李 梵,羅劍鳴,劉少莉,韓 蕾,盧 江,張雅麗
(中國農業大學食品科學與營養工程學院,北京 100083)
?
轉基因線蟲在阿爾茨海默癥研究中的應用
李梵,羅劍鳴,劉少莉,韓蕾,盧江,張雅麗*
(中國農業大學食品科學與營養工程學院,北京 100083)
由于秀麗線蟲基因與人類基因的同源性高達40%,其神經元的功能和神經遞質與人類的也高度類似,因而秀麗線蟲成為研究神經性疾病機制的有效模型。本文就轉基因秀麗線蟲在阿爾茨海默病中的研究進展進行了闡述,總結了近年來天然提取物在阿爾茨海默癥中的應用,并對以轉基因線蟲為模型進行研究的單體進行了闡述。
秀麗線蟲,阿爾茨海默癥,天然提取物,單體
阿爾茨海默病(Alzheimer’sdisease,AD)是世界上引起死亡最多的十種疾病之一,世界上四千萬人患病,在未來的十年這個數字還會增加[1]。大量的臨床實驗都在研究其病理學和病因學,除了一些緩解癥狀的藥在使用之外,AD的病因及治愈并沒有被完全闡述。研究人員設計了各種動物模型諸如β-淀粉樣蛋白模型等[2]、膽堿能系統損傷模型[3]、鋁模型[4]、tau蛋白模型[5]試圖尋找發病原因及機制,并取得了一定的研究成果。秀麗線蟲具有易培養、生長周期短、通體透明、體細胞數目一定、特定細胞位置恒定等優點。此外,秀麗線蟲基因組測序也在1998年完成。隨后,秀麗線蟲作為模式生物在細胞凋亡、神經性疾病等方面研究中應用更加廣泛。其中,在秀麗線蟲中建立的AD模型主要有Aβ模型和tau模型兩種。本文主要介紹Aβ模型線蟲在AD中的研究應用。
AD是以進行性記憶減退、認知障礙與人格改變為主要臨床表現的一種神經系統變性疾病,也是老年人群中最主要的神經退行性疾病[6]。AD包括一系列神經損傷的癥狀,氧化損傷,炎癥和神經元機能障礙[7],并可見老年斑(Senile plaques,SP)與神經原纖維結(Neurofibrillary tangles,NFT)等病變[8]。AD的早期病理是大腦中β樣淀粉蛋白前體代謝成為Aβ蛋白[9],Aβ的積累導致老年斑的形成。老年斑又稱淀粉樣斑(Amyloid Plaques,AP),主要由細胞外纖維和β淀粉樣蛋白(beta-amyloid,Aβ)形成沉淀引起。目前Aβ是比較明確的致病因子。Aβ刺激下小膠質細胞的活化、還原型煙酰胺腺嘌呤二核苷酸(NADPH)氧化酶的激活、大量活性氧的生成、有害自由基的產生、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)及誘導型一氧化氮合酶(induced nitric oxide synthase,iNOS)等各種促炎因子的釋放,都直接或間接導致了神經系統的損傷[10]。大量體外實驗研究表明,Aβ聚集形成纖維或低聚物均比單體結構具有更強的神經毒性[11]。因此,尋找某種阻止Aβ聚集的抑制劑被認為是一種延緩AD的治療方案。
在研究線蟲的過程中,研究人員發現線蟲中含有人類APP類似基因apl-1,它在線蟲中是跨膜蛋白,但是它不含Aβ序列,因此需要通過轉基因的方式來得到AD模型。1995年,Link CD通過轉基因的方式建立了線蟲的Aβ模型[12]。轉基因線蟲模型用來研究AD毒性機理[13]、Aβ引起的基因表達的變化[14-17]及探究藥物抗AD的功效。
在眾多實驗室研究中,常用的轉基因線蟲品系主要為CL2006、CL4176等(表2)。其中CL4176使用肌肉細胞特異性啟動子myo-3來控制Aβ的表達,使線蟲表型上出現抽搐癥狀,復制了AD的癥狀和病理變化,從而可以明顯地區分轉基因的線蟲。CL4176線蟲不會在體內形成Aβ斑,因為Aβ在細胞內主要以水溶形式存在[18-19]。而CL2006線蟲使用啟動子unc-54來控制Aβ的表達,并引入表型基因rol-6。CL2006線蟲同CL4176線蟲一樣會出現肌肉細胞中Aβ沉積,此外還會有進行性麻痹的表現。
3.1Aβ基因
雖然在轉基因線蟲中Aβ基因通過溫度誘導表達或是結構表達使線蟲體內Aβ大量形成,但Aβ基因的表達通常與β淀粉沉積并無直接聯系[20-22]。這可能是由于不同實驗所用轉基因線蟲品系不同,還與收集樣品時間相關。
3.2乙酰膽堿酯酶基因
