999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

配位聚合物[Fe(HL)(H2O)]n的合成、晶體結構及磁性質

2016-07-22 08:27:01趙素琴顧金忠青海民族大學物理與電子信息工程學院西寧80007蘭州大學化學化工學院蘭州730000
無機化學學報 2016年5期

趙素琴 顧金忠(青海民族大學物理與電子信息工程學院,西寧 80007)(蘭州大學化學化工學院,蘭州 730000)

?

配位聚合物[Fe(HL)(H2O)]n的合成、晶體結構及磁性質

趙素琴*,1顧金忠*,2
(1青海民族大學物理與電子信息工程學院,西寧810007)
(2蘭州大學化學化工學院,蘭州730000)

摘要:通過水熱方法,采用H3L(H3L=2-(4-carboxypyridin-3-yl)terephthalic acid)與FeSO4·7H2O反應,合成了一個具有二維結構的配位聚合物[Fe(HL)(H2O)]n(1),并對其結構和磁性質進行了研究。結構分析結果表明該聚合物的晶體屬于正交晶系,Pnna空間群,a=1.454 65(11)nm,b=2.474 23(15)nm,c=0.735 65(4)nm,V=2.647 7(3)nm3,Dc=1.802 g·cm-3,Z=8,R=0.046 8,wR=0.125 6(I 2σ(I)。HL2-配體交替連接相鄰的鐵(Ⅱ)離子形成了一維鏈結構單元,這些鏈又通過配體與鐵(Ⅱ)離子的配位作用形成了二維層。最后這些層通過氫鍵作用形成了一個復雜的三維超分子框架。拓撲分析表明,配合物1具有一個雙節4,4-連接的拓撲網絡結構其拓撲符號為(43.62.8)。研究表明,該聚合物中相鄰鐵(Ⅱ)離子之間存在反鐵磁相互作用。

關鍵詞:配位聚合物;鐵(Ⅱ)配合物;磁性

青海省應用基礎研究計劃項目(No.2015-ZJ-738)資助。

*通信聯系人。E-mail:qhzhsq@sina.com,gujzh@lzu.edu.cn;會員登記號:S06N5892M1004。

0 Introduction

Recently,the design and synthesis of transition metal functional coordination polymers have received enormousattentionfortheirappealingstructural topologies as well as potential applications such as gas storage,magnetism,luminescence and catalysis,etc[1-6].However,it is still a great challenge to generate compounds with desirable structural features and properties,since a lot of factors can influence the result,such as coordination geometries of metal ions,main organic ligands,introduction of auxiliary ligands,variation in reaction temperatures,ratios of reagents,types of solvents,pH values,crystallization conditions,etc[7-12].In this regard,diverse multicarboxylic or heterocyclic carboxylic acids are frequently used as multifunctional building blocks in generating coordination polymers,not only because of their ability to lead to different coordination modes and exhibit high thermal stability,but also due to their possibility to act as good H-bond donors and acceptors[3-5,13-16].In order to extend our investigations in this field,we chose 2-(4-carboxypyridin-3-yl)terephthalic acid(H3L)as a functional ligand,based on the following considerations:first,H3L should be an excellent bridging ligand for the construction of coordination polymers,sinceithasdiversifiedcoordinationmodesand flexible conformation,in which pyridyl and phenyl rings can rotate around the C-C bond;second,to the best of our knowledge,H3L ligand has not been adequately explored in the construction of coordination polymers.Herein,we report the synthesis,crystal structure,magnetic properties of Fe(Ⅱ)compound with H3L ligand.

1 Experimental

1.1Reagents and physical measurements

All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar VarioELelementalanalyzer.IRspectrawere recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10℃·min-1. PowderX-raydiffractionpatterns(PXRD)were determined with a Rigaku-Dmax 2400 diffractometer using Cu Kα radiation(λ=0.154 060 nm)and 2θ ranging from 5°to 45°,in which the X-ray tube was operated at 40 kV and 40 mA.Magnetic susceptibility data were collected in the 2~300 K temperature range with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T.A correction was made for the diamagnetic contribution prior to data analysis.

1.2Synthesis of the title complex

A mixture of FeSO4·7H2O(0.083 g,0.3 mmol),H3L(0.073 g,0.3 mmol),NaOH(0.024 g,0.6 mmol),and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 160℃for 3 days,followed by cooling to room temperature at a rate of 10℃·h-1.Red block-shaped crystals of 1 were isolated manually,and washed with distilled water.Yield:60% (based on Fe).Anal.Calcd.for C14H9FeNO7(%):C 46.83,H 2.53,N 3.90;Found(%):C 46.52,H 2.51,N 3.95.IR(KBr,cm-1):3 601m,3 422m,1 716s,1 588s,1548s,1480w,1 388vs,1 290w,1 238m,1 170w,1 124 w,1 038w,946w,860w,814w,784w,744m,698m,664 w,566w,486w.

