李可琪,曾新華,袁 榮,閆曉紅,吳 剛
(1中國農業科學院油料作物研究所/農業部油料作物生物學與遺傳育種重點開放實驗室,武漢 430062;2中國農業科學院研究生院,北京 100081)
?
甘藍型油菜溫敏細胞核雄性不育系TE5A花藥發育的細胞學研究
李可琪1,2,曾新華1,袁榮1,閆曉紅1,吳剛1
(1中國農業科學院油料作物研究所/農業部油料作物生物學與遺傳育種重點開放實驗室,武漢 430062;2中國農業科學院研究生院,北京 100081)
摘要:【目的】明確甘藍型油菜溫敏細胞核雄性不育系TE5A花藥敗育的時期及細胞學特征,為進一步研究其雄性不育的機理奠定理論基礎。【方法】用不同溫度(16℃和22℃)處理試驗材料不育系TE5A,分別觀察植株的育性及花器形態;并采用常規半薄切片技術,通過甲苯胺藍、苯胺藍和蘇丹黑B等染料進行染色,觀察并比較該不育系TE5A不育植株和可育植株花藥發育的顯微結構、胼胝質以及脂質體等脂類物質的異同;進一步通過透射電鏡對其花藥發育的超微結構進行比較觀察。【結果】當把可育株油菜從16℃光照培養箱移到22℃光照培養箱后7 d,觀察到花朵的育性轉變為雄性不育。把22℃光照培養箱的不育株油菜移到16℃光照培養箱后,觀察到先開放的花朵表現為雄性不育,而隨后開放的花朵表現為雄性可育。在不育環境下的不育株TE5A花朵的花瓣大小和形態與可育株花朵沒有明顯差異,但不育株花朵的花絲顯著短于可育株的花絲,并且花藥萎縮、干癟,沒有花粉粒附著在上面。在不育環境下,不育系TE5A花藥敗育發生在花粉母細胞減數分裂時期,花粉母細胞減數分裂發生異常,沒有二分體及四分體的形成,形成“擬小孢子”。胼胝質在花粉母細胞時期可以正常合成,但后續的降解滯后,在四分體時期沒有降解,直至花粉粒成熟期才開始降解。絨氈層沒有觀察到明顯異常,并能分泌脂質體等脂類物質。“擬小孢子”的花粉粒外壁發育異常,無法形成具有特殊柱狀體和頂蓋結構的花粉粒外壁,因此,不能結合孢粉素和脂質體等物質。隨著花藥的繼續發育,最后“擬小孢子”逐漸降解,只剩下花粉空殼。【結論】甘藍型油菜溫敏細胞核雄性不育系TE5A花朵的花瓣大小和形態與可育株花朵沒有明顯差異,但花絲顯著縮短,花藥萎縮、干癟,沒有花粉粒附著在上面。不育系TE5A花藥敗育發生在花粉母細胞減數分裂時期,減數分裂異常導致無法形成二分體及四分體,并且胼胝質的異常降解及花粉粒外壁的異常對花藥敗育也有重要影響。甘藍型油菜溫敏細胞核雄性不育系TE5A可以作為一新型甘藍型油菜溫敏細胞核雄性不育系材料。
關鍵詞:甘藍型油菜;溫敏細胞核雄性不育;花藥敗育;減數分裂
聯系方式:李可琪,Tel:18271412601;E-mail:likeqi1218@sina.com。通信作者吳剛,Tel:027-86711501;E-mail:wugang@caas.cn
【研究意義】明確甘藍型油菜溫敏細胞核雄性不育系TE5A的花藥敗育時期及敗育的細胞學特征,不僅為徹底解析該不育材料的不育機理奠定基礎,而且為甘藍型油菜細胞核雄性不育系的研究提供依據。【前人研究進展】雜種優勢是自然界普遍存在的一種現象,而油菜是雜種優勢利用最成功的作物之一[1]。在油菜中雜種優勢的利用途徑主要有:細胞質雄性不育三系雜交途徑,細胞核雄性不育兩系、三系雜交途徑,化學殺雄雜交途徑和光、溫敏雄性不育兩系雜交途徑[2]。自從1973年石明松[3]發現光敏核不育系農墾58S,成功創建了水稻兩系雜交途徑以來,人們逐漸在小麥[4]、玉米[5]、大豆[6]、水稻[7]、油菜[8]等作物中發現光、溫敏雄性不育材料,并得到廣泛的推廣應用。國內已經報道了大量甘藍型油菜光、溫敏細胞核雄性不育材料:Huiyou50S[9]、SP2S[10]、TE5A[8]、373S[11]、533S[12]和H50S[13]等。已經利用光溫敏雄性不育兩用系 501-8S培育出國內第一個應用于生產上的生態型雄性不育兩系雜交油菜組合兩優586[14]。利用湘91S選育的兩系雜交種湘雜油5號[15]和利用光溫敏不育系26S選育的贛兩優二號等品種[16]已通過品種審定。進一步說明光、溫敏雄性不育兩系雜交油菜在實際生產應用中具有廣闊前景。甘藍型油菜雄性不育材料花藥敗育的細胞學研究將為其在生產中的推廣應用提供理論依據。隨著新型甘藍型油菜細胞核雄性不育材料的不斷發現,花藥敗育的細胞學研究也逐漸發展起來。