999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

2016-07-31 23:19:20TANGJiaGAOShoulanGUHaixia
湖州師范學院學報 2016年4期
關鍵詞:研究

TANG Jia,GAO Shoulan,GU Haixia

(School of Science,Huzhou University,Huzhou 313000,China)

On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

TANG Jia,GAO Shoulan,GU Haixia

(School of Science,Huzhou University,Huzhou 313000,China)

In this paper,we study a kind of twisted deformative Schr?dinger-Virasoro Lie algebra with two parameters.The calculation of all the derivations of certain 1-dimensional center extension of the Lie algebra proves that the Lie algebra has 7 outer derivations.The result will be helpful to further study the representation theory of this Lie algebra.

Schr?dinger-Virasoro Lie algebra;central extension;derivation

MSC 2000:17B40

0 Introduction

The infinite-dimensional Schr?dinger Lie algebra and Virasoro algebra are of great implications in many fields of mathematics and physics.In 1994,Henkel introduced the Schr?dinger-Virasoro Lie algebra[1].Then many generations and extensions of the Schr?dinger-Virasoro Lie algebra appear and they are studied extensively.The twisted deformative Schr?dinger-Virasoro Lie algebra Lλ,μover the complex field was introduced in[2]as follows:for complex numbersλ,μ,the vector space Lλ,μhas a basis{Ln,Mn,Yn|n∈Z}with the following Lie brackets:

and others are zero.2-cocycles of all the Lie algebras Lλ,μwere determined in[3].According to Theorem 2.1 in[3],we have the one-dimensional central extension of L,forμ?Z,λ∈C.For simpliciλμty,denote the Lie algebra by S.That is,the Lie algebra S has a basis{ Ln,Mn,Yn,C1n∈Z}equipped with the Lie brackets:

and others are zero,where m,n∈Z andμ?1Z. 3

Throught the paper,denote the set of integers,the complex field and the set of nonzero complex numbers by Z,C and C*,respectively.All the vector spaces are assumed over the complex field.

1 The derivations of S

Definition 1.1[4]Let g be a Lie algebra,V a g-module.A linear map D:g→V is called a derivation,if for any x,y∈g,we have D[ x,y]=x.D( y)-y.D(x).If there exists some v∈V such that D:x?xv.,then D is called an inner derivation.

Let g be a Lie algebra,V a module of g.Denote by Der( g,V)the vector space of all derivations,Inn( g,V)the vector space of all inner derivations[4].Set

Denote by Der(g)the derivation algebra of g,Inn( g)the vector space of all inner derivations of g.

Definition 1.2[4]Let G be a commutative group,a G-graded Lie algebra.A g module V is called G-graded,if

In this section,we will determine the derivation algebra of S.

It is easy to see that S is finitely generated.Define a Z-grading on S by

By Proposition 1.1 in[4],we have the following lemma.

Theorem 1.4

and others are zero.

Theorem 1.5 H1(S,S).That is,the derivation algebra of S is

2 Proof of Theorem 1.4

Proof For any m∈Z,D∈(Der S)m,by Lemma 1.3,we can assume

where a1(n),a2(n),a3(n),x11,b1(n),b2(n),b3(n),x12,c1(n),c2(n),c3(n),x13,y∈C.

By D[Li,Mj]=[D(Li),Mj]+[Li,D(Mj)],we can get

From D[Li,Yj]=[D(Li),Yj]+[Li,D(Yj)],we can obtain

By D[Yi,Yj]=[D(Yi),Yj]+[Yi,D(Yj)],we have

Case 1 m=0.Letting i=0 in(1)~(13),we can obtain

for all j∈Z.

Let j=-i in(1)and use(17),and then we haveLet j=1,i=2 and j=3,i=2 in(1)respectively.Then we get a1(3)=a1(1)+a1(2)and a1(5)=a1(3)+a1(2).So a1(2)=2a1(1).Leting j=0 in(1)and using induction on i,we have

Letting j=-i in(4)and(17),we have y=0.Letting j=0 in(30),we get

Subcase 1.1 If there exists some n0∈Z such that 2μ-n0λ=0.Sinceμ≠0,we have n0≠0.Let j=0 in(6),and then we have(2μ-λi)[b2(i)-a1(i)-b2(0)]=0.Hence

Letting i=j=n0in(6),we get b2(2n0)=a1(n0)+b2(0).According to(19),we can obtain b2(n0)= n0a1(1)+b2(0).So b2(i)=a1(i)+b2(0)=ia1(1)+b2(0)for all i∈Z.By(18),we have

Letting j=-i≠0 in(14)and using(20),

Subcase 1.2 2μ-nλ≠0 for all n∈Z.Letting j=0 in(6),we have b2(i)=ia1(1)+b2(0)for all i∈Z.By(18),we have

Letting j=-i≠0 in(14)and using(21),we can obtainTherefore,

Therefore,by Subcase 1.1 and Subcase1.2,we always have Hence

Thus we obtain

So Der S()0=Inn S()0⊕CD-1⊕CD-2⊕CD-3.

