王 剛,梅 衛(wèi),劉 恒
(軍械工程學(xué)院電子與光學(xué)工程系,河北 石家莊 050003)
基于目標(biāo)姿態(tài)的彈目碰撞檢測模型
王剛,梅衛(wèi),劉恒
(軍械工程學(xué)院電子與光學(xué)工程系,河北 石家莊 050003)
為通過彈目碰撞檢測統(tǒng)計命中彈數(shù)并計算武器系統(tǒng)的命中概率,研究建立基于目標(biāo)姿態(tài)的彈目碰撞檢測模型,根據(jù)目標(biāo)外形建立等效幾何體,利用空間解析幾何分析彈丸與目標(biāo)的位置關(guān)系,給出彈丸與目標(biāo)碰撞的判讀條件和計算公式。該模型不用考慮復(fù)雜的坐標(biāo)變換,不涉及力學(xué)和動力學(xué)內(nèi)容,能夠高效地進行彈目碰撞檢測。仿真實例結(jié)果表明:目標(biāo)姿態(tài)能對碰撞檢測產(chǎn)生明顯影響,忽略目標(biāo)姿態(tài)的檢測模型會造成錯判和漏檢;同時也驗證該模型的準(zhǔn)確性和實時性。
仿真;碰撞檢測;命中概率;解析幾何;姿態(tài)
命中概率和毀殲概率是評定武器系統(tǒng)射擊效率的重要指標(biāo)[1],是武器系統(tǒng)效能分析的重要研究內(nèi)容。在對炮彈、導(dǎo)彈和彈藥拋射的殺傷元素等進行命中概率和毀殲概率計算時需要統(tǒng)計命中彈丸數(shù),所以進行彈丸與目標(biāo)的碰撞檢測是確定射擊效率的必要步驟。
文獻[2]利用運動原理將彈丸和目標(biāo)在地面坐標(biāo)系中的運動轉(zhuǎn)換化為彈丸在目標(biāo)坐標(biāo)系中的相對運動,通過計算彈丸運動軌跡與目標(biāo)等效體表面的交點獲得命中信息。文獻[3]將目標(biāo)各頂點從目標(biāo)坐標(biāo)系轉(zhuǎn)化到地面坐標(biāo)系,把碰撞檢測的問題模擬成一線性規(guī)劃方程。文獻[4]建立射彈實體原點和頂點在目標(biāo)實體坐標(biāo)系中的相對運動方程,以及目標(biāo)幾何等效體殼體方程,并用逐步搜索法檢測射彈實體頭部頂點與目標(biāo)的碰撞。文獻[5]在碰撞檢測時將殺傷破片和目標(biāo)從世界坐標(biāo)系變換到以飛散錐頂點為原點的新坐標(biāo)系,通過設(shè)置分級包圍盒進行逐級相交檢測。以上方法都較好地實現(xiàn)了對導(dǎo)彈目標(biāo)的碰撞檢測,但坐標(biāo)變換和相對方程的建立使得計算量明顯增加,對較大規(guī)模的武器系統(tǒng)效能評估的仿真實時性產(chǎn)生局限和影響。
本文對武器系統(tǒng)效能分析數(shù)字仿真中彈丸與目標(biāo)的碰撞檢測進行研究,通過建立目標(biāo)等效幾何體簡化目標(biāo)外形,分析彈丸與目標(biāo)的空間位置關(guān)系以及目標(biāo)姿態(tài)與對彈目碰撞的影響,將目標(biāo)姿態(tài)引入命中檢測的判定條件,并給出算法流程和計算公式。
在建立模型前需選擇合適的參考系和建立合適的坐標(biāo)系,火控系統(tǒng)中常用直角坐標(biāo)系如圖1所示[6]。選取炮口位置O作為坐標(biāo)原點,過O點作平行于水平面的平面,稱為炮口水平面Z,并把它選作坐標(biāo)平面,一般常選取正東方向為X軸正向,正南方向為Y軸正向,垂直向上的方向為Z軸正向,目標(biāo)位置M由坐標(biāo)(x,y,z)確定。

