張俊華 張 翼 李 明
(1.寧夏大學環境工程研究院, 銀川 750021; 2.寧夏大學教育學院, 銀川 750021)
?
寧夏枸杞園土壤線蟲和微生物群落多樣性研究
張俊華1張翼2李明1
(1.寧夏大學環境工程研究院, 銀川 750021; 2.寧夏大學教育學院, 銀川 750021)
為了揭示寧夏枸杞園土壤質量變化趨勢,以寧夏枸杞之鄉——中寧縣為研究區,選取不同樹齡寧夏枸杞園土壤,分析不同季節、土層和樹齡條件下土壤線蟲和微生物群落特征變化規律。結果表明,隨樹齡的增加,枸杞園0~20 cm土壤線蟲總數先增加后減少,6 a樹齡時達最大值。不同樹齡表層土壤均為食細菌線蟲所占比例最大(夏季和秋季平均分別為57.23%和61.19%),植物寄生線蟲次之;亞表層植物寄生線蟲比例顯著提高。夏季表層土壤總磷脂脂肪酸(PLFA)和細菌PLFA濃度隨樹齡呈減小-增大-減小的趨勢,9 a樹齡各菌群PLFA濃度普遍最大。隨樹齡的增加,夏季0~20 cm土壤線蟲多樣性和豐富度指數先增大后減小,但土壤微生物多樣性指數、均勻度指數都逐漸減小,線蟲和微生物群落優勢度指數都逐漸增大;20~40 cm土壤線蟲和微生物數量、多樣性指數和優勢度指數變化趨勢一致。土壤EC與微生物總PLFA濃度、細菌PLFA濃度達顯著負相關;土壤有機質、全氮、速效磷含量與土壤各線蟲數量和微生物濃度相關性普遍達顯著或極顯著水平。土壤線蟲總數、食細菌線蟲數量與細菌、真菌和放線菌PLFA濃度均顯著或極顯著相關??傊?,季節、土層和樹齡對土壤線蟲和微生物群落均有不同程度的影響,但樹齡對其影響相對最??;季節、土層和樹齡對土壤微生物群落的影響比對土壤線蟲群落更顯著。在相同季節和土層條件下,土壤微環境質量隨著樹齡的增加呈現出先改善后退化的趨勢。
寧夏枸杞; 土壤線蟲群落; 磷脂脂肪酸; 生態指數; 土壤理化性狀
土壤生物作為土壤生態功能的關鍵驅動者,其群落結構的變化在農業生態系統服務功能中占據重要的地位[1]。其中,線蟲作為土壤食物網的重要組成部分,是農田土壤中多樣性最為豐富的土壤動物,能夠靈敏地反映環境變化時土壤生態系統的綜合狀況[2],在評價農田土壤生態系統變化方面具有很大的優勢[3-4];而土壤微生物在生態系統營養物質循環過程,特別是碳、氮循環過程中扮演著重要的角色[5-6]。
單一植物長期種植會引起土壤微生物多樣性減少,細菌數量減少,真菌數量增加,土壤類型從細菌型向真菌型轉變,土壤線蟲結構也會向不利于土壤質量的方向發展[7]。隨樹齡的增加,土壤細菌、微生物碳、氮生物量均先增大后減小,但真菌數量呈一直增大的趨勢[8]。海南省澄邁縣香蕉園土壤中植物寄生線蟲的數量隨樹齡的增加而增加,食細菌線蟲、食真菌線蟲和捕食-雜食性線蟲的數量則表現出相反趨勢,香蕉園土壤的生態環境遭到破壞[9]。在樹齡較小的果樹根圍線蟲群落的多樣性指數和均勻度指數均高于樹齡較大的果樹,而優勢度指數相反;且植物線蟲更易于侵襲幼齡果樹[10]。隨著線蟲群落的改變,細菌和真菌都有顯著變化[11],且隨植物生長年限的增長, 土壤線蟲總數及屬數、密度、多樣性指數和土壤微生物數量呈相似變化趨勢[12-13]。食細菌線蟲數量與細菌生物量呈極顯著正相關關系[14],并且能夠顯著提高土壤氮和有效磷[15]。土壤總碳能夠顯著影響土壤微生物生物量,土壤pH值能顯著影響土壤線蟲總數。此外,施用氮肥能夠顯著降低土壤微生物碳代謝功能群多樣性指數、真菌/細菌(F/G)和食真菌線蟲數量[16-17],同時提高食細菌線蟲數量[18];施用磷肥則能顯著提高食細菌和食真菌線蟲的數量[19]。胡鋒等[20]指出食微動物雖然在某些條件下可抑制微生物種群,但總體上起著激活、增殖“培養”微生物的作用。
寧夏枸杞(LyciumbarbarumL.)為茄科枸杞屬多年生落葉灌木,具有極高的藥用價值和營養價值。因獨特的地理氣候條件,寧夏成為枸杞的原產地和最佳生態區。近年來由于過量施肥、頻繁采摘和噴灑農藥等,局部地區出現枸杞產量減少、品質下降的問題,為了揭示該現象的根本原因,本文選擇對土壤環境變化敏感的土壤線蟲和微生物群落進行研究,分析不同季節、土層和樹齡寧夏枸杞園土壤微生物和線蟲群落多樣性、相互作用及其與土壤理化性狀的關系,旨在探討寧夏枸杞園土壤質量動態變化規律,為改善枸杞園土壤質量、推進寧夏枸杞產業的可持續發展提供理論依據。