楊莉芳等[17]根據前人對雄性不育材料花藥發育過程及細胞形態變化的研究,將導致油菜雄性不育的原因分為:花粉囊發育異常、減數分裂異常、胼胝質代謝異常、絨氈層發育異常、花粉壁發育異常和花藥開裂異常等。董軍剛等[12]發現甘藍型油菜生態雄性不育系 533S不能形成花粉囊,屬于花粉囊發育異常導致雄性不育。楊光圣等[18]研究發現細胞核不育系宜3A是因為花粉母細胞減數分裂異常導致雄性不育。YU等[10]發現溫敏核不育系 SP2S胼胝質沒有降解,從而導致花藥敗育。葛娟等[9]、孫曉敏等[13,19]發現反型溫敏核不育系Huiyou50S、生態雄性不育系 373S和光敏型核不育H50S絨氈層提前或推遲降解導致雄性不育。【本研究切入點】前人對光、溫敏雄性不育材料的細胞學研究只是通過一種技術來觀察花藥發育的過程,本研究綜合應用多重技術觀察花藥發育過程中各部分的變化。甘藍型油菜溫敏細胞核雄性不育系TE5A的育性受溫度影響,低溫育性正常,當溫度高于20℃時則表現為完全不育[8],與之前發現的光、溫敏核不育材料相比,以其敗育徹底的優勢,可以更好地應用于兩系雜交育種中。【擬解決的關鍵問題】本研究采用常規半薄切片技術,通過甲苯胺藍、苯胺藍和蘇丹黑 B等染料進行染色,來觀察和比較該不育系TE5A不育植株和可育植株花藥發育的顯微結構、胼胝質以及脂質體等脂類物質的異同,并通過透射電鏡對其花藥發育的超微結構進行比較觀察,明確不育系TE5A敗育的時期及細胞學特征,為徹底解析其不育機理和應用奠定基礎。
1.1 材料
甘藍型油菜溫敏細胞核雄性不育系 TE5A,是本課題組從甘藍型油菜品系TE5中發現的一種新型自然突變不育類型。通過研究發現TE5A育性受溫度影響,當溫度低于20℃時,表現為完全可育;當溫度高于20℃時,則表現為完全不育[8]。
1.2 不育系TE5A的育性轉換觀察
2015年2月,在中國農業科學院油料作物研究所22℃(16 h光照/8 h黑暗)的溫室中播種不育系TE5A的種子,共25盆直徑為18 cm的花盆,在五葉期進行春化處理。在植株即將現蕾時,將不育系TE5A分別移到16℃(16 h光照/8 h黑暗)和22℃(16 h光照/8 h黑暗)的光照培養箱(SANYO)中,各10盆。把5盆已經開花的可育油菜從 16℃光照培養箱移到 22℃光照培養箱(SANYO)中生長;把5盆剛現蕾一段時間的 22℃光照培養箱中的油菜移到 16℃光照培養箱中生長。
1.3 不育系TE5A花器特征觀察
在甘藍型油菜溫敏細胞核雄性不育系TE5A盛花期,分別觀察在22℃光照培養箱中生長的10盆可育油菜和在16℃光照培養箱中生長的10盆不育株的花瓣、花藥、花絲等形態。
1.4 不育系TE5A半薄切片觀察
當油菜進入初花期時,在上午9:00分別取該不育系TE5A可育環境下的可育植株和不育環境下的不育植株不同大小的花蕾(0.5—4 mm)立即放入FAA固定液(乙醇∶冰乙酸∶甲醛∶水=10∶1∶2∶7)中,抽真空30 min,固定12—24 h后,用濃度依次為50%、70%和95%的乙醇進行梯度脫水,然后滲透、包埋、切片、粘片,最后用 2%甲苯胺藍、0.1%脫色苯胺藍和蘇丹黑B染液染色,并用Feica DM 2500顯微鏡進行鏡檢照相。
1.5 透射電鏡觀察
選取不同發育階段的花蕾(0.5—4 mm),用4%戊二醛固定24 h之后,再用1%四氧化鋨固定2 h,用丙酮進行梯度脫水,然后用Epon812樹脂包埋,進行切片、粘片,最后用乙酸雙氧鈾和檸檬酸鉛染色,并用TEM-1230透射電鏡觀察并照相。
2.1 TE5A花朵形態學觀察
當把已開花的可育株油菜從16℃(16 h光照/8 h黑暗)光照培養箱移到22℃(16 h光照/8 h黑暗)后,觀察到剛開始開放的花朵仍然表現為可育,但一周之后在花序上開放的花朵轉變為雄性不育(圖1-a)。把剛現蕾一段時間的22℃(16 h光照/8 h黑暗)光照培養箱的油菜移到16℃(16 h光照/8 h黑暗),則植株先開放的花朵表現為雄性不育,而隨后開放的花朵的育性發生了轉換,表現為雄性可育(圖 1-b)。這一現象說明該溫敏材料對高溫更敏感。
通過對在不同溫度處理(16℃和22℃)下的甘藍型油菜溫敏細胞核雄性不育系TE5A花朵的形態學觀察,表明該不育系TE5A不育株的花朵的花瓣大小和形態與可育株的花朵沒有明顯區別,但不育株花朵的花絲顯著短于可育株的花絲,并且不育株的花藥萎縮、干癟,沒有花粉粒附著在花藥上;而可育株的花藥飽滿并且明顯可以看到花粉粒(圖1-c和圖1-d)。
