但主穗粒數和主穗實粒數顯著低于野生型,分別減少了41.42%和33.96%,而整株結實率升高了11.94%(表1)。因此,該基因的突變不僅影響到葉片的形態,同時還對株高、穗長、結實率等農藝性狀有較大的影響(圖1)。
2.2 葉片形態的組織切片觀察
石蠟切片分析表明,抽穗期時在突變體nrl4的劍葉中部橫切面中,可以觀察到突變體的大維管束數目明顯要少于野生型,約減少了11.76%(圖2-A);而小維管束數目減少得更多,僅為野生型浙農34的56.60%(圖2-B),并且中脈一側的2個大維管束之間的小維管束數目在野生型平均為6.0個,在突變體nrl4中平均為4.5個(圖2-D)。突變體nrl4的泡狀細胞也表現為體積變?。▓D3)、數量減少(圖2-C)。
2.3 葉綠素含量分析
抽穗期野生型浙農34和突變體nrl4的葉綠素含量表明,突變體中的葉綠素a、葉綠素b和總葉綠素含量均升高,分別為野生型的1.72倍、1.80倍和1.72倍,差異達到極顯著水平(圖4)。
2.4 突變體的遺傳分析
用表型正常的野生型浙農34與突變體nrl4雜交,F1表型正常,說明該突變體性狀受隱性基因控制。F2中正常單株為921株,卷葉單株為311株。經χ2檢驗,該分離比符合3∶1(χ2=0.027<χ20.05= 3.84),表明該窄卷葉形狀由1對隱性核基因控制。
2.5 基因定位
利用分布于水稻12條染色體上、在浙農34和浙農大104之間有多態性差異的272對InDel和SSR標記進行初步定位,發現位于第3染色體的標記3M8和3M10與突變體位點連鎖。為進一步縮小定位區間,在3M8和3M10之間又開發了2個親本之間存在多態性的分子標記3M1083、3M1088、3M1090、3M1097、3M1108、3M11103和3M1115等(表2)。利用這些標記對F2中1 809株卷葉單株進行篩選分析,最后將目的基因定位在InDel標記3M11103和3M1115之間,物理距離約為53 kb(圖5)。該區段內尚未發現與窄卷葉有關的基因,因此,推測NRL4為一個新的窄卷葉調控基因。

表1 野生型浙農34與窄卷葉突變體nrl4性狀的比較Table1 Comparison of morphological traits between the wild type Zhenong34 and mutant type nrl4

圖1 野生型浙農34和突變體nrl4表型分析Fig. 1 Phenotype of wild-type (WT) and nrl4 mutant

表2 第3染色體上的連鎖標記Table2 Polymorphic markers used in the fine mapping on chromosome 3 in rice
2.6 候選基因分析

圖2 窄卷葉突變體nrl4和野生型浙農34的葉片結構比較Fig. 2 Comparison of the structure of leaf between wild type Zhenong 34 and a mutant nrl4

圖3 窄卷葉突變體nrl4和野生型浙農34葉片橫切面泡狀細胞觀察Fig. 3 Histological observation of bulliform cells in transverse section of blades in wild-type (WT) and nrl4 mutant in tillering stage
根據Rice genome annotation project(http://rice. plantbiology.msu.edu/cgi-bin/gbrowse/rice/)提供的信息顯示,該區間內有5個開放閱讀框(表3),分別為LOC_Os03g19760、LOC_Os03g19770、LOC_Os03g19780、 LOC_Os03g19800和LOC_Os03g19820。其中,LOC_ Os03g19760編碼一類鹵酸脫鹵酶超家族水解酶,在擬南芥中的同源基因為AT1G56500。AT1G56500編碼葉綠體中的類囊膜蛋白,上面分布著與植物葉片光吸收效率有關的類硫氧還蛋白和連接在葉綠體基質感光片上鹵酸脫鹵酶域的β-螺旋結構域。LOC_Os03g19770編碼富含甘氨酸的細胞壁蛋白——是一類組成細胞壁主要成分的結構蛋白,構建植物細胞的基本框架,在維持植物細胞機械強度中起著作用,與細胞生長有關。研究表明,富含甘氨酸蛋白在維管束的厚壁組織中含量豐富(厚壁組織為植物體提供支撐力),使植物能夠承受拉力、彎曲等外界脅迫[24]。