1.1研究區概況
寧夏回族自治區中衛市中寧縣(105°15′~106°05′E,36°49′~37°47′N)是全國枸杞生產基地縣、中國枸杞之鄉,也是寧夏枸杞的主產區。該地區年平均氣溫9.5℃,年降水量202.1 mm;日平均氣溫大于等于0℃積溫3 200~3 300℃。本研究在中寧縣寧安鎮南橋村分別選擇樹齡為當年(小于1 a)、3、6、9、12 a枸杞地各3塊(各塊面積大于660 m2),共15塊地。該地區土壤以灌淤土為主, 質地為砂壤土。
研究區枸杞地每年灌水3~4次,翻地1~2次,除草4~5次,采摘8~10次;施用化肥約2次(多為春施和秋施),每年噴灑農藥8~11次。
1.2樣品采集
分別于夏季(盛果期,7月14日)和秋季(落葉期,10月25日)采集土壤樣品。在樹冠投影范圍外,先除去表層枯枝落葉后,用土鉆取表層(0~20 cm)和亞表層(20~40 cm)土壤。樣品采集時每塊地選擇9個點分別分層采樣,然后將同一地塊相同層次的土壤充分混勻,將新鮮土樣分成2份,一份低溫冷藏帶回實驗室,在-20℃下冷凍保存,用于土壤線蟲的分離和鑒定以及土壤微生物磷脂脂肪酸的提取、測定,另一份在室內風干用于測定土壤pH值、電導率(EC)、有機質及養分含量。
1.3樣品分析
1.3.1土壤樣品理化性狀測定
土壤pH值采用酸度計法測定;EC采用電導率法測定;有機質采用外加熱法測定;全氮采用凱氏定氮法測定;堿解氮采用堿解擴散法測定;速效磷采用Oslen法測定;速效鉀采用乙酸銨提取-火焰光度計法測定[21]。
1.3.2土壤線蟲分離和鑒定
每個樣品稱取土樣100 g,利用改良的淺盤法[22]對土壤線蟲進行分離提取。線蟲總數通過解剖鏡直接計數,然后在光學顯微鏡下參照BONGERS的分類圖進行科屬鑒定[23-24]。
1.3.3土壤PLFA測定
采用修正的Bligh-Dyer方法提取脂類[25]。利用HP6890氣相色譜-HP5973質譜聯用儀。內標為19: 0用于定量。峰面積通過計算機自動積分,各脂肪酸的識別與定量分別參照 BAME (Bacterial acid methyl esters) Mix 和Supelcoe 37 Component FAME Mix。
1.3.4生態指數計算
土壤線蟲和微生物生態指數公式[26-27]為:
多樣性指數(Diversity index)
H′=-∑(pilnpi)
均勻度(Evenness)
J′=H′/lnS
豐富度(Species richness)
SR=(S-1)/lnN
優勢度指數(Dominance index)
式中pi——第i個分類單元中個體所占的比例
S——所鑒定分類單元的個數
N——鑒定的線蟲或微生物磷脂脂肪酸(PLFA)生物標記的個體數量
1.4數據處理
利用SAS中Duncan法檢驗不同樹齡、季節和土層枸杞園土壤線蟲及微生物數量差異顯著性,用MANOVA法研究季節、土層和樹齡對土壤線蟲和微生物指標的交互影響,采用Pearson相關進行土壤理化性狀與土壤線蟲和微生物數量間的相關性分析。
2.1寧夏枸杞園土壤線蟲群落特征
本研究夏季和秋季共獲得土壤線蟲2 145條,個體密度平均107條/(100 g干土),分屬于2綱6目11科38屬,基本情況見表1。
夏季共分離得到土壤線蟲36屬904條,個體密度平均90條/(100 g干土),其中螺旋屬Helicotylenchus、擬麗突屬Acrobeloides和小桿屬Rhabditidae為優勢屬,個體數量占所有已知個體總數的44.82%;13個常見屬共占所有已知屬個體總數的48.91%;23個稀有屬僅占所有已知屬個體總數的6.34%。秋季共分離得到土壤線蟲30屬1 241條,個體密度平均124條/(100 g干土),其中擬麗突屬、小桿屬和螺旋屬為優勢屬,占所有已知屬個體總數的43.40%;17個常見屬占所有已知屬個體屬總數的51.49%;15個稀有屬占所有已知屬個體總數5.11%。