膽堿能缺失學說認為AD發病是源于病人體內乙酰膽堿的缺失[23]。由于線蟲基因的保守性,可以通過檢測線蟲乙酰膽堿酯酶的表達量觀察給藥的效果。與脊椎動物只有一個乙酰膽堿酯酶基因不同,線蟲有4種乙酰膽堿酶基因,ace-1在所有的體細胞和外陰肌肉細胞中表達[24],ace-2僅在神經細胞中表達[25],ace-3則是在眼部肌肉細胞和神經細胞中表達,ace-4基本檢測不到[26]。但ACE-1、ACE-2占了酶活的95%,ACE-3占了5%,ACE-4基本檢測不到酶活[27]。
3.3抗炎與應激相關基因
與神經性疾病相關的促進炎癥的基因及細胞素主要有TNFα,IL-1和IL-6。這些因子在不同的AD模型中已經證實與Aβ的神經毒性及由Aβ引起的AD發病機制有關[28-30]。Link CD等研究表明,在AD病人腦組織中TNFA1P1(TNFα-induced protein 1)表達上調。線蟲中有TNFA1P1的同源基因F22E5.6和ZC239.12。線蟲升溫培養后,CL4176體內F22E5.6和ZC239.12表達上調[30]。
熱激蛋白(heat shock proteins,HSPs)是一類類似分子伴侶的小分子多肽,在Aβ應激條件下促進其表達,增強抵抗力[31]。由于線蟲中熱激反應是由神經元主導的[32],HSP-16被認為是毒蛋白異常積累下的保護蛋白。在線蟲體內的HSP-16.2過表達會抑制β淀粉樣蛋白的毒性[33]。在AD病人腦組織中與應激相關的伴侶蛋白αB-crystallin(CRYAB)表達上調,而線蟲CL4176中CRYAB同源基因HSP16-2(γ46H3A.D)和HSP16-4(γ46H3A.E)在升溫培養后表達上調。六味地黃湯粗提物促進了熱激蛋白HSP-16.2的表達,使得線蟲癱瘓發生時間延后[34]。有研究表明姜黃素能夠抑制IL-1、TNFα、COX-2、iNOS和NF-κB等炎癥因子的表達[35]。
3.4衰老相關基因
AD是與衰老相關的神經性疾病[36]。衰老相關基因主要有早衰老基因ps-1和ps-2,胰島素樣生長因子-1基因等基因。在線蟲中,與ps-1和ps-2同源的基因是sel-12[37]和hop-1[38]。
由于AD發病機理的復雜性,引起AD癥狀的上游神經遞質的缺失已經揭示[39],因此,越來越多的研究集中在開發新藥品上,以調節上游靶點,并由此揭示AD的發病機制。
4.1藥物研究
目前的治療及病情控制主要依賴于早發現,盡早服用一些有助于緩解與病情相關的藥物延遲病情的進一步惡化。
過去的十年中,許多藥物對AD有一定的緩解作用,特別是對Aβ的形成或是Aβ的沉積[40]。乙酰膽堿酯酶抑制劑是目前市場上主要的治療 AD 的藥物。美國 FDA批準的五種抗 AD 藥物中乙酰膽堿酯酶抑制劑占了四種,它們是tacrine,donepezil,rivastigmine,galanthamine,這些藥物能夠改善患者的癥狀,提高患者的認知能力,但是并不能完全的治愈 AD,只能暫時改善癥狀,一定程度延緩病程,遠期療效不好,而且多有較為嚴重的毒副作用[41]。有些藥物會引起腸胃功能損害[28,42]。Memantine為一種美國食品藥品管理局批準用于治療中度和重度AD的藥物,可以通過削弱N-甲基-D-天冬氨酸感受器調節膽堿能代謝平衡,但也對腸胃有副作用[43]。
目前臨床上并沒有一種單靶點的藥物有效并安全。近年來,許多研究學者開始尋求多靶點藥物,同時對AD致病因子中幾個重要的作用靶點進行控制,這是一種高效的阻止AD神經退化進程的方法[44-48]。對此,有關體內研究實驗表明,memoquin[43]和IQM-622[49]作為多靶點是有效的。Donepezil和hupine Y[50]的合成物,對官能團進行修飾,與乙酰膽堿酶相互作用,起到類膽堿功能。另一方面,多靶點藥物結合乙酰膽堿酯酶使得乙酰膽堿酯酶無法再與Aβ結合[51-52],從而阻止了Aβ的聚合[53]。體外研究結果表明,合成物AVCRI104P4也能夠抑制丁酰膽堿酯酶,從而抑制Aβ的聚集[39]。多靶點研究藥物的設計考慮因素主要為多靶點藥物對多個靶點作用強度的問題,力求對各個靶標作用均衡[54]。目前,多靶點藥物仍在研究階段,諸多研究者期待通過化學合成的方法制備有效的多靶點藥物。
4.2植物提取物研究
近幾年來,國內外抗AD的研究熱點逐漸轉移到天然提取物上,一是由于AD病理復雜,并沒有某種單一藥物具有良好效果;二是因為其中一些藥物具有副作用。而在日常飲食中會攝入一些抗氧化劑,這些抗氧化劑對AD以及衰老相關的疾病具有一定的影響及作用。表1顯示的為幾種植物提取物的研究成果。