LOC_Os03g19780、LOC_Os03g19800和LOC_Os03g19820編碼3個未知的表達蛋白。從這些基因預測分析,LOC_Os03g19760與葉綠體發育相關,LOC_Os03g19770是厚壁組織的組分,因此與葉片發育有關。通過對預測區間內的5個基因全長和5′端UTR序列分析,在浙農34和突變體nrl4之間5個預測的基因和5′端UTR的序列上未發現存在差異。隨后,對這5個基因表達水平進行檢測(圖6),在突變體nrl4中,與厚壁組織有關的基因LOC_Os03g19770的表達量是野生型浙農34的17.5倍,顯著升高。而其他基因表達量則上調或者下調,但表達量變化不顯著。厚壁細胞的缺失和減少能使葉片失去支撐而發生卷曲,而LOC_Os03g19770編碼的富含甘氨酸的細胞壁蛋白,在維管束的厚壁組織中含量豐富,使植物能夠承受拉力、彎曲等壓力。所以,推測LOC_Os03g19770為候選基因。

圖4 nrl4和野生型浙農34劍葉葉綠素含量Fig. 4 Chlorophyll content of the nrl4 and WT Zhenong34 flag leave

圖5 NRL4在第3染色體上的定位Fig. 5 Linkage map of NRL4 on chromosome 3 in rice

表3 NRL4定位區間內基因功能預測Table3 Funtion prediction about genes in NRL4 mapped region

圖6 預測基因的相對表達量Fig. 6 Relative expression of predicted genes
株型與水稻產量有著密切關系,其中葉形是遺傳育種工作者考慮的重要性狀之一。葉片的適度卷曲能保持葉片直立而不披垂,有利于改善植物中后期受光條件和增加光合積累。研究發現,許多與葉片極性發育相關的基因、miRNA、以及葉片生理結構異常和生長素含量變化等都可能引起葉片卷曲。葉片發育包括葉原基的形成和葉極性的建立2個階段,而葉極性的建立會直接影響葉片的形態[25]。HD-ZIPⅢ類基因[26]參與莖尖分生組織(SAM)的發育和水稻葉近-遠軸極性的建立,超表達植株中葉片會發生近軸面化,導致葉片內卷或變成棒狀;擬南芥中的PHABuLOSA(PHB)、PHAVLOuTA(PHV)和REVOLuTA(REV)[27],以及玉米Roll leaf 1(rld1)[28]都屬于HD-ZIP III基因家族,這些基因均調控著葉片卷曲。KANADI(KAN)[29]可在側生器官遠軸面特異性表達,參與葉片極性建立過程。擬南芥KAN基因家族成員的雙、多突變體植株表現出明顯的近軸面化特征,與之相反KAN過表達則會導致側生器官的遠軸面化(外卷)[30],SHALLOTLIKE1(SLL1)是水稻中與擬南芥KAN1同源基因,水稻sll1突變體葉片向內卷曲成蔥狀。
microRNA(miRNA)作為一種具有基因表達調節功能的小RNA分子,可能是一類進化上保守的、在生命中起著重要調控作用的一類分子[31]。miRNA的靶基因大多數是編碼調節植物生長發育、信號轉導、蛋白降解、細胞發育及分化的轉錄因子,包括與器官極性建立相關調控因子,它們能有效地抑制相關蛋白質的合成,導致靶mRNA的降解,產生基因沉默[32]。在擬南芥發育過程中的HD-ZIP III基因家族成員PHABuLOSA(PHB)、PHAVLOuTA(PHV)和REVOLuTA(REV),以及玉米Roll1(Rld1)在遠軸面的表達都受到miRNA166/165的調控[33-35],通過降解PHB、PHV和REV的mRNA,抑制HD-ZIP III類基因在葉片遠軸面的表達從而維持葉片正確的近遠軸極性特征。在水稻分生組織缺陷的突變體sho1(shoot organization 1)和sho2(shoot organization 2)[36]中,部分葉片呈現極度卷曲,通過檢測小RNA分子發現,miRNA166豐度明顯增加,靶基因OSHB1和OSHB2表達下調。所以,在卷葉的形態建成過程中,miRNA發揮著調控作用。
