俞宙菲, 類彥立, 李鐵剛, 3, 4
?
青島灣潮間帶活體底棲有孔蟲Ammonia aomoriensis(Asano, 1951)殼體18O值的季節變化
俞宙菲1, 2, 類彥立1, 李鐵剛1, 3, 4
(1. 中國科學院海洋研究所, 山東青島266071; 2. 中國科學院大學, 北京100049; 3. 國家海洋局第一海洋研究所, 海洋沉積與環境地質國家海洋局重點實驗室, 山東青島266061; 4. 青島海洋科學與技術國家實驗室海洋地質過程與環境功能實驗室, 山東青島266061)
近岸淺水底棲有孔蟲是陸架海區古環境重建的重要手段, 但是至今對其活體的研究非常缺乏。2014年6月至2015年5月對青島灣潮間帶活體底棲有孔蟲進行了連續12個月的采樣, 用虎紅染色以確認活體。對殼徑范圍在200 ~ 550 μm的活體殼體, 以每增加50 μm殼徑為一組, 進行18O測試。結果顯示,殼體18O的月平均值的季節變化趨勢與溫度和鹽度一致, 與溫度反相關, 與鹽度正相關, 即青島灣殼體18O值受溫度和海水18O的影響, 其殼體18O值表現出了很好的季節性波動。但是殼體18O的變化滯后于所測溫度和鹽度約2個月, 其記錄的是蟲體在生長周期內在真實鈣化溫度下分餾所得的18O值。
潮間帶;; 殼體氧同位素; 季節變化
溫度控制無機碳酸鈣沉降時的氧同位素分餾[1-4]。McCrea通過在4~80℃環境下文石和文石-碳酸鈣混合物的沉降實驗, 證實了溫度對無機碳酸鈣沉降同位素組成的控制作用[5]。隨后, Epstein等[6]用生長在7~30℃環境的生物碳酸鈣進行校正, 顯示出溫度與生物殼體18O之間負相關的關系。20世紀80年代, 這種控制作用進一步通過野外和培養實驗在浮游有孔蟲得到了證實[7-9]。通過對深海鉆孔頂部樣品中底棲有孔蟲殼體18O的測試, 建立了諸多底棲有孔蟲殼體18O與水溫的關系式, 包括[10-11],和[11-12]。利用深海底棲有孔蟲殼體18O來反映深海底層水溫度和全球冰量的變化, 在古海洋環境重建中已得到廣泛的應用[13-17]。
但是, 由于對淺水底棲有孔蟲的野外調查研究甚少, 底棲有孔蟲活體18O對時間序列(季節)響應的記錄十分缺乏。Fontanier等對采自法國比斯開灣的活體底棲有孔蟲和等進行了兩年的調查, 沒有觀察到殼體18O的季節變化[18]。Filipsson等對Havstens灣20 m水深和Gullmar灣119 m水深的有孔蟲進行了16個月的調查, 也沒有發現溫度和鹽度的季節變化與殼體18O的關聯[19]。但Wefer 和Berger[20]的研究發現熱帶淺水大型底棲有孔蟲和的殼體18O表現出明顯的季節變化。
主要分布在北海和日本沿海的潮間帶、濕地和咸水湖環境[21-22]; 是波羅的海泥質沉積物里的常見種[23]; 在中國黃海廣泛分布, 是青島灣的優勢種之一[24]。分子和生態調查研究顯示, 在中國陸架海域為客觀存在的種類, 其形態變化與溫度無相關性, 但微球型初房比率與海水鹽度顯著正相關[25]。在世界上關于的研究較少, 很可能是因為這個種常被誤鑒定為[26]或[22, 24, 27]。
青島灣潮間帶環境的季節性變化很明顯, 鑒于淺水底棲有孔蟲野外調查數據的匱乏, 本文對青島灣活體有孔蟲的優勢種進行了連續12個月的殼體18O采樣測試, 探討了其殼體18O值對潮間帶環境季節變化的響應。
1 材料與方法
1.1 樣品的采集和處理
沉積物樣品采自青島灣泥砂質潮間帶(圖1a, b), 從2014年6月至2015年5月每月中旬采樣一次, 共12個月。退潮時采取表層1cm沉積物, 保存于采樣瓶中, 并加入適量海水。采樣時用水銀溫度計測量氣溫、水溫和泥溫, 用手持式鹽度計測量海水鹽度。樣品帶回實驗室后, 去掉海水, 立即加入虎紅和酒精的混合溶液對活體進行染色。放置48 h后, 將沉積物用300目(約48 μm)的篩絹過水沖洗, 粗粒部分放置于50℃烘箱中烘干。從烘干的樣品中挑出被虎紅染色的活體(圖1d)用于進一步分析。
a.青島灣采樣點; b. 潮間帶現場照片; c. 活體(見黃色原生質); d. 經虎紅染色后用于測試殼體18O的。圖中標尺為200 μm