從表1中可以看出,很多為中藥成分,大多是從中醫的角度出發篩選藥物并臨床實踐后發現的抗AD候選藥物。其中,銀杏提取物EGb761開啟了植物提取物研究的熱潮。銀杏提取物對中樞神經系統的作用機理可能與氧化、清除脂質自由基,保護膜蛋白等作用有關[71]。用六味地黃湯的乙醇提取物(LWDH-EE)干預轉基因秀麗線蟲CL4176,發現其能有效延緩Aβ1-42誘導的秀麗線蟲麻痹癥狀[34]。在胡桃酮誘導CL4176 氧化應激后,LWDH-EE能降低其體內活性氧的產生,在熱應激后,LWDH-EE能減少CL4176中amy-1基因表達,同時升高HSP的表達。這說明LWDH-EE通過抗氧化、調節熱休克蛋白的途徑來緩解β淀粉樣蛋白產生的毒性作用[34]。

表1 植物提取物抗AD及衰老研究
4.3單體研究
由于植物粗提物成分的復雜性,很難解釋清楚抗AD的作用機制和有效成分。同時由于單體提取制備的困難性,目前只有一部分單體被用來進行抗AD發病機制的高水平研究。
單體物質也可以從結構上的相似性推斷功能的相似性,丹酚酸與姜黃素結構上相似,姜黃素具有抗Aβ功能,通過實驗證明丹酚酸也有抗Aβ聚集功能[72]。分子動力學模擬表明,丹酚酸與Aβ的C端結合從而穩定了Aβ的α螺旋結構。小分子可以與Aβ的C端結合使得構象由α螺旋變為β折疊[73-74]。體外實驗研究顯示,單體的取代基和空間構象共同影響抗Aβ活性[75]。但體外實驗與體內實驗并不完全一致,LWDH體外實驗沒有抑制Aβ聚集,在體內實驗中卻是有效的[34]。不同的單體作用機理不同。雖然部分生物堿也有抗氧化性質,但在線蟲實驗中,抗氧化性質在抗AD的過程并不是完全必需的。Rong Di等研究結果表明Haemanthidine等四種生物堿具有抑制Aβ誘導毒性的作用,而且通過ROS驗證后發現,這4種生物堿對緩解Aβ誘導毒性的原因與抗氧化作用無關,可能是其它直接作用于Aβ及其相關基因上的途徑來起到緩解Aβ誘導毒性的作用[27]。通過線蟲癱瘓實驗可以看出,這4種生物堿與治療老年癡呆癥藥物memantine相比,四種生物堿的抑制作用更強。然而,Kumar等指出水飛薊素抗AD與抗氧化有關[76]。表2總結了以秀麗線蟲為研究工具能夠對AD有緩解作用的單體研究。

表2 目前所研究抗AD的單體
雖然單體研究有助于確定某一物質的作用機理,但植物粗提物中多種物質的存在會相互影響,共同作用于AD致病因子,從而降低致病因子對機體的損害。綠茶提取物中水溶性VC與脂溶性VE成分之間會相互促進,更好地發揮抗AD的功能,而VE單獨作用時效果不明顯[68]。
模式動物為解決天然產物對神經性疾病的治療提供了便利。轉基因線蟲作為模式動物,用來探究Aβ的毒性的分子機理,在植物提取物抗氧化物乃至藥物的篩選方面發揮著重要的作用,線蟲已經成為研究衰老及與衰老相關的神經性疾病的良好模型。利用線蟲已闡明了植物提取物在體內的抗AD部分機制,能夠很好地促進該研究領域向高等動物繼續深化,直至發展成為臨床上治療氧化應激相關疾病首選的純天然藥物。
雖然線蟲模型已經取得了一定成果,但是線蟲作為一種低級動物只能作為天然藥物的初期篩選,之后仍需要在老鼠或猴子等高等動物中實驗。其次,AD病因復雜,發病機制并未研究透徹,目前發現的與AD有關的基因位點很有限,發現新位點,明確更多與AD相關的基因才能更好地研發治療藥物。
[1]Prince M,Albanese E,Guerchet M,et al.World Alzheimer Report 2014:Dementia andRisk Reduction;Alzheimer’s Disease International:London,UK,2014.Available online:http://www.alz.co.uk(accessed on 20 February 2015.
[2]Prakash A,MedhiB,Chopra K.Granulocyte colony stimulating factor(GCSF)improves memory and neurobehavior in an amyloid-βinduced experimental model of Alzheimer’s disease[J].PharmacolBiochemBehav,2013,110:46-57.