多數植物的葉片包含厚壁組織、泡狀細胞、木質部、維管束、葉肉細胞等,這些組織或者結構異常通常會導致葉片形態的變化。窄葉突變體nal1基因位于第4染色體上[37],表現為葉片變窄、大小維管束數目減少以及維管束排列方式的改變,說明該基因調節維管束排列模式。Adl1編碼一個植物特異的半胱氨酸蛋白酶,能促進表皮細胞特別是泡狀細胞的發育,是葉原基細胞近遠軸極性建立所必需的,突變體葉片向遠軸面卷曲[38]。大部分卷葉突變體都伴有植株變矮、結實率降低等不利于性狀,而本研究發現的窄卷葉突變體nrl4在全生育期高度卷曲,其株高增加、株型較緊湊、葉綠素含量升高、千粒重增加,可以作為遺傳和育種材料加以研究。細胞學分析發現,其泡狀細胞數目減少、體積變小,引起葉片內卷;其大維管束和小維管束數目均顯著減少,與葉片變窄有關,這也為前人所證實[11]。本研究對該窄卷葉突變體進行遺傳分析和基因定位,將nrl4基因定位在第3染色體長臂Indel標記3M11103和3M1115之間,物理距離約為53 kb。網站http://rice.plantbiology.msu.edu/cgi-bin/ gbrowse/rice/注釋結果顯示,其內有5個注釋基因LOC_Os03g19760、LOC_Os03g19770、LOC_Os03g19780、LOC_Os03g19800和LOC_Os03g19820。LOC_Os03g19760編碼一類鹵酸脫鹵酶超家族水解酶,在擬南芥中存在的同源基因AT1G56500是編碼葉綠體中的一種類囊膜蛋白,與植物葉片的光合效率有關,突變體nrl4葉片中葉綠素含量顯著增加,可能與此基因表達量的改變、進而影響葉綠體的發育有關;LOC_Os03g19770編碼富含甘氨酸的細胞壁蛋白,在維持植物機械強度中發揮作用,在水稻葉片維管束厚壁組織中含量豐富,使植物能夠承受外界拉力等脅迫。而水稻葉片中維管束處厚壁組織異常,會使其葉片形態發生變化[39]。LOC_Os03g19780、LOC_Os03g19800、LOC_Os03g19820編碼3種未知的表達蛋白。測序結果表明預測區間內的5個基因序列和上游啟動子區域2 kb范圍內的堿基序列在野生型浙農34和突變型nrl4之間沒有差異,但是LOC_Os03g19770在突變體葉片中的表達量有顯著提高,可能影響了厚壁組織的形成。這說明突變產生在轉錄水平上,可能是一種新的突變模式。這一結果有也許會涉及到表觀遺傳機制,如DNA甲基化作用[40]。此外,與葉片極性發育相關的一些基因、miRNA、以及葉片生理結構異常和生長素含量變化等方面都可能引起葉片卷曲,本研究中在定位區間內是否存在miRNA基因,以及在候選基因表達過程中是否發生非DNA水平的變化,使得還需要進一步研究以確定此新基因。該基因目前尚未被報道,且遺傳行為簡單,相應突變體具有一些有利于育種工作的農藝性狀,因而在卷葉分子機理研究和高產育種中具有重要的應用價值。
目前,在第3染色體長臂上已經發現了2個隱性卷葉基因nrl2(t)和sll2,但均不在標記3M11103和3M1115之間,并且植株表型與突變體nrl4存在差異。因此,可以認為NRL4屬于一個控制窄卷葉的新基因,試驗結果為NRL4的克隆及水稻葉發育機理的闡述奠定了一定基礎。
通過EMS誘變,獲得了突變體nrl4,其表現為葉片發生明顯內卷、窄化,試驗結果表明內卷可能與泡狀細胞數目減少、體積減小有關,維管束數目減少引起葉片窄化。其次該突變體還表現出水稻葉片增長、葉綠素含量升高、籽粒變長、主穗結實率提高,但其主穗總粒數和主穗實粒數均有所減少。該突變性狀受控于1對核隱性基因,定位于第3染色體長臂Indel標記3M11103和3M1115之間,距離約為53 kb。該區間內有5個預測基因,編碼序列及5′端UTR區未發生堿基變異,但LOC_Os03g19770在突變體葉片中的表達量顯著提高。推測該基因為一個控制水稻窄卷葉性狀的新基因。
[1] 葉俊, 吳建國, 杜婧, 鄭希, 張志, 石春海. 水稻“9311”突變體篩選和突變體庫構建. 作物學報, 2006, 10(32): 1525-1529,1599-1600.
YE J, WU J G, DU J, ZHENG X, ZHANG Z, SHI C H. The sereening of mutants and construction of rice mutant population of variety“9311” of rice (Oyrza sativa L.). Acta Agronomica Sinica, 2006,10(32): 1525-1529, 1599-1600. (in Chinese)
[2] ZHANG G, XU Q, ZHU X, QIAN Q, XUE H. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling byregulating leaf abaxial cell development. The Plant Cell, 2009, 21(3): 719-735.