a. Sampling site in Qingdao Bay, Yellow Sea, China; b. Photograph of the intertidal flats; c. Livingwith yellow protoplasm; d. Individuals stained for stable oxygen isotope measurement. The scale bar is 200 μm
1.2 殼體18O測試
有孔蟲按殼徑每增加50 μm間隔被劃分成7個組: 200~250 μm, 250~300 μm, 300~350 μm, 350~400 μm, 400~450 μm, 450~500 μm和500~550 μm進行18O測試。殼徑測量由實體顯微鏡LEICA S8AP0利用cellSens Standard軟件完成。從各個殼徑范圍分別挑取4~32枚。將每份樣品放入0.3 mL的玻璃小管內, 用解剖針扎破殼體。先加入適量3%的次氯酸鈉溶液, 用于除去被虎紅染色的原生質。兩小時后吸掉廢液, 用去離子水清洗3次。再加入適量5%的H2O2溶液浸泡殼體約2 h, 期間可輕輕敲打玻璃小管管壁使H2O2溶液和殼體充分反應, 去除有機雜質。再加入丙酮溶液洗去殼體表面粘附的油脂, 超聲30 s后用針管吸去濁液, 加水再洗3次, 放入50℃的烘箱中干燥之后待測試。氧同位素測試在中國科學院海洋研究所海洋地質與環境重點實驗室GV IsoPrime質譜儀上進行, 通過NBS18標準校正為PDB標準, 本文數據測試標準誤差是0.07‰。
2 實驗結果
表1顯示了2014年6月至2015年5月不同殼徑范圍的活體的殼體18O值和月平均值, 以及測量的氣溫、水溫、泥溫和鹽度值。野外測量的氣溫、水溫和泥溫的變化基本一致(圖2), 表現為夏季溫度高(8月最高), 冬天溫度低(2月最低)。測量氣溫的年變化范圍為4.2~32.5℃, 水溫的年變化范圍為5.8~33℃, 泥溫的年變化范圍為3.8~30℃。海水鹽度的季節變化范圍相對溫度的變化要窄很多, 為29~31, 體現為夏季月份最低, 而冬季月份最高, 全年的海水鹽度波動為2個鹽度單位。

表1 青島灣潮間帶2014年6月至2015年5月各月活體A. aomoriensis的殼體δ18O值, 以及測量的環境因子
“/”表示沒有數據
殼體的月平均18O表現出在9月和10月最輕, 在3月和4月最重的特點。全年變化范圍為–0.75‰到0.72‰, 變化幅度為1.47‰。從圖2可以看到,殼體18O的季節變化模式與溫度和鹽度的變化模式相同, 但是其變化要滯后于環境變化約2個月。
3 討論
3.1 溫度對殼體18O的影響
Wefer和Berger對采自于1 ~ 3 m水深(年最低溫度26℃在2月, 年最高溫度30℃在7月)的熱帶大型底棲有孔蟲和10 m水深(年最低溫度16℃在2月, 年最高溫度29.5℃在8月)的進行了殼體同位素分析, 結果顯示其殼體18O具有很好的季節變化[20]。放置于Cariaco海盆3 a的沉積物捕獲器顯示,(pink)的殼體18O基本精確地記錄了該海區表層水溫度的季節變化[28]。對加利福尼亞灣7 a的沉積物捕獲器研究也顯示的殼體18O精確地記錄了表層水溫度的季節變化[29]。但是由于自然環境的復雜性, 有孔蟲殼體18O對溫度的響應可能會受到干擾。Fontanier等[18]對法國Biscay灣約550 m水深的和等活體底棲有孔蟲進行研究, 沒有觀察到殼體18O的季節變化。Filipsson等[19]對Havstens灣20 m水深和Gullmar灣119 m水深的進行了16個月調查, 結果表明溫度和鹽度的季節變化與殼體18O沒有顯著關系, 認為海水18O對溫度的作用有一定的抵消。另外, 相對于野外調查, 能更好地控制變量的培養實驗也證實了溫度對有孔蟲殼體18O的控制作用。例如將和分別放置于4℃, 7℃, 14℃和21℃下培養, 實驗表明其殼體18O隨溫度升高而變輕[30]。另一組在4~19℃的培養實驗表明, 在控制殼徑的前提下, 溫度對殼體18O的控制作用為–0.22‰/℃[31]。將淺水底棲有孔蟲在10~27℃, 鹽度18~33范圍內培養, 觀察到殼體18O隨溫度升高而線性變輕[32]。
近岸淺水環境的季節性波動比深海大, 如本研究的采樣點青島灣潮間帶季節溫差變化非常明顯, 冬夏差異高達約27℃(表1)。殼體18O值在變化模式上與溫度和鹽度的年際周期性變化一致, 顯示對溫度和鹽度變化響應顯著。但是, 其最輕值出現在2014年9~10月, 而最重值出現在2015年3~4月, 比溫、鹽的變化滯后了約2個月。