隨著樹齡的增加,夏季0~20 cm土壤線蟲總數先增加后減少,6 a樹齡達到最大值(比當年樹齡增加47.85%),樹齡為12 a時線蟲總數低于當年樹齡33.91%(圖1)。秋季不同樹齡表層土壤線蟲變化趨勢與夏季相同,但當年樹齡線蟲總數最小。隨著樹齡的增加,20~40 cm夏季土壤線蟲總數無明顯變化規律,秋季則先減少后增加。秋季表層土壤線蟲總數比夏季平均增加24.49%,亞表層增加33.36%;不同樹齡秋季表層線蟲總數平均值最大。
不同樹齡表層土壤均為食細菌線蟲所占比例最大(夏季和秋季平均分別為57.23%和61.19%),植物寄生線蟲次之(夏季和秋季平均分別為25.67%和21.64%),食真菌線蟲和捕食-雜食性線蟲比例平均小于10%(圖2)。亞表層植物寄生線蟲比例顯著提高(夏季和秋季分別為41.68%和40.04%),尤其在秋季,樹齡為小于1、6、9 a時植物寄生線蟲比例高于食細菌線蟲。隨樹齡的增加,食真菌線蟲所占比例先增大后減小,而捕食-雜食性線蟲變化普遍與之相反。
隨著樹齡的增加,夏季和秋季0~20 cm土壤線蟲多樣性和豐富度指數先增大后減小;優勢度指數則呈一直增大趨勢。線蟲各生態指數表層與亞表層無明顯差異。秋季線蟲豐富度指數高于夏季,而其他3種生態指數普遍略低于夏季;秋季各生態指數間差異相對較小,如表2所示。

表1 寧夏枸杞園0~20 cm土壤線蟲屬優勢度和功能類群Tab.1 Dominance and functional group of soil nematodes in 0~20 cm soil of Lycium barbarum L.orchard
注:*表示未查到其中文名。BF、PP、FF和OP分別表示食細菌線蟲、植物寄生線蟲、食真菌線蟲和捕食-雜食性線蟲。+,為稀有屬比例小于1%;++,為常見屬比例1%~10%;+++,為優勢屬比例大于10%[28]。

圖1 寧夏枸杞園0~20 cm土壤線蟲總數Fig.1 Abundance of nematodes in 0~20 cm soil of Lycium barbarum L. orchard
從多因素方差分析結果來看(表3),季節對線蟲總數、優勢度和豐富度指數有顯著和極顯著影響;除植物寄生線蟲數量、優勢度指數和均勻度指數外,土層對其他土壤線蟲指標均有極顯著或顯著影響;樹齡可以顯著影響食細菌線蟲數量、捕食-雜食線蟲數量和線蟲優勢度指數。在季節、土層和樹齡多因素交互中,只有土層和樹齡2因子交互對食細菌線蟲樹齡有顯著影響,其他2因子或3因子交互對土壤線蟲各指標均無顯著影響。
2.2寧夏枸杞園土壤微生物群落特征
2.2.1土壤各菌群PLFA質量摩爾濃度
供試土壤中細菌PLFA濃度占微生物總PLFA質量摩爾濃度(以下簡稱濃度)的70%~82%,真菌占8%~15%,放線菌占6%~11%(圖3,圖中不同字母表示相同季節和土層不同樹齡土壤總PLFA濃度間的差異性)。隨著枸杞樹齡的增加,夏季表層

圖2 不同季節和樹齡枸杞園土壤0~20 cm不同營養類群線蟲比例Fig.2 Proportions of different trophic groups of nematodes in different seasons and planting ages in surface soil of Lycium barbarum L. orchard

表2 不同樹齡土壤線蟲群落多樣性指數Tab.2 Characteristics of diversity of soil nematode communities at different stand ages

表3 季節、土層、樹齡及其交互作用影響枸杞園土壤線蟲因子的多因素方差分析結果Tab.3 Results from three-way ANOVA testing effects of season, layer, planting age, and their interactions on soil nematode index in orchard of Lycium barbarum L.