[3] YAN S, YAN C J, ZENG X H, YANG Y C, FANG Y W, TIAN C Y,SUN Y W, CHENG Z K, GU M H. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Molecular Biology, 2008, 68(3): 239-250.
[4] YI J, ZHUANG C, WANG X, CAO Y, LIU Y, MEI M. Genetic analysis and molecular mapping of a rolling leaf mutation gene in rice. Journal of Integrative Plant Biology, 2007, 49(12): 1746-1753.
[5] FANG L K, ZHAO F M, CONG Y F, SANG X C, DU Q, WANG D Z,LI Y F, LING Y H, YANG Z L, HE G H. Rolling-leaf14 is a 2OG-Fe(II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnology Journal, 2012, 10(5): 524-532.
[6] ZOU L P, SUN X H, ZHANG Z G, LIU P, WU J X, TIAN C J, QIU J L, LU T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene roc5 in rice. Plant Physiology, 2011, 156(3): 1589-1602.
[7] LI L, SHI Z Y, LI L, SHEN G Z, WANG X Q, AN L S, ZHANG J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Molecular Plant, 2010, 3(5): 807-817.
[8] XIANG J J, ZHANG G H, QIAN Q, XUE H W. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiology, 2012, 159(4): 1488-1500.
[9] 劉晨, 孔維一, 尤世民, 鐘秀娟, 江玲, 趙志剛, 萬建民. 一個水稻卷葉基因的遺傳分析和精細定位. 中國農業科學, 2015, 48(13): 2487-2496.
LIU C, KONG W Y, YOU S M, ZHONG X J, JIANG L, ZHAO Z G,WAN J M. Genetic analysis and fine mapping of a novel rolled leaf gene in rice, Scientia Agricultura Sinica, 2015, 48(13): 2487-2496.(in Chinese)
[10] 陳濤, 劉燕清, 張亞東, 朱鎮, 趙慶勇, 周麗慧, 姚姝, 于新, 趙凌,王才林. 水稻窄卷葉突變體nrl(t)的遺傳分析與基因定位. 華北農學報, 2014, 29(4): 37-43.
CHEN T, LIU Y Q, ZHANG Y D, ZHU Z, ZHAO Q Y, ZHOU L H,YAO S, YU X, ZHAO L, WANG C L. Genetic analysis and gene mapping of a narrow and rolled mutant nrl(t) in rice. Acta Agriculturae Boreali-Sinica, 2014, 29(4): 37-43. (in Chinese)
[11] LI W, WU C, HU G C, XING L, QIAN W J, SI H M, SUN Z X,WANG X C, FU Y P, LIU W Z. Characterization and fine mapping of a novel rice narrow leaf mutant nal9. Bulletin of Botany, 2013, 55(11): 1016-1025.
[12] LUO Z K, YANG Z L, ZHONG B Q, LI Y G, XIE R, ZHAO F M,LING Y H, HE G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice (Oryza sativa L.). Genome, 2007,50(9): 811-817.
[13] ZHOU Y, FANG Y X, ZHU J Y, LI S Q, GU F, GU M H, LIANG G H. Genetic analysis and gene fine mapping of a rolling leaf mutant(rl11(t)) in rice (Oryza sativa L.). Chinese Science Bulletin, 2010,55(17): 1763-1769.
[14] WANG D K, LIU H Q, LI K L, LI S J, TAO Y Z. Genetic analysis and gene mapping of a narrow leaf mutant in rice (Oryza sativa L.). Chinese Science Bulletin, 2009, 54(5): 752-758.
[15] CHO S H, YOO S C, ZHANG H, PANDEYA D, KOH H J, HWANG J Y, KIM G T, PAEK N C. The rice narrow leaf 2 and narrow leaf 3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytologist, 2013, 198(4): 1071-1084.
[16] HU J, ZHU L, ZENG D, GAO Z, GUO L, FANG Y, ZHANG G,DONG G, YAN M, LIU J, QIAN Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Molecular Biology,2010, 73(3): 283-292.
[17] 馮萍, 邢亞迪, 劉松, 郭爽, 朱美丹, 婁啟金, 桑賢春, 何光華, 王楠. 水稻卷葉突變體rl28的特性與基因定位. 作物學報, 2015,41(8): 1164-1171.