根據Shackleton[10], Lynch-Stieglitz等[12]和Toyofuku等[32]所得的有孔蟲殼體18O的分餾平衡方程, 假設海水18O不變且分餾平衡, 溫度升高1℃, 殼體18O將偏輕0.21‰~0.25‰, 青島灣潮間帶冬季和夏季泥溫的最大差值約為26℃, 則殼體18O的年變化幅度應該有5.46‰~6.5‰, 而實際的變化幅度只有1.47‰。其可能是因為真實的鈣化溫度差沒有測量的那么大, 夏季的豐度非常低, 可能高溫不適合這個種的生長, 因此它們在溫度較低的時間內鈣化。另外, 也有可能是受到了生命效應的影響。
3.2 鹽度對殼體18O的影響
有孔蟲殼體18O除了受溫度的控制以外, 海水18O也會對其產生影響[33-34]。海水18O值與水循環中的分餾密切相關, 主要受蒸發、大氣水汽交換、降雨以及淡水輸入(降雨、河流和冰蓋融化)的影響[35-36]。由于這些過程最終可以在鹽度上體現出來, 因此海水18O與鹽度之間存在很好的線性正相關關系[37], 但是18O-鹽度關系式存在海區差異[12, 38]。另外, 海水18O的變化比鹽度更復雜, 顯著的季節和年際變化可能給海水18O或海水18O-鹽度的關系帶來偏差, 其原因有大氣中的附加分餾或海冰的形成[38]。
在中國邊緣海, 吳世迎[39]首先建立了黃河三角洲海區海水18O與鹽度的關系:18Ow= 0.25– 8.39。隨后, Kim等[40-41]將對馬暖流的數據與前人在長江口、黃河口和黑潮區的數據相結合, 得到18Ow= 0.24– 8.13[42]。杜金秋等于夏季對黃、東海8個斷面57個站位的海水18O值進行了測定, 得到關系式:18Ow= 0.29– 9.85(2= 0.67)[43]。Ye等[36]在夏季和冬季對黃、東海的表層海水18O做了調查, 海水18O值與鹽度呈正相關但存在季節差異:18Ow= 0.27– 10.68(2= 0.68,<0.001, 夏季);18Ow= 0.24– 8.66(2= 0.89,<0.001, 冬季), 大氣強迫的季節差異(潮濕溫和的夏季風和強勁干燥的冬季風)和區域降水會給海水18O帶來季節和空間上的差異。
在本研究中, 青島灣的季節性非常明顯,殼體18O的變化與鹽度的變化呈正相關, 由上述公式推算, 青島灣全年的鹽度變化為2, 相應的海水18O的變化幅度為0.48‰~0.58‰, 可能會對殼體18O的變化帶來一定的影響。
3.3殼體18O季節變化的滯后
根據有孔蟲殼體的生長特征, 出現滯后的原因可能來自于以下幾個方面。首先, 在野外采得的有孔蟲殼體記錄的信息是它在生長期間的信息, 而我們現場測得的環境因子數據只是一瞬間的[44]。屬的實驗室培養結果顯示, 有孔蟲個體從繁殖幼體到成體, 大概需要幾個月的時間。在10~27℃、鹽度18~33的培養條件下在2個月內才長到300 μm以上[32];在20℃, 鹽度32的條件下, 2個月最大長到700 μm[45];sp.在26℃下2~3個月內只長到247~288 μm[46];在25℃條件下1個月生長了10~21個房室[47];在18℃中6周最多只生長了100 μm[27];而在1個月(25℃, 鹽度32)的時間內只生長了不到200 μm[26]。目前唯一關于淺水底棲有孔蟲殼體18O的季節變化的報道來自于熱帶大型底棲有孔蟲和, 它們分別采自于1 ~ 3 m水深和10 m水深, 由于個體較大, 可用解剖針進行分房室測試, 每份樣品1~10個房室, 從而避免與早期房室的混合, 精確地恢復了殼體18O變化時間序列, 沒有出現滯后現象[20]。本文用來測試的殼徑范圍為200~550 μm, 由此推測, 實驗得到的殼體18O月平均值可能記錄了若干個月的環境信息, 而且不同季節有孔蟲殼體的生長速度差異較大。的個體相對于大型有孔蟲要小, 為了滿足上機要求的樣品用量, 不可能對殼體進行分房室測試, 從而無法剔除不同時間段、不同溫度條件下生長的殼室的影響。