The compound is insoluble in water and common organic solvents,such as methanol,ethanol,acetone,and DMF.

1.3Structure determination

Single-crystal data of compound 1 were collected at 293(2)K on a Bruker Smart Apex 1000 CCD diffractometer with Cu Kα radiation(λ=0.154 184 nm).A summary of the crystallography data and structure refinement is given in Table 1,and selected bond lengthsandanglesarelistedinTable2.The structures were solved using direct methods,which yielded the positions of all non-hydrogen atoms.These were refined first isotropically and then anisotropically.All the hydrogen atoms were placed in calculated positions with fixed isotropic thermal parameters and included in structure factor calculations in the final stage of full-matrix least-squares refinement.Allcalculations were performed using the SHELXTL-97 system[17].

CCDC:1437796.

Table 1 Crystal data for compound 1

Table 2 Selected bond distances(nm)and bond angles(°)for compound 1

Table 3 Hydrogen bond lengths(nm)and angles(°)of complex 1

2 Results and discussion

2.1Crystal structure

The X-ray crystallography analysis reveals that the compound 1 crystallizes in the orthorhombic system space group Pnna.As shown in Fig.1,the asymmetric unit of 1 contains two crystallographically unique Fe(Ⅱ)atoms(half occupancy),one HL2-ligand and one coordinated H2O molecule.Both Fe1 and Fe2 atoms possess a distorted octahedral coordination environment.The Fe1 center is coordinated by four O and two N atoms from the four different HL2-blocks The Fe2 center is also bound by four O atoms from the four different HL2-ligands and two O atoms from two coordinated water molecules.The Fe-O(0.205 0(3 ~0.229 2(4)nm)and Fe-N(0.220 3(3)nm)bond lengths are in good agreement with those observed insome other related Fe(Ⅱ)compounds[18-20].In 1,the HL2-spacer exhibits a μ4-coordination mode(Scheme 1),in which the two deprotonated carboxylate groups show the μ2-η1∶η1and μ2-η2∶η0bidentate modes.The dihedral angle between the pyridyl and phenyl rings in the HL2-is 57.54°.The HL2-moieties alternately link the adjacent Fe(Ⅱ) centers to form a 1D chain motif with the Fe…Fe separation of 0.391 4(4)nm (Fig.2).These 1D motifs are arranged into a 2D sheet structure by further coordination interactions of the HL2-ligands to Fe(Ⅱ) ions(Fig.2).For topological analysis[21-22],the 2D metal-organic network in 1 was simplified(terminal H2O ligands omitted,μ4-HL2-moieties reduced to centroids)to give an underlying binodal 4,4-connected layer(Fig.3).It is built from the 4-connected topologically equivalent Fe1/Fe2 and μ4-HL2-nodes and features an topology[21-22]defined by the point symbol of(43.62.8).Furthermore,the neighboring metal-organic sheets in 1 are assembled,through the O-H…O hydrogen bonds,into a 3D supramolecular framework(Fig.4)

Scheme 1 Coordination mode of HL2-ligand in compound 1

Fig.1 Drawing of the asymmetric unit of compound 1

Fig.2 Perspective of the 2D metal-organic sheet parallel to the ac plane

Fig.3 Perspective of the 3D supramolecular framework parallel to the ab plane

Fig.4 Topological representation of the underlying 2D metal-organic network showing a binodal 4,4-connected layer with the unique topology defined by the point symbol of(43.62.8)

2.2TGA analysis and PXRD result

Thethermalstabilityofcompound1was investigated under nitrogen atmosphere by thermogravimetric analysis(TGA).As shown in Fig.5,the TGA curve of the compound 1 indicates that there is one distinct thermal effect in the 122~270℃ range,which corresponds to the removal of one coordinated H2O molecule(Obsd.5.1%;Calcd.5.0%).Further heating up to 416℃ leads to the decomposition of dehydrated sample.

Fig.5 TGA curve of compound 1

Powder X-ray diffraction(PXRD)experiment for compound 1 has been carried out at room temperature to identify whether the crystal structure can represent the bulk samples.As shown in Fig.6,the peak positions of the PXRD pattern closely match the simulated ones,thus indicating that the as-synthesized bulk material is pure product.