FENG P, XING Y D, LIU S, GUO S, ZHU M D, LOU Q J, SANG X C, HE G H, WANG N. Traits and gene mapping of the rolled mutant rl28 in rice. Acta Agronomica Sinica, 2015, 41(8): 1164-1171. (in Chinese)
[18] 許揚, 趙英凱, 畢明剛, 劉妍. Image-Pro Plus圖像分析軟件定量雞胚尿囊膜血管新生面積的方法. 中國比較醫學雜志, 2007, 17(12): 745-747, 773.
XU Y, ZHAO Y K, BI M G, LIU Y. The use of digital Image-Pro Plus to quantitate angiogenesis in the chick embryo chorioallantoicmembrane. Chinese Journal of Comparative Medicine, 2007, 17(12): 745-747,773. (in Chinese)
[19] LICHTENTHALER H K. Chlorophylls, carotenoids. Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148(C): 350-382.
[20] MURRAY M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.
[21] SANG X, HE G, ZHANG Y, YANG Z, PEI Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas, 2003, 25(6): 705.
[22] MCCOUCH S R, CHEN X, PANAUD O, TEMNYKH S, XU Y, CHOY G. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, 1997, 35(1): 89-99.
[23] WU D, WU H, WANG C, TSENG H, HWU K. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica, 2013, 192(1): 131-143.
[24] KELLER B, TEMPLETON M D, LAMB C J. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proceedings of the National Academy of Sciences of the USA, 1989, 86(5): 1529-1533.
[25] 姚健. 水稻卷葉突變體的遺傳分析和基因定位研究[D]. 揚州: 揚州大學, 2012.
YAO J. Genetic analysis and gene mapping of the rolled mutant in rice[D]. Yangzhou: Yangzhou University, 2012. (in Chinese)
[26] COMELLI R N, GONZALEZ D H. Conserved homeodomain cysteines confer redox sensitivity and influence the DNA binding properties of plant class III HD-Zip proteins. Archives of Biochemistry and Biophysics, 2007, 467(1): 41-47.
[27] BAO N, LYE K, BARTON M K. MicroRNA binding sites in arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell, 2004, 7(5): 653-662.
[28] JUAREZ M T, TWIGG R W, TIMMERMANS M C. Specification of adaxial cell fate during maize leaf development. Development, 2004,131(18): 4533-4544.
[29] KERSTETTER R A, TAYLOR R A, BOLLMAN K, BOMBLIES K,POETHIG R S. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411(6838): 706-709.
[30] IZHAKI A, BOWMAN J L. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. The Plant Cell, 2007, 19(2): 495-508.
[31] KIDNER C A, MARTIENSSEN R A. The developmental role of microRNA in plants. Current Opinion in Plant Biology, 2005, 8(1): 38-44.
[32] YIN J Q, WANG Y. RNA-mediated gene regulation system: Now and the future. International Journal of Molecular Medicine, 2002, 10(4): 355-365.
[33] MALLORY A C, REINHART B J, JONES-RHOADES M W, TANG G, ZAMORE P D, BARTON M K, BARTEL D P. MicroRNA control of PHABULOSA in leaf development: Importance of pairing to the microRNA 5 region. The EMBO Journal, 2004, 23(16): 3356-3364.
[34] KINDER C A, MARTIENSSEN R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428(6978): 81-84.
[35] JUAREZ M T, KUI J S, THOMAS J, HELLER B A, TIMMERMANS M C. microRNA-mediated repression of rolled leaf 1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88.
[36] ITOH J, KITANO H, MATSUOKA M, NAGATO Y. Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. The Plant Cell, 2000, 12(11): 2161-2174.
[37] JIANG D, FANG J J, LOU L M, ZHAO J F, YUAN S J, YIN L, SUN W, PENG L X, GUO B T, LI X Y. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE, 2015, 10(2): e0118169.
[38] HIBARA K, OBARA M, HAYASHIDA E, ABE M, ISHIMARU T,SATOH H, ITOH J, NAGATO Y. The ADAXIALIZED LEAF 1 gene functions in and embryonic pattern formation in rice. Developmental Biology, 2009, 334(2): 345-354.
[39] 張水軍, 曾千春, 盧秀萍, 李文正. 植物富含甘氨酸蛋白的研究進展. 中國農學通報, 2010, 26(14): 54-58.