圖1 參考直角坐標(biāo)系示意圖
在模型中目標(biāo)姿態(tài)的定義如圖2所示,在參考直角坐標(biāo)系O-XYZ下,目標(biāo)在飛行過程中機體縱軸線與水平面X-O-Y的夾角為俯仰角λ,如圖2(a)所示;目標(biāo)在水平面投影運動方向與Y軸正方向的夾角為航向角θ,如圖2(b)所示。

圖2 目標(biāo)俯仰角和航向角圖示
在有飛行控制系統(tǒng)的仿真中,目標(biāo)的姿態(tài)參數(shù)可以直接從飛行控制系統(tǒng)獲得[7]。如果目標(biāo)飛行控制系統(tǒng)選取的大地坐標(biāo)系與炮位置坐標(biāo)系不重合,可根據(jù)兩坐標(biāo)系的關(guān)系進行角度修正。在沒有飛行控制系統(tǒng)的仿真中目標(biāo)航跡的生成部分將目標(biāo)視為質(zhì)點[8]。忽略攻角和側(cè)滑角的影響時目標(biāo)的姿態(tài)參數(shù)可以通過航跡的變化近似解算。假設(shè)在炮位置坐標(biāo)系下目標(biāo)的坐標(biāo)為(xa,ya,za),i為仿真節(jié)點,單位時間Δt內(nèi)坐標(biāo)的變化為(Δxa,Δya,Δza),則

由圖2和三角函數(shù)關(guān)系易知,目標(biāo)俯仰角的算式為


圖3 俯仰角與目標(biāo)位置變化的關(guān)系(側(cè)視)

圖4 航向角與目標(biāo)位置變化的關(guān)系(俯視)
俯仰角與目標(biāo)位置變化關(guān)系如圖3所示。圖4為航向角的3種情況,圖4(a)為Δya<0時的示意圖,圖4(b)為Δya≥0且Δxa<0時的示意圖,圖4(c)為Δya≥0且Δxa≥0的示意圖。目標(biāo)的航向角可由下式計算得到。

同樣在圖1所示的坐標(biāo)系框架下建立目標(biāo)等效空間幾何體,如圖5所示。r1、r2分別為等效圓柱體的長度和橫截面直徑,其質(zhì)點為A,頂面中心和底面中心分別為B和C。

圖5 目標(biāo)等效幾何體和彈目相對位置示意圖
根據(jù)目標(biāo)的俯仰角λ和航向角θ,得目標(biāo)機體運動方向單位向量為

設(shè)A點坐標(biāo)為(xa,ya,za),則B點和C點的坐標(biāo)

彈丸與機體中心縱軸(直線BC)的距離為d1,與機體中心A所在橫截面的距離為d2。
由矢量ν和點A(xa,ya,za)可得機體中軸線BC的參數(shù)式方程為

由空間中點到直線和平面的距離公式[9]可得彈丸位置P(xp,yp,zp)和機體中心軸的距離為


如果彈丸與目標(biāo)中心縱軸的距離小于半徑且彈丸與目標(biāo)中心橫截面的距離小于長度的一半,則彈丸位于目標(biāo)體內(nèi)部,彈目一定發(fā)生碰撞,由此目標(biāo)受彈的判讀條件為

由命中彈數(shù)和發(fā)射彈數(shù)即可實現(xiàn)命中概率的統(tǒng)計法計算。
以俄羅斯AS-4C Kitchen遠程空對地導(dǎo)彈為例,彈長為11.67 m,彈體直徑為0.92 m,將該目標(biāo)等效為11.67m×0.92m的等效圓柱體。
某時刻彈丸與導(dǎo)彈幾何中心的相對距離為

當(dāng)航向角為0,俯仰角在[-π/2,π/2]范圍變化時對d1和d2的影響如圖6所示,當(dāng)俯仰角為[-1.189,-0.8796]時判定命中。當(dāng)俯仰角為0,航向角在[π/2,3π/2]范圍變化時對d1和d2的影響如圖7所示,當(dāng)航向角為[2.482,2.681]時判定命中。
仿真結(jié)果表明,目標(biāo)姿態(tài)能對彈目碰撞判定產(chǎn)生較明顯的影響,特別是對類似巡航導(dǎo)彈的小型目標(biāo),忽視目標(biāo)姿態(tài)的碰撞檢測會產(chǎn)生較大的誤判和漏檢,最終影響對命中概率和毀殲概率的評估。