2.2 TE5A花藥半薄切片觀察

圖1 不育系TE5A不育花和可育花的花器形態比較Fig. 1 Comparison of morphological characters between the sterile and fertile flowers of the sterile line TE5A at flowering stage

a:可育、花粉母細胞時期;b:可育、減數分裂時期;c:可育、四分體時期;g:可育、單核早期;h:可育、單核靠邊期;i:可育、成熟花粉期;d:不育、花粉母細胞時期;e:不育、減數分裂時期f:不育、四分體時期;j:不育、單核早期;k:不育、單核靠邊期;l:不育、成熟花粉期;E:外表皮;En:藥室內壁;MMC:花粉母細胞;MC:減數分裂細胞;T:絨氈層;Tds:四分體;Msp:小孢子;PG:成熟花粉粒a: Fertile, pollen mother cell stage; b: Fertile, meiotic stage; c: Fertile, tetrad stage; g: Fertile, early uninucleate stage; h: Fertile, late uninucleate stage; i: Fertile,mature pollen stage; d: Sterile, pollen mother cell stage; e: Sterile, meiotic stage; f: Sterile, tetrad stage; j: Sterile, early mononuclear cell; k: Sterile, late uninucleate stage; l: Sterile, mature pollen stage; E: Epidermis; En: endothecium; MMC: Pollen mother cells; MC: Meiotic cell; T: Tapetum; Tds: Tetrads; Msp:Microspore; PG: Mature pollen grain圖2 不育系TE5A花藥發育的顯微結構Fig. 2 The anther's microscopical structure of anthers of the sterile line TE5A
如圖2所示,通過2%甲苯胺藍染色可以看出,甘藍型油菜溫敏細胞核雄性不育系TE5A在不育環境下的不育植株和在可育環境下的正常可育花藥都可以正常分化形成花粉母細胞,并且在結構上沒有明顯區別(圖2-a和圖2-d)。減數分裂早期,其花粉母細胞仍沒有明顯的差別,絨氈層細胞都顯示輕度的液泡化并且含有2個細胞核(圖2-b和圖2-e)。減數分裂后期至四分體時期,可育花藥可以正常形成四分體,絨氈層細胞明顯皺縮,且細胞質染色比較深,表明絨氈層細胞已轉化為分泌型(圖2-c);不育花藥仍然停留在花粉母細胞減數分裂早期的狀態,沒有二分體及四分體的形成,絨氈層細胞與可育花藥沒有明顯區別(圖2-f),說明花粉母細胞減數分裂出現了異常。進入單核期,可育花藥隨著包裹四分體的胼胝質的降解,釋放出單核小孢子(圖 2-g),小孢子繼續發育直至形成成熟花粉粒(圖2-h和圖2-i)。在單核早期不育花藥和可育花藥的絨氈層細胞質進一步濃縮,染色加深,逐漸開始降解(圖2-j和圖2-k),不育花藥花粉母細胞仍然停留在花粉母細胞時期的狀態,形成“擬小孢子”,并且隨著花藥的繼續發育而逐漸解體,到成熟花粉粒時期只剩下空癟的花粉外殼(圖2-j、圖2-k和圖2-l)。
進一步通過苯胺藍染色觀察花藥發育過程中胼胝質的變化(圖 3),在花粉母細胞時期不育花藥和可育花藥的胼胝質都分布在花粉母細胞周圍,并且在結構上沒有明顯區別(圖3-a和圖3-e)。四分體時期,可育花藥的胼胝質均勻地包裹在四分體周圍,由于胼胝質逐漸降解,熒光強度比花粉母細胞時期弱(圖3-f);不育花藥的胼胝質將花粉母細胞緊緊地擠在一起,并且胼胝質壁較厚,熒光強度比花粉母細胞時期更亮(圖 3-b)。隨后可育花藥的胼胝質完全降解,釋放出小孢子,沒有熒光信號(圖 3-g),但不育花藥的花粉囊中仍然存在非常強烈的胼胝質熒光信號,并且擠壓得更加緊密(圖3-c),到成熟花粉粒時期,隨著“擬小孢子”的逐漸降解,胼胝質熒光信號才完全消失(圖3-d)。