注:*、 **和***分別表示在0.05、0.01和0.001水平上的顯著性,ns表示不顯著,下同。
土壤細菌PLFA濃度先減小后增大,到9 a樹齡時達到最大值,樹齡為12 a時又有所減??;而亞表層土壤細菌PLFA濃度先增大后減?。磺锛颈韺油寥兰毦鶳LFA濃度變化與夏季亞表層相似,但各樹齡間無顯著差異;秋季亞表層土壤細菌PLFA濃度先減小后增大,6 a樹齡時最小, 當年樹齡相對最大。隨樹齡的增加,土壤真菌和放線菌PLFA濃度變化趨勢與細菌相似。夏季表層總PLFA濃度大于亞表層及秋季0~40 cm土層,其中9 a樹齡最高,依次分別高于其他樹齡32.97%、50.45%、13.72%和10.67%。秋季亞表層總PLFA濃度最小,平均值只有39.70 nmol/g,且除6 a樹齡外,其他4個樹齡間均無顯著差異。

圖3 不同種植年限土壤微生物磷脂脂肪酸質量摩爾濃度Fig.3 Soil microbial PLFAs contents at different stand ages of Lycium barbarum L.
2.2.2土壤微生物群落生態指數
隨著樹齡的增加,夏季表層土壤微生物多樣性、均勻度和豐富度指數都逐漸減小(表4),而優勢度指數變化與之相反,所以12 a樹齡的土壤微生物群落多樣性最差。隨樹齡的增加,夏季和秋季亞表層多樣性指數呈增大-減小的趨勢;秋季表層多樣性指數有減小-增大的現象,9 a和12 a樹齡各指數基本相等。
相對于線蟲各指標來講,季節、土層和樹齡對土壤微生物的影響更顯著(表5)。除F/G和均勻度指數外,季節對微生物PLFA濃度和各生態指數的影響都達到極顯著或顯著水平。土層對土壤微生物PLFA濃度和生態指數也普遍達到顯著和極顯著水平,但對土壤G-/G+及微生物多樣性指數無顯著影響。樹齡對放線菌PLFA濃度、優勢度、均勻度和豐富度均無顯著影響,但對其他微生物指標都產生顯著或極顯著影響。季節、土層和樹齡每2個因子交互對微生物總PLFA濃度、細菌、真菌PLFA濃度和多樣性指數都有顯著或極顯著影響。整體而言,3個因子對土壤微生物的影響程度由大到小依次為:季節、土層、樹齡。季節、土層和樹齡3因子交互對微生物多樣性能夠產生極顯著影響。

表4 不同樹齡土壤微生物群落多樣性指數Tab.4 Characteristics of diversity of soil microbe communities at different stand ages

表5 季節、土層、樹齡及其交互作用影響枸杞園土壤微生物因子的多因素方差分析結果Tab.5 Results from three-way ANOVA testing effects of season, layer, planting age, and their interactions on soil microbe index in orchard of Lycium barbarum L.
2.3土壤理化性質與土壤線蟲和微生物間的相關性
供試區域土壤有機質含量與全氮、堿解氮、速效磷含量之間呈極顯著或顯著正相關,堿解氮含量與全氮、速效磷含量呈極顯著正相關關系,速效鉀含量與pH值、EC呈顯著性負相關(表4)。土壤pH值與EC和線蟲數量、微生物數量普遍呈負相關關系,其中EC與微生物總PLFA濃度和細菌PLFA濃度達顯著相關。除植物寄生線蟲外,土壤有機質、全氮含量與各線蟲數量和微生物濃度均呈顯著或極顯著正相關關系。除植物寄生線蟲和食真菌線蟲外,土壤速效磷含量與土壤各線蟲數量和微生物濃度相關性均達顯著或極顯著。土壤速效鉀含量與微生物總PLFA濃度、細菌PLFA濃度呈顯著正相關關系。線蟲總數與細菌、真菌和放線菌PLFA濃度呈顯著和極顯著相關,食細菌線蟲數量與總PLFA、細菌、真菌和放線菌均顯著或極顯著相關,捕食-雜食性線蟲數量與放線菌PLFA濃度顯著相關。
土壤EC與微生物多樣性和優勢度分別呈極顯著負相關和正相關(表7)。土壤有機質含量與線蟲豐富度指數、微生物均勻度呈顯著性正相關;全氮、堿解氮、速效磷含量與微生物豐富度呈極顯著和顯著負相關;速效鉀含量與微生物多樣性、優勢度指數呈顯著負相關和正相關關系。土壤線蟲豐富度與微生物均勻度間呈顯著性正相關。

表6 土壤理化性狀與土壤線蟲和微生物數量的相關性分析Tab.6 Correlation between soil PLFAs and soil physicochemical properties
注:P0.05=0.602,P0.01=0.735,下同。

表7 土壤理化性狀與土壤線蟲和微生物生態指數的相關性分析Tab.7 Correlation between soil PLFAs and soil physicochemical properties