[3]Kuznetsova E,Schliebs R.β-Amyloid,cholinergic transmission,and cerebrovascular system-adevelopmentalstudy in a mouse model of Alzheimer’s disease[J].Curr Pharm Des,2013,19(36):6749-6765.
[4]Nivsarkar M,Banerjee A.Establishing the probable mechanism of L-DOPA in Alzheimer’sdisease management[J].Acta Pol Pharm,2009,66(5):483-486.
[5]Lagoja I,Pannecouque C,Griffioen G,et al.Substituted 2-aminothiazoles are exceptional inhibitors of neuronal degeneration in tau-driven models of Alzheimer’s disease.[J].Eur J Pharm Sci,2011,43(5):386-392.
[6]Hardy J,Selkoe D J.The amyloid hypothesis of Alzheimer’s disease:progress and problems on the road to therpeuties[J].Science,2002,297(5580):353-356.
[7]M?hler A,Mandel S,Lorenz M,et al.Epigallocatechin-3-gallate:a useful,effectiveand safe clinical approach for targeted prevention and individualizedtreatment of neurological diseases[J].EPMA,2013,4(1):5-21.
[8]Brookmeyer R,Johnson E,Ziegler-Graham K,et al.Forcasting the global burden of Alzheimer’s disease[J].Alzheimer’s Dement,2007,3(3):186-191.
[9]Hardy J,Chartier-Harlin MC,Mullan M.Alzheimer’s disease:the newagenda[J].Am.J.Human Genet,1992,50(3):648-651.
[10]AskarovaS,Yang X,Sheng W,et al.Role of Abeta-receptor foradvanced glycation endproducts interaction in oxidative stress andcytosolic phospholipase activation in astrocytes and cerebralendothelial cells[J].Neuroscience,2011,199:375-385.
[11]Dahlgren KN,Manelli AM,Stine Jr,et al.Oligomeric and fibrillar species of amyloid-beta peptides differentially affectneuronal viability[J].Biol.Chem,2002,277(35):32046-32053.
[12]Link CD.Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans[J].Proc Natl AcadSci USA,1995,92(20):9368-9372.
[13]Link CD.Caenorhabditis elegans models of age-associated neurodegenerative diseases:lessons from transgenic worm models of Alzheimer’s disease[J].ExpGerontol,2006,41(10):1007-1013.