其次, 有孔蟲的生長情況非常復雜。有孔蟲早期的房室小且生長快, 后期房室大且生長慢[34, 48-50]。的生長速率從最開始的一天一個房室降低到一周一個房室[47]。Bradshaw[48]在實驗室觀察了var.的生長情況, 發現其成體在1個月內只生長了5~8個房室(10~35℃)。另外, 有孔蟲殼體的形成可能是集中在某個時間段(幾小時)完成的[46]。利用微計算機斷層掃描技術(顯微CT)對野外共生大型有孔蟲進行房室體積掃描, 發現其生長出現潮汐周期(約14.8 d)和月相周期(約29.5 d), 可能是因為潮汐所產生的強烈的潮流影響到了半附著的底棲有孔蟲[51-52], 細粒沉積物被懸浮而減弱了光的強度, 但增加了無機營養物質, 從而影響了內共生體, 且內共生的微藻在滿月的時候光合作用速率更高[53]。月光的增強和潮汐濁流引起的水體中光的減弱這兩個因素之間的相互作用, 導致時而相互助益時而相互削弱[54]。這種潮汐和月亮周期在浮游有孔蟲[55-59]和其它大型底棲有孔蟲也有觀察到。
4 結論
本文對青島灣潮間帶淺水底棲有孔蟲進行了連續12個月的活體采樣, 現場測量氣溫, 水溫, 泥溫和鹽度, 對虎紅染色的活體進行分殼徑(200~550 μm, 50 μm間隔)殼體18O測試。研究顯示, 青島灣殼體18O值受溫度與海水18O的影響, 其殼體18O值表現出了很好的季節性波動。但是,殼體18O滯后于溫度和鹽度的變化約2個月, 有孔蟲殼體記錄的是其在生長期間, 在真實鈣化溫度下, 分餾所得的18O值。
[1] Urey H C. The thermodynamic properties of isotopic substances[J]Journal of the Chemical Society , 1947, 0: 562-581.
[2] Kim S T, O’ Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]Geochimica et Cosmochimica Acta, 1997, 61(16): 3461- 3475.
[3] Tarutani T, Clayton R N, Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]Geochimica et Cosmochimica Acta, 1969, 33(8): 987-996.
[4] O’Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]The Journal of Chemical Physics, 1969, 51(12): 5547-5558.
[5] McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 18(6): 849-857.
[6] Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11): 1315-1326.
[7] Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 1983, 47(6): 1025-1031.
[8] Bouvier-Soumagnac Y, Duplessy J C. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: Implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle [J]The Journal of Foraminiferal Research, 1985, 15(4): 302-320.
[9] Bouvier-Soumagnac Y Y, Duplessy J C, Bé A W H. Isotopic composition of a laboratory cultured planktonic foraminifer, implications for paleoclimatic reconstructions[J]Oceanologica Acta, 1986, 9: 519-522.
[10] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus: Isotopic changes in the ocean during the last glacial[J]. Colloques Internationaux du Centre National de la Recherche Scientifique, 1974, No. 219: 203-209.