圖3 不育系TE5A胼胝質觀察Fig. 3 The callose staining of the sterile line TE5A
2.3 TE5A花藥透射電鏡觀察
通過透射電鏡觀察進一步證實該不育系TE5A在不育的環境下,沒有形成二分體及四分體(圖4-a和圖4-e)。在四分體釋放出小孢子后,在可育環境下的正常可育花蕾的小孢子形成具有特殊的柱狀體和頂蓋結構的花粉外壁,這一柱狀體和頂蓋結構用來結合絨氈層釋放的脂類和酚類物質以及孢粉素等,最終形成一層花粉包被(圖4-f和圖4-g)。而不育環境下的不育花蕾的花粉母細胞不能進行減數分裂,花粉母細胞形成“擬小孢子”(圖 4-b),“擬小孢子”周圍沒有這一特殊的柱狀體和頂蓋結構,說明其花粉外壁發育異常,并且“擬小孢子”周圍充滿染色很深的顆粒狀物質(圖4-c)。成熟花粉粒時期,正常花粉粒形成三邊加厚的花粉壁(圖 4-h);不育花蕾的“擬小孢子”逐漸降解,只剩下空殼,顆粒狀物質分布在“擬小孢子”及花粉囊四周(圖4-d)。

圖4 不育系TE5A超薄切片顯微解剖結構Fig. 4 The ultrastructure of the sterile line TE5A
2.4 TE5A花藥脂類染色觀察
根據透射電鏡觀察到TE5A在不育環境下的不育花蕾“擬小孢子”周圍分布著染色很深的顆粒狀物質,推測該物質是絨氈層分泌的脂質體等脂類物質。進一步通過脂特異性染料蘇丹黑B對不育系TE5A花粉囊切片進行染色,觀察到在“擬小孢子”早期(對應可育單核期),絨氈層開始釋放出脂類物質,并結合在“擬小孢子”周圍(圖5-a)。隨著花粉囊的繼續發育,在“擬小孢子”中期(對應可育三核期),因為“擬小孢子”沒有形成正常的外壁結構,所以這些脂類物質不能結合到小孢子外壁上,只是簡單堆積在其周圍而不能形成真正的花粉外壁(圖5-b),最后隨著“擬小孢子”的不斷降解,這些脂類物質分散到花粉囊周圍(圖5-d)。

圖5 不育系TE5A脂類染色圖Fig. 5 Lipids staining of the sterile line TE5A
本研究表明甘藍型溫敏細胞核雄性不育系 TE5A的育性受溫度影響,臨界溫度為20℃,低于該溫度表現為完全不育,高于該溫度表現為可育。這一育性表現與甘藍型油菜溫敏核不育系 SP2S[10]和甘藍型油菜細胞質雄性不育系 392A[20]等大多數材料相同,都表現為低溫可育、高溫不育。但葛娟等[9]發現的發型溫敏不育系Hui you50S表現為低溫不育、高溫可育的現象。
隨著甘藍型油菜光、溫敏細胞核雄性不育系的不斷發現,其花藥發育的細胞學研究也逐漸發展起來。本研究發現溫敏核不育系TE5A敗育發生在花粉母細胞減數分裂時期,沒有二分體及四分體的形成,敗育特征與之前的研究材料有相似之處,但具體從減數分裂、胼胝質、絨氈層、花粉外壁發育等來看,不育系TE5A與現有的核不育材料均有不同。不育系TE5A減數分裂異常導致無法形成二分體及四分體,這一現象與宜 3A[18]和 Shaan-GMS[21]的敗育特征非常相似,但TE5A的胼胝質推遲降解、絨氈層發育正常,而宜 3A的絨氈層發育異常、胼胝質發育正常,Shaan-GMS的絨氈層細胞在減數第一次分裂中期就開始降解。不育系SP2S[10]、9012A及7365A[22-25]也存在胼胝質推遲降解導致小孢子無法釋放的現象,但這些材料可以形成正常的四分體并且絨氈層發育異常,這些特征都與TE5A不同。并且這些材料都沒有低溫可育的特性。目前報道的光溫敏細胞核雄性不育材料H50S、373S和Huiyou50S[9,13,19]敗育都發生在小孢子發育時期,小孢子可以正常釋放出來但后期發育異常,并且都存在絨氈層降解異常的現象。這些光溫敏材料與TE5A敗育的特征存在巨大差異。總的來說目前發現的甘藍型油菜核不育系材料幾乎都存在絨氈層發育異常的現象,但不育系TE5A的絨氈層發育正常,并且有研究表明在水稻不育系中也存在花粉母細胞和小孢子發育異常而絨氈層發育正常的現象[26]。綜合分析表明不育系TE5A為一新型溫敏細胞核雄性不育系材料。