[14]Hassan WM,Dostal V,Huemann BN,et al.Identifying Aβ-specificpathogenic mechanisms using a nematode model of Alzheimer’s disease[J].Neurobiol.Aging,2015,36(2):857-866.
[15]Li J,Le W,Sashidhara KV,et al.Benzofuran-chalcone hybrids as potentialmultifunctional agents against Alzheimer’s disease:Synthesis and in vivo studies with transgenicCaenorhabditiselegans[J].ChemMedChem,2014,9(12):2671-2684.
[16]Cao Y,Wang L,Lin Z,et al.Dehydroabietylamine derivatives asmultifunctional agents for the treatment of Alzheimer’s disease[J].Med.Chem.Commun,2014,5:1736-1743.
[17]Cao YY,Wang L,Ge H,et al.Salvianolic acid A,a polyphenolicderivative from Salvia miltiorrhizabunge,as a multifunctional agent for the treatment ofAlzheimer’s disease[J].Mol.Divers,2013,17(3):515-524.
[18]DostalV,Link CD.Assaying beta-amyloid toxicity using a transgenic C.elegansmodel[J].J Vis Exp,2010,9(44):2252-2255.
[19]Drake J,Link CD,Butterfield DA.Oxidative stress precedes fibrillarydeposition of Alzheimer’s disease amyloid beta-peptide(1-42)in a transgenicCaenorhabditiselegansmodel[J].Neurobiol Aging,2003,24(3):415-420.
[20]Strayer A,Wu Z,Christen Y,et al.Expression of the smallheat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgobiloba extract EGb 761[J].Faseb J,2003,17(15):2305-2307.
[21]Dostal V,Roberts CM,Link CD.Genetic mechanisms of coffee extractprotection in a Caenorhabditis elegansmodel of beta-amyloid peptide toxicity[J].Genetics,2010,186(3):857-866.
[22]Arya U,Dwivedi H,Subramaniam JR.Reserpine ameliorates Abetatoxicity in the Alzheimer’s disease model in Caenorhabditis elegans[J].ExpGerontol,2009,44(6-7):462-466.
[23]Wenhai H,Li T,Ying S.Searching for the multi-target-directed ligands against Alzheimer’s disease:discovery of quinoxaline-based hybrid compounds with AChE,H3R and BACE 1 inhibitory activities[J].Bioorgan Med Chem,2011,19(23):7158-7167.
[24]Culetto E,Combes D,Fedon Y,et al.Structureandpromoter activity of the 59 flanking region of ace-1,the gene encodingacetylcholinesterase of class A in Caenorhabditis elegans[J].Mol Biol,1999,290(5):951-966.
[25]Combes D,Fedon Y,Toutant JP,et al.Multiple acegenesencodingacetylcholinesterases of Caenorhabditis elegans have distinct tissueexpression[J].Eur J Neurosci,2003,18(3):497-512.
[26]Selkirk ME,Lazari O,Hussein AS,et al.Nematodeacetylcholinesterases are encoded by multiple genesand perform nonoverlappingfunctions[J].ChemBiol Interact,2005,8(157-158):263-268.
[27]RongDi,Lijuan Xin,RitupriyaYamujala,et al.Acetylcholineestarase-inhibiting alkaloids fromLycorisradiatedelay paralysis of amyloid beta-expressing transgenic C.elegans CL4176[J].PLoS One,2013,8(5):e63874.
[28]Tabet N.Acetylcholinesterase inhibitors for Alzheimer’s disease:anti-inflammatoriesin acetylcholine clothing[J].Age Ageing,2006,35(4):336-338.
[29]Reale M,Iarlori C,Gambi F,et al.Acetylcholinesterase inhibitors effects on oncostatin-M,interleukin-1 beta andinterleukin-6 release from lymphocytes of Alzheimer’s disease patients[J].ExpGerontol,2005,40(3):165-171.
[30]Link CD,Taft A,Kapulkin V,et al.Gene expressionnanalysis in a transgenic Caenorhabditis elegansAlzheimer’s disease model[J].Neurobiol Aging,2003,24(3):397-413.
[31]Link CD,Cypser JR,Johnson CJ,et al.Direct observation ofstress response in Caenorhabditis elegans using a reporter transgene[J].Cell StressChaperones,1999,4(4):235-242.