ZHANG S J, ZENG Q C, LU X P, LI W Z. Progress on plant glycine-rich protein. Chinese Agricultural Science Bulletin, 2010,26(14): 54-58. (in Chinese)
[40] 張玲, 郭爽, 汪玲, 張天泉, 莊慧, 龍玨臣, 何光華, 李云峰. 水稻矮化并花發育異常突變體dwarf and deformed flower 2 (ddf2) 的基因定位與候選基因分析. 中國農業科學, 2015, 48(10): 1873-1881.
ZHANG L, GUO S, WANG L, ZHANG T Q, ZHUANG H, LONG J C, HE G H, LI Y F. Gene mapping and candidate gene analysis of a dwarf and deformed flower 2 (ddf2) mutant in rice (Oryza sativa). Scientia Agricultura Sinica, 2015, 48(10): 1873-1881. (in Chinese)
(責任編輯 李莉)
Phenotype Analysis and Gene Mapping of Narrow and Rolling Leaf Mutant nrl4 in Rice (Oryza sativa L.)
LIANG Rong1, QIN Ran1, ZENG Dong-dong1, ZHENG Xi2, JIN Xiao-li1, SHI Chun-hai1
(1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058;2Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou 310058)
【Objective】 Rice leaf mutant was used to study molecular mechanisms of leaf traits, and to identify the related novel rolling genes in rice.【Method】 The mutant with narrow and rolling leaves was derived from the indica cultivar Zhenong34 induced by ethyl methylsulphonate (EMS), named nrl4. At heading stage, nrl4 and WT Zhenong 34 were randomly selected 10 strains to measure the main agronomic traits and chlorophyll content of nrl4 and WT were tested at the same time. The bulliformcells were observed and counted as well as the number of large and small veins in transverse section of blade under the Zeiss microscope. The leaf phenotype of the F1plants and F2population which derived from the crossing of nrl4 with Zhenong 34 were investigated and the segregation ratio of normal and rolling leaves were analyzed by chi-square test in the F2population. The F2population from crossing of nrl4 with Zhenong 104 was used for genetic analysis and gene fine mapping. Five genes in the located region were analyzed by gene quantitative expression. 【Result】 Morphological analysis showed that all leaves of mutant nrl4 were narrow and rolling. In addition, compared with wild type Zhenong 34, plant height, seed setting rate in main panicle and pigment content of mutant nrl4 were increased, as well as grain length of nrl4, but the width of grain was decreased. Leaf angles of functional leaves were all decreased leading to more erecting plant type. Statistical analysis suggested that the rolling leaf phenotype might be caused by the change of number and size of bulliform cells which especially existed at the adaxial side of blade; moreover, in accordance with reduced leaf blade width, leaves of nrl4 contain a decreased number of large veins and small veins. There were 6.0 small veins between two large veins on one side of main vein averagely in mutant nrl4 leaf while there were 4.5 in wild type Zhenong34. Genetic analysis indicated that the mutant trait was controlled by a single recessive gene, the gene nrl4 was located in a confined region of 53 kb flanked by two InDel makers 3M11103 and 3M1115 on the long arm of chromosome 3, where five annotated genes were predicted. Based on the result of sequencing, there was no mutation occurred in the gene sequence and promoter sequence of these predicted genes, but strong changes in gene expression pattern of LOC_Os03g19770 according to the real time quantitative PCR. These results are very valuable for further study on this gene. 【Conclusion】 The narrow leaves are related to reduced number of vasculars, moreover the rolling blade of mutant nrl4 might resulted from the decreased area and number of bulliform cells. The mutant nrl4 is controlled by a single recessive nuclear gene, which is located on chromosome 3, between 3M11103 and 3M1115 with a physical distance of 53 kb. No nucleotide sequence mutation was found to occur in the gene sequence or the 5′UTR of all annotated genes, but the expression of LOC_Os03g19770 is strongly promoted in mutant nrl4, which is 17.5 times of wild type and it may be the candidate gene.
rice (Oryza sativa L.); narrow and rolling leaf mutant; phenotype analysis; genetic analysis; gene mapping
2016-05-03;接受日期:2016-07-15
浙江省重大科技攻關專項(2012C12901-2)、浙江省科技廳水稻產業科技創新服務平臺、高等學校學科創新引智計劃(Grant B14027)、教育部創新團隊資助項目(IRT1185)
聯系方式:梁容,Tel:15925663413;E-mail:m15925663413@163.com。通信作者石春海,Tel:0571-88982691;Fax:0571-88982691;E-mail:chhshi@zju.edu.cn