999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義正交表相遇平衡性的等價條件

2016-10-18 03:44:55吳亞楨張應山廖靖宇
許昌學院學報 2016年5期
關鍵詞:設計

吳亞楨,楊 林,張應山,廖靖宇,田 萍

(1.許昌學院 數學與統計學院,河南 許昌 461000;2.華東師范大學 統計學院,上海 200241)

?

廣義正交表相遇平衡性的等價條件

吳亞楨1,楊林1,張應山2,廖靖宇1,田萍1

(1.許昌學院 數學與統計學院,河南 許昌 461000;2.華東師范大學 統計學院,上海 200241)

廣義正交表是一種類似于正交表的新設計,其數據分析保持了正交表的優良性,即,各個因子的估計是無偏估計,并且方差達到最小,但試驗次數大幅減少.相遇平衡性是廣義正交表的兩個平衡條件之一, 也是正交相遇平衡區組設計必須滿足的一個基本要求.利用矩陣象技術, 給出了相遇平衡性的一個等價條件, 借助于SAS 軟件可以方便快速的進行驗證.

正交相遇平衡區組設計;廣義正交表;相遇平衡;矩陣象

試驗設計的基本問題是要求試驗的分析結論具有再現性,即:對于同樣的試驗問題,不同的試驗工作者,無論采取什么樣的合理設計來收集數據,根據數據進行數據分析的分析結論應該是唯一的,這種分析結論不但和試驗工作者的假設無關,而且和試驗工作者的操作行為無關.可以證明:正交表試驗和相應的數據分析結論具有這種再現性要求[1,2].廣義正交表是在保證試驗具有類似于正交表數據分析的基本要求下提出的一種新的設計,這種設計可以和正交表一樣用于試驗設計和相應的數據分析,也可以證明其數據分析結論是具有再現性的[3-6].

廣義正交表要求設計表具有兩個最基本的平衡性質:正交平衡和相遇平衡.

正交平衡是指多個試驗因子中的各個試驗因子的組合配搭之間的一種平衡.這種平衡性是保證對多個試驗因子中的各個試驗因子之間的處理是公平的,試驗工作者無論對于試驗因子賦予任何內容,雖然試驗的數據分析結論將會隨著試驗工作者的賦值予以變動,但不會影響各個試驗因子的分析結論.如果試驗沒有正交平衡性的要求,那么對多個試驗因子中的各個因子的試驗效果比較將會失去公平,也將不能保證試驗的再現性要求.因此,正交平衡是進行多個試驗因子的試驗設計必須考慮的一種平衡要求.

相遇平衡是指每個試驗因子的各個試驗水平的組合配搭之間的一種平衡.這種平衡性保證試驗因子對各個試驗水平的處理是公平的,試驗工作者無論對于試驗水平賦予任何試驗內容,雖然試驗的數據分析結論將會隨著試驗工作者的賦值予以變動,但不會影響各個試驗水平的分析結論.如果試驗沒有相遇平衡性的要求,那么對試驗因子的各個水平的試驗比較將會失去公平,也將不能保證試驗的再現性要求.因此,相遇平衡是試驗設計的最基本的一種平衡要求.但是,這種平衡性的組合判定方法較為復雜,本文利用矩陣象技術,給出了相遇平衡性的一個等價條件, 借助于SAS軟件可以方便快速的進行驗證.

1 正交相遇平衡區組設計的定義

在試驗設計理論當中,具有兩種形式的設計,其一為行列設計,如正交表、均勻設計等,其二為區組設計,如平衡不完全區組設計、正交拉丁方等.

先從任意形式的區組設計考慮起

定義1[3,4]任意具有v個水平b個區組

B1=(b11,…,b1k1)T,…,Bb=(bb1,…,bbkb)T

的設計都稱為區組設計,這里bij為整數滿足:1≤bij≤v,j=1,…,ki,而ki為區組Bi的大小,即向量Bi的維數.記這樣的區組設計為

這里k=(k1,…,kb)T為向量.為了以后敘述方便,我們也把區組設計

這種形式的區組設計僅僅考慮設計的形狀,并不具有設計的優良性.一個設計的優良性,主要體現在各種各樣的平衡性.

定義3[3,4]將v個水平安排到b個區組B1,B2,…,Bb的一個區組設計Db×k(v)稱為相遇平衡的, 假若它滿足如下條件:

其中λ稱為相遇度,相遇度必須大于0才理解為平衡,這個條件稱為相遇平衡條件.