Fig.6 PXRD pattern of compound 1 at room temperature

Fig.7 Temperature dependence of χMT(○)and 1/χM(□)for compound 1

2.3Magnetic properties

Variable-temperaturemagneticsusceptibility studies were carried out on powder samples of 1 in the 2~300 K temperature range.As shown in Fig.7 the χMT value at 300 K is 3.61 cm3·mol-1·K,which i larger than the spin-only value 3.00 cm3·mol-1·K for magnetically isolated high-spin Fe(Ⅱ)center(S=2,g= 2.0),as expected for the presence of an orbital contri bution in octahedral Fe(Ⅱ)[20,23].As the temperature i lowered,the χMT values gradually decrease to 0.68 cm3·mol-1·K at 2.0 K,which indicates the presence o an antiferromagnetic interaction in 1.Between 2.0 and 300 K,the magnetic susceptibility can be fitted to the Curie-Weiss law with CM=3.64 cm3·mol-1·K and θ= -3.91 K.These results indicate an antiferromagnetic interaction between the adjacent Fe(Ⅱ)ions.According to the crystal structure of 1,compound 1 can b consideredas1Dchainfromtheviewpointo magnetism due to long distance between the chain motifs.We tried to fit the magnetic data of 1 usin the following expression for a 1D Fe(Ⅱ)chain[23-24]: Where μ is the Langevin function: And J is the parameter of exchange interaction between two Fe(Ⅱ) ions bridged by the carboxylate groups.Using this rough model,the susceptibilities for 1 were simulated,leading to J=-2.57 cm-1,g=2.04,and the agreement factor R=5.19×10-5(R=∑(χobsT-χcalcT)2∑(χobsT)2).The negative J parameter confirms that an antiferromagnetic exchange coupling exists between the adjacent Fe(Ⅱ)centers,which is agreement with a negative θ value.There are two sets of magnetic exchange pathways within the chain motif,which consist of one carboxylate group in syn-syn fashion and one η2-O bridge from the μ2-carboxylate group,cooperatively contributed by theantiferromagnetic coupling transported by mixed bridges.

References:

[1]DeCoste J B,Peterson G W.Chem.Rev.,2014,114:5695-5727

[2]Kreno L E,Leong K,Farha O K,et al.Chem.Rev.,2012,112:1105-1125

[3]Zhang X W,Xing P Q,Geng X J,et al.J.Solid State Chem.,2015,229:49-61

[4]Liu L,Huang C,Xue X N,et al.Cryst.Growth Des.,2015,15:4507-4517

[5]Zhang Q F,Zhang H N,Zeng S Y,et al.Chem.Asian J.,2013,8:1985-1989

[6]Lu Z Z,Zhang R,Li Y Z,et al.J.Am.Chem.Soc.,2010,133:4172-4174

[7]Stock N,Biswas S.Chem.Rev.,2012,112:933-969

[8]Zhang L N,Zhang C,Zhang B,et al.CrystEngComm,2015,17:2837-2846

[9]Xu X X,Lu Y,Wang E B,et al.Cryst.Growth Des.,2006,6: 2029-2035

[10]Du M,Li C P,Liu C S,et al.Coord.Chem.Rev.,2013,257: 1282-1305

[11]Chen X M,Tong M L.Acc.Chem.Res.,2007,40:162-170

[12]Stepenson A M,Ward D.Chem.Commun.,2012,48:3605-3607

[13]Mahmudov K T,Kopylovich M N,Maharramov A M,et al. Coord.Chem.Soc.,2014,265:1-37

[14]WANG Ji-Wu(王繼武),SU Yong-Chao(蘇永超),WANG Ji-Jiang(王記江).Chinese J.Struct.Chem.(結構化學),2015,34(9):1385-1390

[15]DENG Ji-Hua(鄧記華),ZHONG Di-Chang(鐘地長),MEI Guang-Quan(梅光泉).Chinese J.Inorg.Chem.(無機化學學報),2013,29(1):175-179

[16]Gu J Z,Gao Z Q,Tang Y.Cryst.Growth Des.,2012,12: 3312-3323

[17]Sheldrick G M.SHELXL NT Version 5.1,Program for Solution and Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[18]Lu W G,Gu J Z,Jiang L,et al.Cryst.Growth Des.,2008,8:192-199