[11] Marchitto T M, Curry W B, Lynch-Stieglitz J, et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera[J]. Geochimica et Cosmochimica Acta, 2014, 130(0): 1-11.
[12] Lynch-Stieglitz J, Curry W B, Slowey N. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera[J]Paleoceanography, 1999, 14(3): 360-373.
[13] Dunbar R B, Wefer G. Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin[J]Marine Geology, 1984, 59(1-4): 215-225.
[14] Labeyrie L D, Duplessy J C, Blanc P L. Variations in mode of formation and temperature of oceanic deep waters over the past 125000 years[J]Nature, 1987, 327(6122): 477-482.
[15] Zachos J C, Quinn T M, Salamy K A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition[J]Paleoceanography, 1996, 11(3): 251-266.
[16] Shakun J D, Lea D W, Lisiecki L E, et al. An 800-kyr record of global surface ocean and implications for ice volume-temperature coupling[J]Earth and Planetary Science Letters, 2015, 426: 58-68.
[17] Elderfield H, Ferretti P, Greaves M, et al. Evolution of ocean temperature and ice volume through the mid-pleistocene climate transition[J]Science, 2012, 337(6095): 704-709.
[18] Fontanier C, Mackensen A, Jorissen F J, et al. Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability[J]Marine Micropaleontology, 2006, 58(3): 159-183.
[19] Filipsson H L, Nordberg K, Gustafsson M. Seasonal study of18O and13C in living (stained) benthic foraminifera from two Swedish fjords[J]Marine Micropaleontology, 2004, 53(1-2): 159-172.
[20] Wefer G, Berger W H. Stable isotopes in benthic foraminifera: Seasonal variation in large tropical species[J]Science, 1980, 209(4458): 803-805.
[21] Makoto S T, Hiroshi K, Masashi T. Phylogenetic relationships among genus(Foraminifera) based on ribosomal DNA sequences, which are distributed in the vicinity of the Japanese Islands[J]Frontier Research on Earth Evolution, 2005, 2: 1-10.
[22] Hayward B W, Holzmann M, Grenfell H R, et al. Morphological distinction of molecular types in- towards a taxonomic revision of the world’s most commonly misidentified foraminifera[J]Marine Micropaleontology, 2004, 50(3-4): 237-271.
[23] Haynert K, Sch?nfeld J, Polovodova A I, et al. The benthic foraminiferal community in a naturally CO2- rich coastal habitat of the southwestern Baltic Sea[J]Biogeosciences, 2012, 9(11): 4421-4440.
[24] 類彥立, 李鐵剛. 奧茅卷轉蟲(Asano, 1951)與畢克卷轉蟲(Linnaeus, 1758)(有孔蟲)的分類學以及在黃東海分布的溫鹽深特征比較研究[J]微體古生物學報, 2015, 32(1): 1-19. Lei Yanli, Li Tiegang.(Asano, 1951) and(Linnaeus, 1758) (foraminifera): Comparisons on their taxonomy and ecological distributions correlated to temperature, salinity and depth[J]. Acta Micropalaeontologica Sinica, 2015, 32(1): 1-19.
[25] Lei Y, Li T, Nigam R, et al. Environmental significance of morphological variations in the foraminifer(Asano, 1951) and its molecular identification: A study from the Yellow Sea and East China Sea, PR China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, Dio: 10.1016/j.palaeo.2016.05.010.
[26] Mewes A, Langer G, de Nooijer L J, et al. Effect of different seawater Mg2+concentrations on calcification in two benthic foraminifers[J]Marine Micropaleontology, 2014, 113: 56-64.
[27] Haynert K, Sch?nfeld J. Impact of changing carbonate chemistry, temperature, and salinity on growth and test degradation of the benthic foraminifera[J]The Journal of Foraminiferal Research, 2014, 44(2): 76-89.
[28] Tedesco K, Thunell R, Astor Y, et al. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: Seasonal and interannual variations[J]Marine Micropaleontology, 2007, 62(3): 180-193.
[29] Wejnert K E, Pride C J, Thunell R C. The oxygen isotope composition of planktonic foraminifera from the Guaymas Basin, Gulf of California: Seasonal, annual, and interspecies variability[J]Marine Micropaleontology, 2010, 74(1-2): 29-37.
[30] Filipsson H L, Bernhard J M, Lincoln S A, et al. A culture-based calibration of benthic foraminiferal paleotemperature proxies:18O and Mg/Ca results[J]Biogeosciences, 2010, 7(4): 1335-1347.