那么n×(m+1)矩陣

2 區組設計相遇平衡性的等價條件

相遇平衡條件的更一般的形式是

記k=(k1,…,kb)T,r=(r1,…,rb)T,那么一個相遇平衡的區組設計Db×k(v)都可以用參數(v,b,r,k,λ)刻畫.常常考慮k=k11b的情況, 其中1b為元素全是1的b維列向量.例如:設B1=(1)、B2=(1,2)T,那么B1、B2就組成了一個區組設計, 記為

一般地,對于任意的水平數是2的區組設計,只要不是各個區組內僅僅只有一個水平出現,那么相應的區組設計都是相遇平衡的.這說明相遇平衡的條件是比較弱的一個條件.

引理1對于任意區組設計Db×k(v),我們有

②由于區組設計Db×k(v)是相遇平衡的,即

所以

③在ki=k1的條件下,相遇次數為

相遇度λ(x,y)是常數當且僅當相遇次數λ*(x,y)是常數.

WTW=CTτkC=λvτv,

此時區組設計D=Db×k(v)的矩陣象為

證明首先證明:區組設計D=Db×k(v)是相遇平衡的當且僅當CTτkC=λvτv.

我們利用關聯矩陣的定義,并結合相遇平衡性的定義及引理1之②中相遇平衡的等價條件分兩步來證明.

CTτkC的(x,y)號元素為

注意到關聯矩陣C=Design(Vec(D))的行和是1,所以C1v=1n,而τk1n=0,這樣得到τkCPvCTτk=0,從而定理1得證.

計算可知

其中Vec是矩陣CTτkC的上三角拉長,RC是Vec的極差,RC=0是區組設計為相遇平衡的判定條件.

用定理1可知這個區組設計是相遇平衡的.將這個相遇平衡的區組設計寫成廣義正交表的形式為

這是一個不飽和的廣義正交表,在此廣義正交表的基礎上,還可以增加一個2水平列,形成飽和的廣義正交表GL6(3121;31).

3  結論

一般的廣義正交表GLn(b1v1…vl;vl+1…vm),其數據分析的優良性質和正交表基本類似,但組合定義性質和正交表的定義有較大差別.而用廣義正交表的矩陣象來分析,其矩陣象性質和正交表的矩陣象性質[7,8]又基本類似.實際上,定理1說明:廣義正交表的組合相遇平衡性質是它的矩陣象為投影矩陣的一個充分條件.同時廣義正交表的組合正交平衡性質是它的各個列矩陣象為相互正交的矩陣的一個充分條件.因此,廣義正交表是保證它的各個列的矩陣象是相互正交的投影矩陣的一個充分條件.利用矩陣象作為工具是判定一個設計是否為一個廣義正交表的方便和有效的方法.根據多元分析的二次型的克赫倫定理可知,這也是保證廣義正交表設計的數據分析結論具有再現性,相應的估計具有無偏和方差最小性質的基本保證.因此,我們建議用廣義正交表代替正交表來進行試驗設計.

[1]張應山.多邊矩陣理論[M].北京:中國統計出版社,1993.

[2]張應山.正交表的數據分析及其構造[D].上海:華東師范大學,2006.

[3]吳亞楨,廖靖宇,張應山,等.正交平衡區組設計統計分析模型的參數估計[J].數學的實踐與認識,2012,42(2):200-208.

[4]吳亞楨,廖靖宇,張應山,等.正交平衡區組設計統計分析模型參數估計的分布特征研究[J].數學的實踐與認識,2012,42(3):212-221.

[5]廖靖宇,張建軍,田萍,等.正交平衡區組設計矩陣象的基本概念及其基本定理[J].數學的實踐與認識,2012,42(17):170-177.

[6]羅純,潘長緣.窮舉法尋找正交平衡區組設計[J].應用概率統計,2011,27(1):1-13.

[7]Zhang Yingshan, Lu Yiqiang and Pang Shanqi. Orthogonal arrays obtained by orthogonal decomposition of projection matrices[J].Statistica Sinica, 1999, 9: 595-604.

[8]Pang Shanqi, Zhang Yingshan and Liu Sanyang. Normal mixed difference matrix and the construction of orthogonal arrays[J].Stat. & Prob.Lett, 2004, 69: 431-437.