注:表中-N和-M分別代表土壤線蟲和土壤微生物。
研究區地處衛寧平原引黃灌區,土壤有不同程度的次生鹽漬化,土壤線蟲和微生物群落在不同季節、土層和樹齡都有其獨特的變化規律。本研究得到不同樹齡土壤線蟲類群屬數2綱6目11科38屬,個體密度平均107條/(100 g干土),低于其他果園的報道結果[29-30]。
夏季枸杞園表層土壤食細菌線蟲所占比例最大,植物寄生線蟲次之,亞表層植物寄生線蟲數量顯著增加,秋季樹齡為小于1、6、9 a的土壤植物寄生線蟲比例居各營養類群最高值。植物寄生線蟲是引起連作障礙的原因之一[31],可誘發或加重某些病害的發生,造成經濟損失[32],所以需要抑制這幾個樹齡秋季土壤植物寄生線蟲的繁殖。使用除草劑和化肥會抑制植物寄生線蟲的生長[33]。但食細菌線蟲也可以顯著提高木本植物對土壤氮和磷的吸收[34],促進植物根系生長[35],提高植物對污染/退化土壤的忍耐力[36],所以土壤食細菌線蟲還應該保留合理的數量。
隨樹齡的增加,表層土壤線蟲總數與微生物PLFA濃度變化并不一致:土壤線蟲總數先增加后減少,6 a樹齡土壤線蟲總數最多;但土壤微生物總PLFA濃度先減小后增大再減小,9 a樹齡土壤總PLFA濃度最大。這是由于線蟲攝食的細菌通過腸道后大部分仍保持活性[37],而且這些細菌可能在腸道內獲得某些激素和限制性營養物質,因而當排出后生長加快;此外,線蟲的分泌和排泄物為細菌生長提供了更易于利用的基質及無機營養,這對非根際土壤環境中細菌的增殖尤為重要,因此食細菌線蟲能夠促進微生物種群的增長[20]。陳小云等[38]指出食細菌線蟲顯著增加了土壤細菌、真菌和放線菌的數量,且對真菌和放線菌數量的促進作用比對細菌更為明顯,與本研究結論完全一致,這種現象可能是由于速生型細菌和慢生型真菌存在較激烈的資源競爭[39]。食細菌線蟲對細菌的捕食(減弱細菌對資源的競爭)給真菌(或放線菌)提供了生長的競爭優勢[40]。相對于線蟲各指標來講,季節、土層和樹齡對該地區枸杞園土壤微生物的影響更顯著,且這3個因素的交互對土壤微生物多樣性有顯著影響,這也反映了微生物群落組成對外部環境影響的敏感性。
土壤EC和微生物PLFA總濃度、細菌PLFA濃度、微生物多樣性呈顯著負相關關系,說明土壤鹽分會抑制土壤微生物的多樣性,但會促進適合高鹽分環境微生物的繁殖使其成為優勢種群。土壤有機質與各線蟲數量和微生物濃度均呈顯著或極顯著正相關關系,可以提高土壤線蟲豐富度和微生物群落的均勻度[41-42]。土壤速效氮含量與線蟲數量呈極顯著正相關,這是由于土壤氮能夠直接通過新陳代謝、銨態氮釋放或間接通過侵染和(或)食用細菌、真菌來增加土壤線蟲數量[43]。除食真菌線蟲和植物寄生線蟲外,土壤速效磷與各線蟲數量和微生物PLFA濃度均存在顯著或極顯著正相關關系,但本地區枸杞園長期大量施用復合肥,土壤氮磷鉀含量均處于較高水平,故與低磷水平下土壤菌根真菌數量與土壤磷含量呈顯著負相關關系的結論相反[44]。枸杞園通過施肥來顯著影響土壤微環境,土壤速效氮和速效磷與線蟲總數和食細菌線蟲呈顯著和極顯著整相關,與LIU等[45]研究結論完全一致。本研究發現枸杞園土壤微生物學性質和養分含量與土壤線蟲群落組成表現出密切的關系,這表明樹齡的增加改變了土壤資源有效性及微生物群落,進而對土壤線蟲群落或土壤碎屑食物網的結構和功能產生影響[46]。本試驗結果表明,不同樹齡枸杞園土壤線蟲生態指數和微生物生態指數變化趨勢并不一致。線蟲豐富度指數與微生物均勻度指數呈顯著正相關,這一現象也與線蟲和微生物群落生長、取食密切相關[20]。
通過對土壤線蟲、微生物數量及其生態指數的分析,可知研究區寧夏枸杞園0~20 cm土壤線蟲和微生物數量多于20~40 cm,但二者生態指數變化規律不同;20~40 cm土壤線蟲和微生物在數量、多樣性指數和優勢度指數變化趨勢一致。土壤有機質、全氮、速效磷含量與土壤各線蟲數量和微生物濃度相關性普遍達顯著或極顯著水平,土壤線蟲總數、食細菌線蟲數量與細菌、真菌和放線菌PLFA濃度均顯著或極顯著相關。季節和土層對土壤線蟲和微生物群落多樣性的影響普遍大于樹齡;季節、土層和樹齡對微生物群落的影響較對線蟲群落更顯著。在相同季節、相同土層的前提下,寧夏枸杞園土壤微環境質量隨樹齡的增加呈先改善后退化的趨勢。
1NAIR A, NGOUAJIO M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system[J]. Applied Soil Ecology, 2012, 58: 45-55.