減數分裂是有性生殖生物性母細胞特殊的有絲分裂,減數分裂過程對雌雄配子的育性至關重要。已經發現大量雄性不育材料是因為減數分裂異常造成的,目前報道的有水稻[27]、小麥[28]、高粱[29]、大豆[30]、油菜[18,21]等農作物。在甘藍型油菜中也存在許多這樣的材料,如:楊光圣等[18]發現甘藍型油菜核不育系宜3A、樊云芳等[31]發現雙隱性細胞核雄性不育兩用系479A、聶明建等[20]發現隱性兩用核不育系86A和顯性核不育系629A和XIAO等[21]發現顯性核不育系Shaan-GMS均因為減數分裂發生異常,從而導致雄性不育。本研究材料也是因為減數分裂過程出現問題,從而導致花粉母細胞不能形成二分體及四分體。但尚不能確定減數分裂中哪一過程發生異常,接下來將通過DAPI染色進一步觀察染色體的行為,研究減數分裂過程中染色體的變化,初步得出減數分裂發生異常的時期及特征。通過免疫熒光、熒光定量PCR 等方法研究減數分裂相關基因 DMC1[32]、RAD51[33]和ASY1[34]等在該不育材料TE5A中的表達情況,為進一步解析該材料的不育機理提供理論依據。
胼胝質代謝在花藥發育過程中也起著極其重要的作用,胼胝質圍繞在花粉母細胞周圍使其不相互粘連、融合,并且使其免受外界滲透壓力和有害物質的影響[35-36]。新型甘藍型油菜溫敏核不育系SP2S和甘藍型隱性核不育9012A和7365A都是因為胼胝質沒有降解導致小孢子無法從四分體中釋放出來,從而導致花粉敗育。HUANG等[37]通過干涉基因CDKG1(該基因調控胼胝質合成酶的基因CalS5),從而干涉的擬南芥植株不能形成正常的花粉外壁表現為雄性不育。SHI等[38]將CalS5在水稻中的CalS5基因敲除后,陽性轉基因水稻在花粉母細胞時期胼胝質合成異常,從而導致花粉敗育。因此,這些研究充分表明胼胝質在花藥發育過程中起著巨大作用。所以該不育系 TE5A胼胝質的異常代謝對其花藥敗育也有重要影響。
甘藍型溫敏細胞核雄性不育系TE5A的育性受溫度影響,表現為高溫不育、低溫可育的特性。不育系TE5A在不育環境和可育環境下,花瓣大小沒有明顯區別,但不育花的花絲明顯變短,花藥干癟、萎縮,沒有花粉粒附著在上面。不育系TE5A在不育環境下,因減數分裂異常沒有形成二分體及四分體,花粉母細胞形成“擬小孢子”;圍繞在其四周的胼胝質推遲降解,直到花粉粒成熟期才降解;“擬小孢子”的外壁結構異常不能結合孢粉素和脂質體等物質,不育系TE5A可以作為新型甘藍型油菜溫敏細胞核雄性不育系材料。
References
[1] FU D, XIAO M, HAYWARDA, FU Y, LIU G, JIANG G, ZHANG H. Utilization of crop heterosis: A review. Euphytica, 2014, 197:161-173.
[2] ZHAO L, JING X, CHEN L, LIU Y J, SU Y A, LIU T T, GAO C B, YI B, WEN J, MA C Z, TU J X, FU T D, SHEN J X. Tribenuron-Methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Molecular Plant, 2015, 8(12): 1710-1724.
[3] 石明松. 對光照長度敏感的隱性雄性不育水稻的發現與初步研究.中國農業科學, 1985(2): 44-48. SHI M S. The discovery and study of the photo-sensitive recessive male-sterile rice. Scientia Agricultura Sinica, 1985(2): 44-48. (in Chinese)
[4] GUO R X, SUN D F, TAN Z B, RONG D F, LI C D. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theoretical and Applied Genetics, 2006, 112(7): 1271-1276.
[5] TANG J H, FU Z Y, HU Y M, LI J S, SUN L L, JI H Q. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theoretical and Applied Genetics, 2006, 113: 11-15.