Case 2 m≠0.Let i=0 in(1)~(16).Then we have

①λ≠0,-1,-2.Let j=0 in(31).Then we get a2(0)=0.Let j=-i in(31).Then we have

Let j=1,i=-2 in(31).and then we obtain a22()=2a21().Let i=1 in(31)and use induction on j>1,and then we can get that a2j()=ja21()for all j∈Z.Hence,we have D(Mn)=D(C1)=0 and

②λ=0.By(32)and(24),we have

Then(31)becomes

Let i=1,and then we have(j-1)a2(1+j)=-a2(1)+ja2j().Hence we have

Let i=-j in(34),and then we get

Let j=-2 in(35),ang then we obtain a20()=2a21()-a2(0).So

Thus we have D(Mn)=D(C1)=0 and

Set a1=a2(1)-a2(0),a2=a2(0).Then we can check.So

③λ=-1.By(31)~(33),we have

Let i=1 in(36).Then we have(j-1)a2(1+j)=-j+1()a2(1)+j+1()a2j().So we can deduce

Hence D(Mn)=D(C1)=0 and

④λ=-2.By(31)~(33),we have

Let i=1 in(37),and then we have

Use induction on j>1,and then we can deduce

Let j=0 in(38),and then we get a2(0)=0.Let j=-i in(38),and then we get a2(-i)=-a2(i)for all i∈Z.Then we canall j∈Z.Hence

[1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].Journal of Statistical Physics,1994,75(5/6):1 023-1 061.

[2]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:representation theory and cohomological study[J].Ann Henri Poincare,2006,7(7-8):1 477-1 529.

[3]LI J.2-cocycles of twisted deformative Schr?dinger-Virasoro algebras[J].Comm Algebra,2012,40(6):1 933-1 950.

[4]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34-35.

[5]JIANG C,MENGD.The derivations,algebra of the associative algebra Cq[X,Y,X-1,Y-1][J].Comm Algebra,1998,6(2):1 723-1 736.

[6]BENKART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].Algebras Groups Geom,1986,3(4):456-492.

一類扭形變Schr?dinger-Virasoro代數的研究

唐 佳,高壽蘭,顧海霞
(湖州師范學院理學院,浙江湖州313000)

研究了一類含有兩個參數的扭形變Schr?dinger-Virasoro李代數,計算了這類李代數的一維中心擴張的所有導子,證明它有7個外導子.此結果為繼續研究這個李代數的表示理論提供了依據.

Schr?dinger-Virasoro李代數;中心擴張;導子

O152.5

O152.5 Document code:A Article ID:1009-1734(2016)04-0007-07

[責任編輯 高俊娥]

Received date:2016-03-05

s:Supported by National Nature Science Foundation(11201141,11371134)and Natural Science Foundation of Zhejiang Province(LQ12A01005,LZ14A010001).

Biography:Gao Shoulan,Doctor,Research Interests:Lie algebra.E-mail:gaoshoulan@hutc.zj.cn

MSC 2000:17B40

猜你喜歡
研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側面碰撞假人損傷研究
關于反傾銷會計研究的思考
焊接膜層脫落的攻關研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 色悠久久久久久久综合网伊人| 亚洲欧美日本国产综合在线| 亚洲精品国产综合99| 国模视频一区二区| 五月婷婷精品| 亚洲视频在线观看免费视频| 国产成人8x视频一区二区| 国产小视频a在线观看| 精品福利网| 免费一看一级毛片| 亚洲AⅤ无码国产精品| 国产亚洲视频免费播放| 国产男女免费视频| 一级一级一片免费| 久青草免费在线视频| 在线观看国产精品第一区免费 | 午夜精品福利影院| 91精品啪在线观看国产91九色| 久久香蕉国产线看精品| 亚洲视频一区| 天天综合网亚洲网站| 中文字幕在线播放不卡| 91久久精品日日躁夜夜躁欧美| 亚洲久悠悠色悠在线播放| 国产91色在线| 国内精品91| 国产精品无码AV片在线观看播放| 亚洲无码视频图片| 亚洲欧美在线看片AI| 国产精彩视频在线观看| 欧美视频在线播放观看免费福利资源| 久久亚洲日本不卡一区二区| 天天摸夜夜操| 欧美日韩资源| 久久人妻xunleige无码| 午夜无码一区二区三区在线app| 午夜国产小视频| 国产精品无码影视久久久久久久| 毛片一区二区在线看| 免费黄色国产视频| 国产极品美女在线| 青青青国产视频手机| 国产精品jizz在线观看软件| 久久久久国产一级毛片高清板| 一本大道香蕉久中文在线播放| 国产不卡在线看| 青青久在线视频免费观看| 久久天天躁夜夜躁狠狠| 国产97视频在线观看| 日韩在线视频网| a色毛片免费视频| 国产福利一区二区在线观看| 久久精品国产91久久综合麻豆自制| 永久天堂网Av| www欧美在线观看| 日本午夜三级| 午夜一级做a爰片久久毛片| 免费国产黄线在线观看| 国产精品浪潮Av| 婷婷色一区二区三区| 欧美中文字幕一区二区三区| 日韩精品一区二区三区视频免费看| 国产素人在线| 2021国产乱人伦在线播放| 无码日韩精品91超碰| 日韩福利在线视频| 国产成人精品视频一区二区电影| 91亚洲免费| 国产成人综合网| 日韩免费成人| 欧美日韩午夜视频在线观看| 久久黄色免费电影| 88av在线看| 91探花国产综合在线精品| 成人综合在线观看| 99热免费在线| 91破解版在线亚洲| 国产真实乱人视频| 日韩欧美视频第一区在线观看| 毛片基地视频| 精品一區二區久久久久久久網站 | 日韩乱码免费一区二区三区|