圖6 目標(biāo)俯仰角對計算d1和d2的影響

圖7 目標(biāo)航向角對計算d1和d2的影響
另外,在某碰撞檢測仿真實驗中將仿真步長0.2s分為200個離散點,每發(fā)彈丸與目標(biāo)各有200個空間位置參數(shù),該批次彈丸共有22發(fā),即單仿真步長內(nèi)需要進行4400次命中判定,在Matlab環(huán)境下的平均計算時間為1.746×10-3s(如圖8所示),能夠滿足實時性的要求。

圖8 碰撞檢測計算時長仿真
本文建立了武器系統(tǒng)效能分析數(shù)字仿真中基于目標(biāo)姿態(tài)的彈目碰撞檢測模型,通過建立目標(biāo)等效幾何體簡化目標(biāo)外形,利用解析幾何分析彈丸與目標(biāo)的空間位置關(guān)系,將目標(biāo)姿態(tài)引入命中檢測的判定條件,給出了彈目碰撞檢測的計算公式。仿真結(jié)果表明目標(biāo)姿態(tài)會對碰撞檢測結(jié)果產(chǎn)生顯著的影響,該算法準(zhǔn)確、可行、高效,具有較好的工程實用性。
[1]肖元星,張冠杰.地面防空武器系統(tǒng)效費分析[M].北京:國防工業(yè)出版社,2006:213-220.
[2]齊占元,徐文旭,張更宇.設(shè)計仿真過程的命中判斷方法研究[J].兵工學(xué)報,2003,24(1):30-33.
[3]于冀國,陳家照.一種導(dǎo)彈與目標(biāo)碰撞檢測的仿真模型[J].彈箭與制導(dǎo)學(xué)報,2006,26(2):1073-1075.
[4]鄭曉輝,趙曉哲,孫永侃.射擊仿真過程中實體碰撞命中檢測模型研究[J].系統(tǒng)仿真學(xué)報,2005,17(1):37-40.
[5]張宇宏,胡亞海,彭曉源,等.基于HLA的防空導(dǎo)彈武器系統(tǒng)仿真平臺研究[J].北京航空航天大學(xué)學(xué)報,2003,19(1):1-4.
[6]劉銳,盛安冬.不完全隨機有偏量測下高炮火控系統(tǒng)諸元誤差統(tǒng)計特性分析[J].兵工學(xué)報,2010,31(2):229-234.
[7]徐海亮,李駿揚,費樹岷.全數(shù)字飛行仿真平臺的設(shè)計與實現(xiàn)[J].東南大學(xué)學(xué)報(自然科學(xué)版),2011,41(1):113-117.
[8]趙晶,劉義,來慶福,等.反艦導(dǎo)彈攻防對抗仿真系統(tǒng)[J].系統(tǒng)仿真學(xué)報,2012,24(10):2108-2130.
[9]數(shù)學(xué)手冊編寫組.數(shù)學(xué)手冊[M].北京:高等教育出版社,2004:92-99.
(編輯:李妮)
Model of projectile-target collision detection based on target attitude
WANG Gang,MEI Wei,LIU Heng
(Electronic and Optical Engineering Department,Ordnance Engineering College,Shijiazhuang 050003,China)
In order to calculate the hitting projectiles number and hitting probability of weapon system,a collision detection model based on target attitude was developed.Equivalent geometry of the target was built and the space location relation between shell and target was analyzed by analytic geometry at the same time.Then the judging condition and the calculating expressions of collision detection were proposed.The model can calculate hitting projectiles efficiently by evading coordinate transformation and dynamics.Simulation results indicated that collision detection must take the target attitude into account because the detection judgment could be affected by the target attitude markedly.They also illustrated that the algorithm had good accuracy and real-time characteristics.
simulation;collision detection;hitting probability;analytic geometry;attitude
A
1674-5124(2016)03-0081-04
10.11857/j.issn.1674-5124.2016.03.019
2015-02-29;
2015-04-17
國家自然科學(xué)基金項目(61141009)國防“十二五”預(yù)研項目(40405070102)
王剛(1988-),男,山東日照市人,博士,研究方向為火控、指控和制導(dǎo)系統(tǒng)理論與應(yīng)用。