[31] Barras C, Duplessy J C, Geslin E, et al. Calibration of18O of cultured benthic foraminiferal calcite as a function of temperature[J]Biogeosciences, 2010, 7(4): 1349-1356.
[32] Toyofuku T, Suzuki M, Suga H, et al. Mg/Ca and18O in the brackish shallow-water benthic foraminifer‘’[J]Marine Micropaleontology, 2011, 78(3-4): 113-120.
[33] Vincent E, Killingley J S, Berger W H. Stable isotope composition of benthic foraminifera from the equatorial Pacific[J]Nature, 1981, 289(5799): 639-643.
[34] McCorkle D C, Bernhard J M, Hintz C J, et al. The carbon and oxygen stable isotopic composition of cultured benthic foraminifera[J]Geological Society, London, Special Publications, 2008, 303(1): 135-154.
[35] Rohling E J. paleoceanography, physical and chemical proxies-Oxygen Isotope Composition of Seawater[C]// Scott A E, Cary J M. Encyclopedia of Quaternary Science (Second Edition). Amsterdam: Elsevier, 2013: 915-922.
[36] Ye F, Deng W, Xie L, et al. Surface water18O in the marginal China seas and its hydrological implicationsEstuarine[J]. Coastal and Shelf Science, 2014, 147: 25-31.
[37] Epstein S, Buchsbaum R, Lowenstam H A, et al. Carbonate-water isotopic temperature scale[J]Geological Society of America Bulletin, 1951, 62(4): 417-426.
[38] LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]Geophysical Research Letters, 2006, 33(12): L12604.
[39] 吳世迎. 渤、黃海海水的氧同位素組成研究[J]中國科學(B輯), 1990, 7: 756-763. Wu Shiying. Oxygen isotope composition of seawaters in the Huanghai (Yellow) Sea and Bohai Sea[J]. Science in China (Series B), 1990, 7: 756-763.
[40] Kang D J, Chung C S, Kim S H, et al. Oxygen isotope characteristics of seawaters in the Yellow Sea[J]Oceanographic Literature Review, 1995, 42(11): 279-284.
[41] Zhang J, Letolle R, Martin J M, et al. Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze River) estuarine systems[J]Continental Shelf Research, 1990, 10(4): 369-384.
[42] Kim K R, Cho Y K, Kang D J, et al. The origin of the Tsushima Current based on oxygen isotope measurement[J]Geophysical Research Letters, 2005, 32(3): L03602.
[43] 杜金秋, 陳敏, 曹建平, 等. 南黃海和東海海水18O的組成及其意義[J]海洋與湖沼, 2012, 43(6): 1057- 1066. Du Jinqiu, Chen Min, Cao Jianping, et al. Oxygen isotope in seawater and its hydrological implication in the southern Yellow Sea and the East China Sea[J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1057- 1066.
[44] Wollenburg J E, Raitzsch M, Tiedemann R. Novel high-pressure culture experiments on deep-sea benthic foraminifera — Evidence for methane seepage-related13C of[J]Marine Micropaleontology, 2015, 117: 47-64.
[45] Diz P, Barras C, Geslin E, et al. Incorporation of Mg and Sr and oxygen and carbon stable isotope fractionation in cultured[J]Marine Micropaleontology, 2012, 92-93(0): 16-28.
[46] Keul N, Langer G, de Nooijer L J, et al. Effect of ocean acidification on the benthic foraminiferasp. is caused by a decrease in carbonate ion concentration[J]Biogeosciences, 2013, 10(10): 6185-6198.
[47] de Nooijer L J, Hathorne E C, Reichart G J, et al. Variability in calcitic Mg/Ca and Sr/Ca ratios in clones of the benthic foraminifer[J]Marine Micropaleontology, 2014, 107(0): 32-43.
[48] Bradshaw J S. Laboratory studies on the rate of growth of the foraminifer, “(Linné) var.(Cushman)”[J]Journal of Paleontology, 1957, 31(6): 1138-1147.
[49] Stouff V, Lesourd M, Debenay J P. Laboratory observations on asexual reproduction (schizogony) and ontogeny ofwith comments on the life cycle[J]The Journal of Foraminiferal Research, 1999, 29(1): 75-84.