[32]Prahlad V,Cornelius T,Morimoto RI.Regulation of the cellular heatshock response in Caenorhabditis elegans by thermosensoryneurons[J].Science,2008,320(5877):811-814.
[33]Fonte V,Forrestal M,Wagner E,et al.Suppressionof in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 smallchaperoneprotein[J].BiolChem,2008,283(2):784-791.
[34]Sangha JS,Sun X,Wally OS,et al.LiuweiDihuang(LWDH),atraditional Chinese medicinal formula,protects againstβ-amyloidtoxicity in transgenic Caenorhabditis elegans[J].PLoS One,2012,7(8):e4399.
[35]ColeGM,Lim GP,Yang F,et al.PreventionofAlzheimer’sdisease:Omega-3 fattyacidandphenolicanti-oxidantinterventions[J].NeurobiolAging,2005,26(1):133-136.
[36]Miksys SL,Tyndale RF.Neurodegenerative diseases:a growing challenge[J].ClinPharmacolTher,2010,7(8):427-430.
[37]LevitanD,Greenwald I.Facilitation of lin-12-media ted signalling by sel-12,a CaenorhabditiselegansS182 Alzheimer’sdisease gene[J].Nature,1995,377(6547):351-354.
[38]LiX,Greenwald I.HOP-l,a Caenorhabditiseleganspresenilin,appears to be functionally redundant with SEL-12 presenilinand to facilitate LIN-12 and GLP-1 signaling[J].Proc NatiAcadSci USA,1997,94(22):12204-12209.
[39]Irene Sola,ElisabetViayna,Tània Gómez,et al.Synthesis and in vivo efficacy studies of a novelmultitargetanti-Alzheimer’s compound[J].Molecules,2015,20(3):4492-4515
[40]Citron M.Strategies for disease modification in Alzheimer’s disease[J].Nat Rev Drug Discov,2004,5(9):677-685.
[41]Youdim M B,Buccafusco J J.CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s disease[J].Neural Transm,2005,112(4):519-537.
[42]McGleenon BM,Dynan KB,Passmore AP.Acetylcholinesteraseinhibitors in Alzheimer’s disease.[J].Br J ClinnPharmacol,1999,48(4):471-480.
[43]Wenk GL,Quack G,Moebius HJ,et al.No interaction ofmemantine with acetylcholinesterase inhibitors approved for clinical use[J].Life Sci,2000,66(12):1079-1083.
[44]Lopes JP,Bertorelli R,Tarozzo G,et al.Pharmacological characterization of memoquin,a multitargetcompoundfor the treatment of Alzheimer’s disease[J].PLoS One,2013,8(2):e56870.
[45]Guzior N,Wi?ckowska A,Panek D,et al.Recent development of multifunctionalagents as potential drug candidates for the treatment of Alzheimer’s disease[J].Curr Med Chem,2015,22(3):373-404.
[46]GeldenhuysWJ,Van der,SchyfCJ.Rationally designed multi-targeted agents againstneurodegenerativediseases[J].Curr Med Chem,2013,20(13):1662-1672.
[47]Chen X,Decker M.Multi-target compounds acting in the central nervous system designed fromnatural products[J].Curr Med Chem,2013,20(13):1673-1685.
[48]Russo P,Frustaci A,Del Bufalo A,et al.Multitarget drugs of plants originacting on Alzheimer’s disease[J].Curr Med Chem,2013,20(13):1686-1693.
[49]Bolos M,Spuch C,Pascual C,et al.Effects of a tacrine-8-hydroxyquinoline hybrid(IQM-622)onAβaccumulation and cell death:Involvement in hippocampal neuronal loss in Alzheimer’sdisease[J].Neurobiol Dis,2012,46(3):682-691.
[50]Viayna E,Galdeano C,Ratia M,et al.Novel huprine derivatives with inhibitory activity towardβ-amyloidaggregation and formation as disease-modifying anti-Alzheimer drug candidates[J].ChemMedChem,2010,5(11):1855-1870.
[51]Inestrosa NC,Alvarez A,Moreno RD,et al.Acetylcholinesterase accelerates assembly of amyloid-β-peptides intoAlzheimer’s fibrils:Possible role of the peripheral site of the enzyme[J].Neuron,1996,16(4):881-891.