責任編輯:周倫

The Equivalent Condition of Meeting Balance of Generalized Orthogonal Arrays

WU Ya-zhen1, YANG Lin1, ZHANG Ying-shan2, LIAO Jing-yu1, TIAN Ping1

(1.SchoolofMathsandStatistics,XuchangUniversity,Xuchang461000,China;2.SchoolofStatistics,EastChinaNormalUniversity,Shanghai200241,China)

Generalized orthogonal arrays are similar to the orthogonal arrays,whose data analysis maintains the superiority as orthogonal arrays do, i.e., thatis to say estimation of each factor is unbiased estimation in the sense of variance minimizing, but test tim are remarkably decreased. Meeting balance is one of the two balanced conditions of generalized orthogonal arrays,it is also a basic requirement which orthogonal meeting balanced block design must meet. In this paper,using the matrix images technology, it is to prove an equivalent condition of meeting balance. With the help of SAS software verified quickly and easily.

orthogonal meeting balanced block designs;generalized orthogonal arrays;meeting balance; matrix image

2016-02-12

教育部高校博士點專項基金(44K55050);許昌學院科研基金(2015083)

吳亞楨(1980—),男,河南許昌人,講師,碩士,研究方向:應用統計,試驗設計.

1671-9824(2016)05-0021-05

O212.6

A

猜你喜歡
設計
二十四節氣在平面廣告設計中的應用
河北畫報(2020年8期)2020-10-27 02:54:06
何為設計的守護之道?
現代裝飾(2020年7期)2020-07-27 01:27:42
《豐收的喜悅展示設計》
流行色(2020年1期)2020-04-28 11:16:38
基于PWM的伺服控制系統設計
電子制作(2019年19期)2019-11-23 08:41:36
基于89C52的32只三色LED搖搖棒設計
電子制作(2019年15期)2019-08-27 01:11:50
基于ICL8038的波形發生器仿真設計
電子制作(2019年7期)2019-04-25 13:18:16
瞞天過海——仿生設計萌到家
藝術啟蒙(2018年7期)2018-08-23 09:14:18
設計秀
海峽姐妹(2017年7期)2017-07-31 19:08:17
有種設計叫而專
Coco薇(2017年5期)2017-06-05 08:53:16
從平面設計到“設計健康”
商周刊(2017年26期)2017-04-25 08:13:04
主站蜘蛛池模板: 国产精品一区二区国产主播| 国产永久无码观看在线| 亚洲另类第一页| 日韩毛片在线播放| 欧美另类视频一区二区三区| av尤物免费在线观看| 丁香六月综合网| 日韩午夜福利在线观看| 国产精品视频观看裸模| 毛片国产精品完整版| 国模极品一区二区三区| 日本道综合一本久久久88| 青青操视频在线| 草草线在成年免费视频2| 成人日韩视频| 欧美日韩中文国产va另类| 久久精品欧美一区二区| 永久免费无码日韩视频| 鲁鲁鲁爽爽爽在线视频观看| 欧美精品H在线播放| 亚洲最大看欧美片网站地址| 不卡网亚洲无码| 91精品亚洲| aa级毛片毛片免费观看久| 国产免费羞羞视频| 国产大片黄在线观看| 亚洲国产清纯| 日韩精品一区二区三区免费| 国产夜色视频| 在线观看国产小视频| 91久久国产综合精品| 亚洲综合精品香蕉久久网| 中文字幕在线日韩91| 91在线激情在线观看| 伊人色综合久久天天| 污网站免费在线观看| 国产永久在线视频| 国产成人一区在线播放| 伊人婷婷色香五月综合缴缴情| 国产在线无码一区二区三区| 国产精品黄色片| 欧美a在线视频| 国产农村精品一级毛片视频| 91网站国产| 亚洲系列中文字幕一区二区| 免费人成在线观看成人片| 日韩二区三区| 日本国产精品| 国产成人无码久久久久毛片| 久草视频福利在线观看| 毛片久久久| 久久免费视频6| 亚洲天堂日韩av电影| 国产清纯在线一区二区WWW| 天天躁日日躁狠狠躁中文字幕| 日韩大片免费观看视频播放| 亚洲精品午夜无码电影网| 亚洲国产日韩在线观看| 色成人亚洲| 欧美乱妇高清无乱码免费| 成人福利在线看| 热久久综合这里只有精品电影| 久久精品视频亚洲| 亚洲精品动漫| 国产精品伦视频观看免费| 国产精品美女免费视频大全| 高清无码不卡视频| 特级做a爰片毛片免费69| 国产成人喷潮在线观看| 免费视频在线2021入口| 亚洲精品视频网| 国产97视频在线| 日本国产精品| 制服丝袜 91视频| 91免费精品国偷自产在线在线| 亚洲精品福利视频| 99精品国产自在现线观看| 精品成人一区二区三区电影| 国产在线日本| 久久久国产精品无码专区| 国产成人91精品免费网址在线| 国产AV无码专区亚洲精品网站|