[6] FRASCH R M, WEIGAND C, PEREZ P T, PALMER R G,SANDHU D. Molecular mapping of 2 environmentally sensitive male sterile mutants in soybean. Journal of Heredity, 2010, 102: 11-16.
[7] DING J H, LU Q, OUYANG Y D, MAO H L, ZHANG P B, YAO J L, XU C G, LI X H, XIAO J H, ZHANG Q F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the USA, 2012, 109(7): 2654-2659.
[8] ZENG X H, LI W P, WU Y H, LIU F, LUO J L, CAO Y L, ZHU L, LI Y J, LI J, YOU Q B, WU G. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP-and Brassica rapa-derived PCR markers. Theoretical and Applied Genetics, 2014, 127: 1733-1740.
[9] 葛娟, 郭英芬, 于澄宇, 張國云, 董軍剛, 董振生. 甘藍型油菜光、溫敏雄性不育系 Huiyou50S花粉敗育的細胞學觀察. 作物學報,2012, 38(3): 541-548. GE J, GUO Y F, YU C Y, ZHANG G Y, DONG J G, DONG Z S. Cytological observation of anther development of photoperiod/thermo sensitive male sterile line Huiyou50S in Brassica napus. Acta Agronomica Sinica, 2012, 38(3): 541-548. (in Chinese)
[10] YU C, GUO Y, GE J, HU Y M, DONG J G, DONG Z S. Characterization of a new temperature-sensitive male sterile line SP2S in rapeseed (Brassica napus L.). Euphytica, 2015, 206(2): 473-485.
[11] 于澄宇, 李瑋, 常建軍, 胡勝武. 油菜溫敏雄性不育系 373S的選育. 中國農學通報, 2007, 23(7): 245-248. YU C Y, LI W, CHANG J J, HU S W. Development of A Thermo-sensitive Male-Sterile Line 373S in Brassica napus L.. Chinese Agricultural Science Bulletin, 2007, 23(7): 245-248. (in Chinese)
[12] 董軍剛, 董振生, 劉絢霞, 劉創社, 李紅兵. 甘藍型油菜生態雄性不育系 533S花藥發育的細胞學研究. 西北農林科技大學學報,2004, 32(7): 61-66. DONG J G, DONG Z S, LIU X X, LIU C S, LI H B. Cytological studies on anther development of ecological male sterile line 533S in Brassica napus L.. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(7): 61-66. (in Chinese)
[13] 孫曉敏, 胡勝武, 于澄宇. 油菜生態不育系H50S花藥敗育的細胞學觀察. 西北農業學報, 2009, 18(5): 153-158. SUN X M, HU S W, YU C Y. Cytological observation of anther development of an ecological male sterile line H50S in Brassica napus L.. Acta Agricultura Boreali-Occidentalis Sinica, 2009, 18(5):153-158. (in Chinese)
[14] 劉尊文, 袁衛紅, 李文信. 甘藍型兩系雜交油菜兩優 586的選育.中國油料作物學報, 2000, 22(2): 5-7. LIU Z W, YUAN W H, LI W X. Breeding of two-line system hybrid Liang you 586 in Brassica napus. Chinese Journal of Oil Crop Sciences, 2000, 22(2): 5-7. (in Chinese)
[15] 席代汶, 鄔賢夢, 寧祖良, 鄧錫興, 陳衛江, 易冬蓮, 李莓, 黃虎蘭, 丁登杰. 優質兩系雜交油菜湘雜油5號的選育. 中國油料作物學報, 2005, 27(1): 23-25. XI D W, WU X M, NING Z L, DENG X X, CHEN W H, YI D L, LI M, HUANG H L, DING D J. Breeding of a two-line hybrid variety Xiang za you 5 with double-low quality in Brassica napus L.. Chinese Journal of Oil Crop Sciences, 2005, 27(1): 23-25. (in Chinese)
[16] 劉尊文, 吳平, 張遷西, 周賤根, 袁衛紅, 周小萍. 優質兩系雜交油菜“贛兩優二號”的選育. 江西農業學報, 2007, 19(11): 10-12. LIU Z W, WU P, ZHANG Q X, ZHOU J G, YUAN W H, ZHOU X P. Breeding of high quality two-line hybrid rape variety ganliang you 2. Acta Agriculturae Jiangxi, 2007, 19(11): 10-12. (in Chinese)
[17] 楊莉芳, 刁現民. 植物細胞核雄性不育基因研究進展. 植物遺傳資源學報, 2013, 14(6): 1108-1117. YANG L F, DIAO X M. Progress in identification of plant male sterility related nuclear genes. Journal of Plant Genetic Resources,2013, 14(6): 1108-1117. (in Chinese)
[18] 楊光圣, 瞿波, 傅廷棟. 甘藍型油菜顯性細胞核雄性不育系宜 3A花藥發育的解剖學研究. 華中農業大學學報, 1999, 18(5): 405-408.YANG G S, QU B, FU T D. Anatomical studies on the anther's development of the dominant genic male sterile line Yi-3A in Brassica napus L.. Journal of Huazhong Agricultural University, 1998, 18(5):405-408. (in Chinese)