[52]Canales MA,Shin I,Weiner LM,et al.A structuralmotif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation[J].Biochemistry,2001,40(35):10447-10457.
[53]Castro A,Martinez A.Targeting beta-amyloid pathogenesis through acetylcholinesteraseinhibitors[J].CurrPharm Des,2006,12(33):4377-4387.
[54]夏亮.多靶點AD藥物的設計與合成[D].南寧:廣西醫科大學,2014.
[55]Gutierrez-Zepeda A,Santell R,Wu Z,et al.Soy isoflavoneglycitein protects against beta amyloid-inducedtoxicity and oxidative stress in transgenic Caenorhabditis elegans[J].BMC Neuroscience,2005,6:54.
[56]Wu Y,Wu Z,Butko P,et al.Amyloid-betainducedpathological behaviors are suppressed by Ginkgo bilobaextract EGb761 and ginkgolides in transgenic Caenorhabditis elegans[J].Neurosci,2006,26(50):13102-13113.
[57]LiangYQ,TangXC.ComparativeeffectsofhuperzineA,donepezil and rivastigmine on corticalacetylcholinelevelandacety lcholinesteraseactivity in rats[J].Neuro SciLett,2004,361(1-3):56-59.
[58]張云玲,劉東梅,吳慶四,等.黃芪提取物對Aβ25-35所致阿爾茨海默病模型大鼠的學習記憶能力及海馬神經元Bcl-2和Bcl-xl表達的影響[J].安徽醫科大學學報,2007,42(3):299-303.
[59]葉翠飛,楚晉,李林,等.淫羊藿黃酮對APP轉基因小鼠學習記憶及β-amyloid生成的影響[J].中國科學技術大學學報,2008,38(4):439-448.
[60]陳烈,黃君英,薛俐.復方何首烏浸膏治療阿爾茨海默病的療效研究[J].中南大學學報,2010,35(6):612-616.
[61]Soodi M,Hajimehdipoor H,Soleimani M,et al.Comparison of neuroprotective effects of melissa officinalis total extract and its acidic and non-acidic fractions against Aβ-induced toxicity[J].Iran J Pharm Res,2013,12(2):415-423.
[62]Su T,Xie S,Wei H,et al.Synthesis and biological evaluationofberberine-thiophenyl hybrids as multi-functional agents:inhibition ofacetylcholinesterase,butyrylcholinesterase,and Abetaaggregation and antioxidantactivity[J].Bioorg Med Chem,2013,21(18):5830-5840.
[63]Xian YF,Lin ZX,Mao QQ,et al.Bioassayguided isolation of neuroprotectivecompounds from uncariarhynchophyllaagainst beta-amyloid-inducedneurotoxicity[J].Evid Based Complement AlternMed,2012:802625.
[64]崔理立.針對阿爾茨海默病中Aβ42靶點的天然藥物及其分子機制的研究[D].長春:吉林大學,2012.
[65]董曉華.蛇床子素對AD大鼠學習記憶的影響及機制研究[D].石家莊:河北醫科大學,2012.
[66]Chul-Kyu Kim,Jin-Kook Park,et al.Increasedresistance to stress and an anti-aging effect due toAcanthopanaxsessiliflorusroots in Caenorhabditis elegans[J].Food SciBiotechnol,2014,23(5):1653-1659.
[67]張振清.紅景天苷對Aβ1-40所致AD實驗模型的干預作用及機制研究[D].石家莊:河北醫科大學,2014.
[68]Atsushi Takahashi,Tatsuro Watanabe,Takashi Fujita,et al.Green tea aroma fraction reducesβ-amyloid peptide-induced toxicity in Caenorhabditis eleganstransfected with humanβ-amyloid minigene[J].Bioscience Biotechnology and Biochemistry,2014,78(7):1206-1211
[69]熊哲,袁沛,童杰文,等.紅茶預防及調控阿爾茨海默病作用研究進展[J].食品安全質量檢測學報,2015,6(4):1219-1224.
[70]Jiang X,Jia LW,Li XH,et al.Capsaicin ameliorates stress-induced Alzheimer’sdisease-like pathological and cognitive impairments in rats[J].Alzheimers Dis,2013,35(1):1206-1211.
[71]Boveris AD,Galleano M,Puntarulo S.In vivo supplementation with Ginkgo biloba protects membranes against lipid peroxidation[J].Phytother Res,2007,21(8):735-740.