2陳婧, 陳法軍, 劉滿強, 等. 溫度和CO2濃度升高下轉Bt水稻種植對土壤活性碳氮和線蟲群落的短期影響[J]. 生態學報, 2014, 34(6): 1481-1489.
CHEN Jing, CHEN Fajun, LIU Manqiang, et al. Short-term effects of CO2concentration elevation, warming and transgenic Bt rice cropping on soil labile organic carbon and nitrogen, and nematode communities[J]. Acta Ecologica Sinica, 2014, 34(6): 1481-1489. (in Chinese)
3LU Z B, DONG D F, YANG B, et al. Effects of crop species richness on the community of soil nematodes in an experimental agro-ecosystem[J]. European Journal of Soil Biology, 2016, 73: 26-33.
4WAGNER D, EISENHAUER N, CESARZ S. Plant species richness does not attenuate responses of soil microbial and nematode communities to a flood event[J]. Soil Biology and Biochemistry, 2015, 89: 135-149.
6HORTAL S, BASTASTIDA F, MORENO J L, et al. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient[J]. Soil Biology and Biochemistry, 2015, 88: 48-57.
7CHAPARRO J M, BADRI D V,VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4): 790-803.
8FU Q X, GU J, LI Y D, et al. Analyses of microbial biomass and community diversity in kiwifruit orchard soils of different planting ages[J]. Acta Ecologica Sinica, 2015, 35(3): 22-28.
9XIAO H F, TIAN Y H, ZHOU H P, et al. Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China[J]. Soil Biology and Biochemistry, 2014, 76: 161-169.
10孫曉銘, 段玉璽, 趙磊, 等. 遼寧果樹根圍土壤線蟲的多樣性研究[J]. 果樹學報, 2010, 27(3): 410-415.
SUN Xiaoming, DUAN Yuxi, ZHAO Lei, et al. Diversity of soil nematodes in orchards in Liaoning province[J]. Journal of Fruit Science, 2010, 27(3): 410-415. (in Chinese)
11MOCALI S, LANDI S, CERTO G, et al. Resilience of soil microbial and nematode communities afterbiofumigant treatment with defatted seed meals[J]. Industrial Crops and Products, 2015, 75: 79-90.
12劉雨迪, 陳小云, 劉滿強, 等. 不同稻作年限下土壤微生物學性質和線蟲群落特征的變化[J]. 生物多樣性, 2013, 21(3): 334-342.
LIU Yudi, CHEN Xiaoyun, LIU Manqiang, et al. Changes in soil microbial properties and nematode assemblage over time during rice cultivation[J]. Biodiversity Science, 2013, 21(3): 334-342. (in Chinese)
13張丹桔, 張健, 楊萬勤, 等. 一個年齡序列巨桉人工林植物和土壤生物多樣性[J]. 生態學報, 2013, 33(13): 3947-3962.
ZHANG Danju, ZHANG Jian, YANG Wanqin, et al. Plant’s and soil organism’s diversity across a range ofEucalyptusgrandisplantation ages[J]. Acta Ecologica Sinica, 2013, 33(13): 3947-3962. (in Chinese)
14JIANG Y J, SUN B, JIN C, et al. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil[J]. Soil Biology and Biochemistry, 2013, 60: 1-9.
15BONKOWSKI M, VILLENAVE C, GRIFFITHS B. Rhizosphere fauna: the functional and structural diversity of interactions of soil fauna with plant roots[J]. Plant and Soil, 2009, 321: 213-233.
16SARATHCHANDRA S U, GHANI A, YEATES G W, et al. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils[J]. Soil Biology and Biochemistry, 2001, 33(7): 953-964.
17BRADLEY K, DRIJBER R A, KNOPS J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2006, 38(7):1583-1595.
18FORGE T A, BITTMAN S, KOWALENKO C G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer[J]. Soil Biology and Biochemistry, 2005, 37(10):1751-1762.
19齊莎, 趙小蓉, 鄭海霞, 等. 內蒙古典型草原連續5年施用氮磷肥土壤生物多樣性的變化[J]. 生態學報, 2010, 30(20): 5518-5526.