[50] Barras C, Geslin E, Duplessy J C, et al. Reproduction and growth of the deep-sea benthic foraminiferunder different laboratory conditions[J]The Journal of Foraminiferal Research, 2009, 39(3): 155-165.
[51] Hohenegger J, Yordanova E, Nakano Y, et al. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan[J]Marine Micropaleontology, 1999, 36(2-3): 109-168.
[52] Zuo S H, Zhang N C, Li B, et al. Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai[J]International Journal of Sediment Research, 2009, 24(3): 287-298.
[53] Eder W, Briguglio A, Hohenegger J. Growth ofunder natural and laboratory conditions[J]Marine Micropaleontology, 2016, 122: 27- 43.
[54] Hohenegger J, Briguglio A. Methods for estimating individual growth of foraminifera based on chamber volumes[C]// Kitazato H, Bernhard J M. Approaches to Study Living Foraminifera: Collection, Maintenance and Experimentation. Japan, Tokyo: Springer, 2014: 29-54.
[55] Bijma J, Erez J, Hemleben C. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers[J]Journal of foraminiferal research, 1990, 20(2): 117-127.
[56] Bijma J, Hemleben C, Wellnitz K. Lunar-influenced carbonate flux of the planktic foraminifer(Brady) from the central Red Sea[J]Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(3): 511-530.
[57] Erez J, Almogi-Labin A, Avraham S. On the life history of planktonic foraminifera: Lunar reproduction cycle in(Brady)[J]Paleoceanography, 1991, 6(3): 295-306.
[58] Jonkers L, Reynolds C E, Richey J, et al. Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico[J]Biogeosciences, 2015, 12(10): 3061-3070.
[59] Lon?ari? N, Brummer G-J A, Kroon D. Lunar cycles and seasonal variations in deposition fluxes of planktic foraminiferal shell carbonate to the deep South Atlantic (central Walvis Ridge)[J]Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(7): 1178- 1188.
Seasonal oxygen isotope variation of a living benthic foraminifera(Asano, 1951) in the intertidal area of Qingdao Bay, Yellow Sea, China
YU Zhou-fei1, 2, LEI Yan-li1, LI Tie-gang1, 3, 4
(1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration People’s Republic of China, Qingdao 266061, China; 4. Function Laboratory of Marine Geology and Environment, National Laboratory for Marine Science and Technology, Qingdao 266061, China)Received:Mar. 23, 2016
intertidal flats;; stable oxygen isotope; seasonal variation
A successive 12-month study (June 2014 to May 2015) was conducted on the oxygen isotope composition (18O) of living benthic foraminifera, from the intertidal flats of Qingdao Bay, Yellow Sea, China.18O values were measured in different diameter test groups, ranging from 200 μm to 550 μm, at 50 μm intervals, from Rose Bengal stained specimens. The results showed that the fluctuant pattern of18O was remarkably similar to the temperature and salinity changes, negative and positive, respectively. The variation in18O in livingwas influenced by temperature and seawater18O, and exhibited a seasonal pattern which showed a time-lag of about two months. This result implies that the large shell ofreflects the environmental18O conditions during the months when the chambers form, and probably record the oxygen isotopes, obtained by fractionation under actual calcification temperatures, over the whole life cycle.
P67
A
1000-3096(2016)07-0132-08
10.11759/hykx20160323001
2016-03-23;
2016-05-26
國家自然科學基金(41476043, 41230959, 41176132); 中國科學院戰略性先導科技專項(A類)(XDA11030104); 大陸架科學鉆探項目(GZH201100202); 海洋生物群落結構對氣候變化的響應(GASI-03- 01-03-01; DOMEP(MEA)-01-01-E; No. 201303; MGK1210)
[Foundation: National Natural Science Foundation of China, No. 41476043, No. 41230959, No. 41176132; Strategic Priority Research Program of the Chinese Academy of Sciences, No. XDA11030104; Continental Shelf Drilling Program of China, No. GZH201100202; Response of marine biotic community structure to climate change, National Program on Global Change and Air-Sea Interaction, GASI-03-01-03-01; DOMEP (MEA)-01-01-E; No. 201303; MGK1210]
俞宙菲(1987-), 女, 江蘇常州人, 博士研究生, 研究方向: 海洋地質學, E-mail: yuzhoufei5@126.com;李鐵剛,通信作者,E-mail: tgli@fio.org.cn;
(本文編輯: 劉珊珊)