[72]ColesM,BicknellW,Watson AA,et al.Solutionstructure of amyloid beta-peptide(1-40)in a water-micelleenvironment:Is the membrane-spanning domain where we think itis?[J].Biochemistry,1998,37(31):11064-11077.
[73]Yang C,Zhu XL,Li JY,et al.Exploration of the mechanismfor LPFFD inhibiting the formation of beta-sheet conformationof A beta(1-42)in water[J].Mol Model,2010,16(4):813-821.
[74]Wang B,Liu JX,Meng HX,et al.Blocking effectofsalvianolic acid A on calcium channels in isolated rat ventricularmyocytes[J].Chin J Integr Med,2012,18(5):366-370.
[75]Riviere C,Papastamoulis Y,Fortin PY,et al.New stilbene dimers against amyloid fibril formation[J].Bioorganic MedChemLett,2010,20(11):3441-3443.
[76]Sonani RR,Singh NK,Prasad B,et al.Phycoerythrin extends life span and health spanofCaenorhabditis elegans[J].AGE,2014,36(5):9717.
[77]張健煒,熊哲,高燕,等.紅茶延長秀麗線蟲在環境氧化應激中壽命的研究[J].茶業科學,2013,33(4):295-300.
[78]何露,李中,韋睿,等.姜黃素類化合提高線蟲的抗氧化應激能力[J].中國病理生理雜志,2014,30(1):154-158.
[79]McColl G,Roberts BR,Gunn AP,et al.TheCaenorhabditiselegansA beta 1-42 model of Alzheimer disease predominantlyexpresses A beta 3-42[J].BiolChem,2009,284(34):22697-22702.
[80]Luisa Diomede,Giuseppe Cassata,Fabio Fiordaliso,et al.Tetracycline and its analogues protectCaenorhabditis elegansfromβamyloid-induced toxicity by targeting oligomers[J].Neurobiology of Disease,2010,40(2):424-431.
[81]Diomede L,Rigacci S,Romeo M,et al.Oleuropeinagly coneprotects transgenic C.elegansstrainsexpressing Abeta-42 by reducing plaque load and motor deficit[J].PLoS ONE,2013,8(3):e58893.
[82]Martorell P,Bataller E,Llopis S,et al.A cocoa peptide Protects Caenorhabditis elegans from oxidative stress and beta-amyloid peptide toxicity[J].PLoS ONE,2013,8(5):e63283.
[83]Alavez S,Vantipalli MC,Zucker DJ,et al.Amyloid-binding compounds maintain protein homeostasis duringageing and extend lifespan[J].Nature,2011,472(7342):226-229.
[84]Kumar J,Park KC,Awasthi A,et al.Silymarin extends lifespan and reduces proteotoxicity in C.elegansAlzheimer’s model[J].CNS NeurolDisord Drug Targets,2015,14(2):295-302.
Application of transgenic Caenorhabditis elegans in Alzheimer’s disease
LI Fan,LUO Jian-ming,LIU Shao-li,HAN Lei,LU Jiang,ZHANG Ya-li*
(College of Food Science and Nutritional Engineering,China Agriculture University,Beijing 100083,China)
Since the Caenorhabditis elegans genome displayes high homology(40%)to human genome and its functions of neurons and neurotransmitters are also highly similar with those of humans,Caenorhabditis elegans have become an effective model of the neural mechanisms of disease.Researches of applications of transgenic Caenorhabditis elegans in Alzheimer’s disease were focused on and the applications of natural extracts in Alzheimer’s disease in recent years were summarized.Also some monomers that were applied in transgenic Caenorhabditis elegans were summed up.
Caenorhabditis elegans;Alzheimer’s disease;naturalextracts;monomer
2015-08-27
李梵(1992-),女,碩士,研究方向:葡萄與葡萄酒工程,E-mail:lifan1992@cau.edu.cn。
張雅麗(1975-),女,博士,副教授,研究方向:葡萄與葡萄酒工程,E-mail:zhangyali@cau.edu.cn。
現代農業產業技術體系專項資金資助(CARS-30-yz-2)。
TS201.1
A
1002-0306(2016)07-0361-07
10.13386/j.issn1002-0306.2016.07.062