[19] 孫曉敏, 李瑋, 李英, 馮志峰, 李艷明, 習廣清, 諶國鵬, 胡勝武.油菜生態型不育系 373S小孢子敗育的電鏡觀察. 中國農學通報,2011, 27(7): 123-132. SUN X M, LI W, LI Y, FENG Z F, LI Y M, XI G Q, ZHAN G P, HU S W. Electronic microscope observations on microsporogenesis of ecol-sensitive male sterile line 373S in Brassica nupas. Chinese Agricultural Science Bulletin, 2011, 27(7): 123-132. (in Chinese)
[20] 聶明建, 王國槐, 朱衛平. 甘藍型油菜3種類型雄性不育系花藥敗育的細胞學研究. 中國農業科學, 2007, 40(7): 1543-1549. NIE M J, WANG G H, ZHU W P. Cytology research on the anther abortion of three male sterility lines in rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2007, 40(7): 1543-1549. (in Chinese)
[21] XIAO Z D, XIN X Y, CHEN H Y, HU S W. Cytological investigation of anther development in DGMS line Shaan-GMS in Brassica napus L.. Czech Journal of Genetics and Plant Breeding, 2013, 49: 16-23.
[22] WAN L L, XIA X Y, HONG D F, LI J, YANG G S. Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. line 9012A. Journal of Plant Biology, 2010, 53: 121-133.
[23] ZHU Y, DUN X L, ZHOU Z F, XIA S Q, YI B, WEN J, SHEN J X,MA C Z, TU J X. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: The role of abscisic acid in early anther development. Plant Molecular Biology,2010, 72: 111-123.
[24] DUN X L, ZHOU Z F, XIA S Q, XIA S Q, WEN L, YI B, SHEN J X,MA C Z, TU J X, FU T D. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 2011, 68: 532-545.
[25] ZHOU Z F, DUN X L, XIA S Q, SHI D Y, QIN M M, YI B, WEN J,SHEN J X, MA C Z, TU J X, FU T D. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen wall biosynthesis in Brassica napus. Journal of Experimental Botany,2012, 63: 2041-2058.
[26] YUAN W Y, LI X W, CHANG Y X, WEN R Y, CHEN G X, ZHANG Q F, WU C Y. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. The Plant Journal, 2009, 59(2):303-315.
[27] ZHOU S, WANG Y, LI W, ZHAO Z G, REN Y L, WANG Y, GU S H, LIU Q B, WANG D, JIANG L, SU N. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. The Plant Cell, 2011, 23(1): 111-129.
[28] 樊建青, 張立平, 趙昌平, 許晨光, 王靈云, 苑少華. 光溫敏核雄性不育小麥BS366花粉母細胞減數分裂的細胞學研究. 中國細胞生物學學報, 2011, 33(6): 622-628. FAN J Q, ZHANG L P, ZHAO C P, XU C G, WANG L Y, YUAN S H. Studies on mieosis pollen mother cells in photoperiod-temperature sensitive genic male sterile wheat line BS366. Chinese Journal of Cell Biology, 2011, 33(6): 622-628. (in Chinese)
[29] 梁小紅, 儀治本, 趙威軍, 段運平, 崔貴梅, 孫毅. 高粱A2型細胞質雄性不育系小孢子發生的細胞學觀察和減數分裂染色體行為分析. 作物學報, 2006, 32(8): 1107-1110. LIANG X H, YI Z B, ZHAO W J, DUAN Y P, CUI G M, SUN Y. Cytological observation of microsporogenesis and its chromosomal behavior in meiosis of A2 cytoplasmic-male sterile line in sorghum. Acta Agronomica Sinica, 2006, 32(8): 1107-1110. (in Chinese)
[30] 王芳, 衛保國, 李貴全, 李艷花. 大豆光敏雄性不育株 88-428BY-827小孢子母細胞的細胞學觀察. 中國農業科學, 2004, 37(8):1110-1113. WANG F, WEI B G, LI G Q, LI Y H. A cytological observation of the pollen mother cells of the photoperiod-sensitive male sterile soybean plant of 88-428BY-827. Scientia Agricultura Sinica, 2004, 37(8):1110-1113. (in Chinese)
[31] 樊云芳, 胡勝武, 董彩華, 郭學蘭, 劉勝毅. 一種甘藍型油菜雙隱性細胞核雄件不育的細胞學觀察. 中國油料作物學報, 2006, 28(4):403-407. FAN Y F, HU S W, DONG C H, GUO X L, LIU S Y. Cytological investigation of microsporogenesis in a digenic recessive GMS line of Brassica napus. Chinese Journal of Oil Crop Sciences, 2006, 28(4):403-407. (in Chinese)
[32] BISHOP D K, PARK D, XU L, KLECKNER N. DMC1: A meiosisspecific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992, 69(3): 439-456.