QI Sha, ZHAO Xiaorong, ZHENG Haixia, et al. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications[J]. Acta Ecologica Sinica, 2010, 30(20): 5518-5526. (in Chinese)
20胡鋒, 李輝信, 謝漣琪, 等. 土壤食細菌線蟲與細菌的相互作用及其對N、P礦化生物固定的影響及機理[J]. 生態學報, 1999, 19(6): 914-920.
HU Feng, LI Huixin, XIE Lianqi, et al. Interactions of bacterivorous nematode and bacteria and their effects on mineralization-immobiolizat ion of nitrogen and phosphorus[J]. Acta Ecologica Sinica, 1999, 19(6): 914-920. (in Chinese)
21魯如坤. 土壤農業化學分析方法[M]. 北京: 中國農業科技出版社, 2000: 1-638.
22LIANG W J, LOU Y L, LI Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in northeast China[J]. Soil Biology and Biochemistry, 2009, 41(5): 883-890.
23BONGERS T. Nematodes of Netherland[M]. Utrecht: Pirola Schoorl, 1988.
24尹文英. 中國土壤動物檢索圖鑒[M]. 北京: 科學出版社, 1998.
25BOSSIO D A, SCOW K M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology, 1998, 35(3): 265-278.
26王峰源, 張建麗, 劉峰, 等. 河流對河岸帶落水區土壤線蟲生態指數的影響[J]. 水生態學雜志, 2013, 34(1): 7-13.
WANG Fengyuan,ZHANG Jianli,LIU Feng, et al. Effect of river on the ecological index of the soil nematode in the riparian falling zone[J]. Journal of Hydroecology, 2013, 34(1): 7-13. (in Chinese)
27ZHEN Z, LIU H, WANG N, et al. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China[J]. PLOS ONE, 2014, 9(10): e108555.
28王誠楠, 張偉東, 王雪峰, 等. 沿海區土壤線蟲對海水入侵土壤鹽漬化的響應[J]. 土壤學報, 2015, 52(5): 1135-1143.
WANG Chengnan, ZHANG Weidong, WANG Xuefeng, et al. Respone of soil nematodes to soil salinizaion induced by seawater intrusion in coastal areas[J]. Acta Pedologica Sinica, 2015, 52(5): 1135-1143. (in Chinese)
29楊樹泉, 沈向, 毛志泉, 等. 環渤海灣蘋果產區老果園與連作果園土壤線蟲群落特征[J]. 生態學報, 2010, 30(16): 4445-4451.
YANG Shuquan, SHEN Xiang, MAO Zhiquan, et al. Characterization of nematode communities in the soil of long-standing versus replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2010, 30(16): 4445-4451. (in Chinese)
30REARDON C L, STRAUSS S L, MAZZOLA M. Changes in available nitrogen and nematode abundance in response toBrassicaseed meal amendment of orchard soil[J]. Soil Biology and Biochemistry, 2013, 57: 22-29.
31李琪, 梁文舉, 姜勇. 農田土壤線蟲多樣性研究現狀及展望[J]. 生物多樣性, 2007, 15(2): 134-141.
LI Qi, LIANG Wenju, JIANG Yong. Present situation and prospect of soil nematode diversity in farmland ecosystems[J]. Biodiversity Science, 2007, 15(2): 134-141. (in Chinese)
32CHAUVIN C, DOREL M, VILLENAVE C, et al. Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil[J]. Applied Soil Ecology, 2015, 96: 131-140.
33PALOMARES-RIUS J E, CASTILLO P, MONTES-BORREGO M, et al. Nematode community populations in the rhizosphere of cultivated olive differs according to the plant genotype[J]. Soil Biology and Biochemistry, 2012, 45: 168-171.
34IRSHAD U,VILLENAVE C,BRAUMAN A, et al. Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability toPinuspinasterseedlings[J]. Soil Biology and Biochemistry, 2011, 43(10): 2121-2126.
35JIANG Y, WU Y, XU W S, et al. IAA-producing bacteria and bacterial-feeding nematodes promoteArabidopsisthaliana, root growth in natural soil[J]. European Journal of Soil Biology, 2012, 52(9): 20-26.
36HUA J F, JIANG Q, BAI J F, et al. Interactions between arbuscular mycorrhizal fungi and fungivorous nematodes on the growth and arsenic uptake of tobacco in arsenic-contaminated soils[J]. Applied Soil Ecology, 2014, 84: 176-184.
37SMERDA S M, JENSEN H J, ANDERSON A W. Escape of Salmonel laef rom chlorination during ingestion by pristionchus lheritieri (Nematoda: Diplogasterinae) [J]. Journal of Nematology, 1971, 3(3): 201-204.
38陳小云,李輝信,胡鋒, 等. 食細菌線蟲對土壤微生物量和微生物群落結構的影響[J]. 生態學報, 2004, 24(12): 2825-2831.