[19]Han Y F,Song Y.Inorg.Chem.Commun.,2015,55:83-87

[20]Yao P F,Tao Y,Li H Y,et al.Cryst.Growth Des.,2015,15: 4394-4405

[21]Blatov V A.IUCr CompComm Newsletter,2006,7:4-38

[22]Blatov V A,Shevchenko A P,Proserpio D M.Cryst.Growth Des.,2014,14:3576-3586

[23]Su P,Lu L P,Feng S S,et al.Dalton Trans.,2015,44:7213-7222

[24]Fisher M E.Am.J.Physiol.,1964,32:343-346

中圖分類號:O614.81+1

文獻標識碼:A

文章編號:1001-4861(2016)05-0853-06

DOI:10.11862/CJIC.2016.114

收稿日期:2015-11-21。收修改稿日期:2016-04-02。

Synthesis,Crystal Structure and Magnetic Property of a Coordination Polymer[Fe(HL)(H2O)]n

ZHAO Su-Qin*,1GU Jin-Zhong*,2
(1College of Physics and Electronic Information Engineering,Qinghai University for Nationalities,Xining,Qinghai 810007,China)
(2College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China)

Abstract:A coordination polymer,namely[Fe(HL)(H2O)]n(1),has been synthesized hydrothermally using H3L(H3L= 2-(4-carboxypyridin-3-yl)terephthalic acid)and FeSO4·7H2O.The compound crystallizes in the orthorhombic system,space group Pnna with a=1.454 65(11)nm,b=2.474 23(15)nm,c=0.735 65(4)nm,V=2.647 7(3)nm3Dc=1.802 g·cm-3,Z=8,R=0.046 8 and wR=0.125 6(I>2σ(I).The HL2-moieties alternately link the adjacent Fe(Ⅱ)centers to form a 1D chain motif.These 1D motifs are arranged into a 2D sheet structure by further coordination interactions of the HL2-ligands to Fe(Ⅱ) ions.Furthermore,the neighboring metal-organic sheets in 1 ar assembled,through the O-H…O hydrogen bonds,into a complex 3D supramolecular framework.For topologica analysis,the 2D metal-organic network in 1 is a binodal 4,4-connected layer,which is defined by the poin symbol of(43.62.8).Magnetic studies for compound 1 show a weak antiferromagnetic coupling between the neares Fe(Ⅱ)centers,with g=2.04 and J=-2.57 cm-1.CCDC:1437796.

Keywords:coordination polymer;iron(Ⅱ)complex;magnetic properties

主站蜘蛛池模板: 欧美性爱精品一区二区三区| 67194成是人免费无码| 国产另类视频| 色综合日本| 欧美日本激情| 国产老女人精品免费视频| 香蕉久久国产超碰青草| 91精品啪在线观看国产60岁 | 91成人免费观看在线观看| 操美女免费网站| 久久中文电影| 中文字幕日韩欧美| 欧美日韩中文国产va另类| 久久精品只有这里有| 久久九九热视频| 国产成人啪视频一区二区三区 | 日本黄色a视频| 国产国语一级毛片在线视频| 日韩av手机在线| 国产美女久久久久不卡| 青青青国产在线播放| 色偷偷av男人的天堂不卡| 国产微拍精品| 国产无码精品在线| www.精品视频| 国产成人av一区二区三区| 国产精品久久久久无码网站| 91精品国产一区自在线拍| 免费jjzz在在线播放国产| 亚洲日韩精品欧美中文字幕| 黄色a一级视频| 国产网站黄| 美女潮喷出白浆在线观看视频| 久久国产拍爱| 人人妻人人澡人人爽欧美一区| 欧美精品一区二区三区中文字幕| 天天激情综合| 国产第二十一页| 国产91线观看| 国内精品久久久久久久久久影视| 国产日韩欧美成人| 午夜限制老子影院888| 国产成人乱无码视频| 一本大道香蕉久中文在线播放| 国产特级毛片| 又爽又大又光又色的午夜视频| 99免费视频观看| 国产色爱av资源综合区| 国产一二三区在线| 免费观看亚洲人成网站| 亚洲三级a| 亚洲视频色图| 成人福利在线免费观看| 国产门事件在线| 五月激情综合网| 精品久久国产综合精麻豆| 亚洲国产精品不卡在线 | 熟妇丰满人妻av无码区| 国产乱人视频免费观看| 免费A级毛片无码免费视频| 亚洲黄色成人| 国产白浆视频| 58av国产精品| 国产杨幂丝袜av在线播放| 亚洲日本中文字幕乱码中文 | 日韩av手机在线| 国产毛片高清一级国语 | 欧美无专区| 永久免费无码成人网站| 一级一级一片免费| 国产精品区视频中文字幕| 婷婷五月在线| 久久永久视频| av色爱 天堂网| 在线高清亚洲精品二区| www欧美在线观看| 国产精品视频观看裸模| 国产精品手机在线观看你懂的| 视频二区中文无码| 麻豆精品在线| 亚洲AV无码精品无码久久蜜桃| 亚洲人成成无码网WWW|