[33] KOU Y J, CHANG Y X, LI X H, XIAO J H, WANG S P. The rice RAD51C gene is required for the meiosis of both female and male gametocytes and the DNA repair of somatic cells. Journal of Experimental Botany, 2012, 63(14): 5323-5335.
[34] KHOO K H P, ABLE A J, ABLE J A. The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1. BMC Research Notes, 2012, 5(1): 106.
[35] CHEN H H, WONG Y H, GENEVIERE A M, FAN M J. CDK13/ CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochemical and Biophysical Research Communications, 2007, 354(3): 735-740.
[36] DONG X, HONG Z, SIVARAMAKRISHNAN M, MAHFOUZ M, VERMA D P S. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. The Plant Journal, 2005, 42(3): 315-328.
[37] HUANG X Y, NIU J, SUN M X, ZHU J, GAO J F, YANG J, ZHOU Q, YANG Z N. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. The Plant Cell, 2013, 25(2):637-648.
[38] SHI X, SUN X, ZHANG Z, FENG D, ZHANG Q, HAN L D, WU J X, LU T G. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant and Cell Physiology, 2014, 56(3):497-509.
(責任編輯 李莉)
Cytological Researches on the Anther Development of a Thermo-Sensitive Genic Male Sterile Line TE5A in Brassica napus
LI Ke-qi1,2, ZENG Xin-hua1, YUAN Rong1, YAN Xiao-hong1, WU Gang1
(1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture, Wuhan 430062;2Graduate School of Chinese Academy of Agricultural Science,Beijing 100081)
Abstract:【Objective】The aim of this paper is to detect the vital abortion periods and cytological characteristics of the anther development in a thermo-sensitive genic male sterile line TE5A in Brassica napus. The results will provide a theoretical basis for further study on the mechanism of male sterility.【Method】The sterile line TE5A was used as test material and was conducted withtwo different treatment temperatures (16℃ and 22℃). Then the fertility and characteristics of the floral organs of the plants were observed, respectively. The differences of anther development between the sterile and the normal plants of the sterile line TE5A were observed and compared by using toluidine blue, aniline blue and sudan black B to stain the semi-thin sectionings. Further observations and comparisons of cell ultrastructure of the anther development were carried out by transmission electron microscopy.【Result】The flowers of the plants were observed to be sterile, after seven days when the fertile rapeseed plants were moved to the light incubator of 22℃ from the one of 16℃. After the sterile rapeseed plants were moved to the light incubator of 16℃ from the one of 22℃, it was observed that the sterile flowers were opened first and the fertile flowers were opened after. Compared with the fertile flowers, the size and characteristic of petals of sterile plants in the sterile environment displayed no obvious difference. But the filaments of the sterile plants were significantly shorter than the fertile's and the sterile anthers withered without pollen grains in them. The pollen abortion of the sterile line TE5A in the sterile environment occurred at the pollen mother cell meiosis stage. The pollen mother cells could not pass the meiosis, with no dyads and tetrads formed in TE5A,insteading of some "pseudo microspores". The callose was normal deposited around the pollen mother cells, however, the callose hadn't been degraded until the mature pollen stage. The tapetum cells which could secret liposomes were observed to be normal in the fertile line. The pollen exines of the "pseudo microspores" were abnormal. The special bacula and tectum structure of the pollen exine couldn't formed, so the pollen exine couldn't combine with sporopollenins, no liposomes and other substances combined. With the development of the anthers, the "pseudo microspores" were decayed gradually and only empty shells remained at last.【Conclusion】Compared with the fertile flowers, the size and characteristic of petals of sterile plants in the sterile line TE5A displayed no obvious difference. But the filaments of the sterile plants were significantly shorter and the sterile anthers withered without pollen grains in them. The vital abortion of the sterile line TE5A occurred at the pollen mother cell meiosis stage. The pollen mother cells couldn't pass the meiosis, and neither dyads nor tetrads were formed. The abnormal degradation of the callose also play an important role in the anther development. The cytological characteristics of the thermo-sensitive genic male sterile line TE5A in B. napus were different from the previous materials. So these indicated that TE5A is a novel thermo-sensitive genic male sterile line.
Key words:Brassica napus; thermo-sensitive genic male sterile; anther abortion; meiosis
收稿日期:2016-03-14;接受日期:2016-05-20
基金項目:國家自然科學基金(31400243、31201152)、湖北省自然科學基金(2014CFB320)