CHEN Xiaoyun, LI Huixin, HU Feng, et al. Effect of bacterivorous nematode on soil microbial biomass and microbiocoenosis[J]. Acta Ecologica Sinica, 2004, 24(12): 2825-2831. (in Chinese)
39TURNER S M, NEWMAN E I, CAMPBELL R. Microbial population of ryegrass root surface: influence of nitrogen and phosphorus supply[J]. Soil Biology and Biochemistry, 1985, 17(5): 711-715.
40GRIFFITHS B S, BARDGETT R D. Int eractions between micro-feeding invertebrates and soil microorganisms[M]∥Van Elsas. Modern Soil Microbiology. New York: Marcel Dekker, 1997: 165-182.
41HODSON A K, FERRIS H, HOLLANDER A D, et al. Nematode food webs associated with native perennial plant species and soil nutrient pools inCaliforniariparianoak woodlands[J]. Geoderma, 2014, 228-229(5): 182-191.
42LI W, ZHENG Z C, LI T X, et al. Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of Western Sichuan, China[J]. CATENA, 2015, 133: 198-205.
43REARDON C L, STRAUSS S L, MAZZOLA M. Changes in available nitrogen and nematode abundance in response toBrassica, seed meal amendment of orchard soil[J]. Soil Biology and Biochemistry, 2013, 57: 22-29.
44ATUL-NAYYAR, HAMEL C, FORGE T, et al. Arbuscular mycorrhizal fungi and nematodes are involved in negative feedback on a dual culture of alfalfa and Russian wildrye[J]. Applied Soil Ecology, 2008, 40(1): 30-36.
45LIU T, WHALEN J K, RAN W, et al. Bottom-up control of fertilization on soil nematode communities differs between crop management regimes[J]. Soil Biology and Biochemistry, 2016, 95: 198-201.
46OKADA H, HARADA H. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field[J]. Applied Soil Ecology, 2007, 35(3): 582-598.
Soil Nematode and Microbial Community Diversity inLyciumbarbarumL. Orchard
Zhang Junhua1Zhang Yi2Li Ming1
(1.InstituteofEnvironmentalEngineering,NingxiaUniversity,Yinchuan750021,China2.CollegeofEducation,NingxiaUniversity,Yinchuan750021,China)
Soil nematode and microbes are essential and very sensitive to any upsets in terrestrial ecosystems. In order to reveal the tendency of soil quality of wolfberry (LyciumbarbarumL.) orchard, make the origin ofL.barbarumas the objective region, different stand ages of soil were selected in wolfberry orchard. The objective of the study was achieved by nematode and phospholipid fatty acid (PLFA) biomarker analysis of soil samples fromL.barbarumorchards in the objective region. The change rule of soil nematode and microbial community diversity with the change of season, soil layer and stand age was analyzed. The results showed that the abundance of nematode was increased and then decreased in 0~20 cm of soil, with the highest nematode at the stand age of 6. The proportion of bacterivores was the highest (57.23% and 61.19% in summer and autumn, respectively), and plant parasites nematode was next, fungivorous nematode and predators-omnivore had the lowest abundance. Plant parasites nematode was relatively higher at 20~40 cm than that at 0~20 cm. The average concentrations of total and bacterial PLFAs in the surface soil were initially decreased and then increased, and the highest microbial PLFA concentrations were obtained in 9thyear. The tendency change of total and bacterial PLFAs were similar to nematode abundance at 20~40 cm in summer. With longer stand age, Shannon diversity index (H′) and richness index (SR) of nematode were increased and then decreased, however,H′ andSRof microbial were decreased, and dominant index was increased. The change tendency of abundance,H′ andSRof soil nematode were similar to soil microbial. There was significant negative correlation between soil pH value, EC, microbial and bacteria PLFA. The organic matter, total nitrogen and available P were significantly positively correlated to the abundance of nematodes and concentration of microbial PLFA, respectively. Total abundance of nematode, bacterivores and bacteria, fungi and actinomyces PLFA were significantly positively correlated. On the whole, the season, layer and stand age had different effects on the nematode and microbial community, and the stand age had the least effect; the season, soil layer and stand age had more significant effect on microbe than nematode. Furthermore, the microenvironment of soil was improved and then declined gradually as the stand age increased in the same season as well as the soil layer.
LyciumbarbarumL.; soil nematode community; phospholipid fatty acid; ecological index; soil physicochemical characteristics
10.6041/j.issn.1000-1298.2016.09.024
2016-03-22
2016-04-11
國家自然科學基金項目(41261080)和寧夏自治區環保專項
張俊華(1977—),女,副研究員,主要從事土壤質量提升研究,E-mail: zhangjunhua728@163.com
S154.3; S154.5
A
1000-1298(2016)09-0161-10