999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Periodic Solutions for Some Second Order Systems with Gyroscopic Forces

2016-06-05 15:00:58MENGFengjuan
關鍵詞:系統

MENG Fengjuan

Periodic Solutions for Some Second Order Systems with Gyroscopic Forces

MENG Fengjuan

(School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,Jiangsu)

In this paper,the periodic solutions for second order non-autonomous differential systems with gyroscopic forces are investigated,by applying the least action principle and minimax methods,some existence results of periodic solutions are obtained.

periodic solution;critical point;variational method

1 Introduction

In this paper,we are concerned with the existence of periodic solutions for the following second order system:

where T>0,A is a real antisymmetry constant matrix and F:[0,T]×RN→R satisfies the following assumption:

(H)F(t,x)is measurable in t for each x∈RNand continuously differentiable in x for a.e.t∈[0,T],and there exist a∈C(R+,R+),b∈L1([0,T]; R+)such that

for all x∈RNand a.e.t∈[0,T].

The term A u(t)means that the system has a gyroscopic force(see[1]).For more background,see[2-4]and the references therein.System(1)was mentioned by Ekeland[5]as possible extensions of his basic examples by modern variational methods,but without concrete work.

For the case of A=0,system(1)reduces to the following second order Hamiltonian system

The existence of periodic solutions for(2)was first considered by Berger and Schechter in[6]under the coercive condition.From then on,problem(2)has been extensively studied,many solvability conditions are obtained,such as:the coercivity condition;the convexity conditions;the sublinear nonlinearity conditions;the subquadratic potential conditions;the superquadratic potential conditions;the periodicity conditions and the even type potential condition(See[7-8]and the references therein).

For the case of system(1),in[9-10],the authors have studied the existence of periodic solutions under superquadratic potential conditions and the subconvex condition respectively;in[11-14],Han etc.have investigated the existence of periodic solutions under the sublinear nonlinearity.

where 0≤α<1 and f,g∈L1([0,T];R+).

In this paper,we will consider the case of α=1.Furthermore,we will weak the Ahmad-Lazer-Paul condition

where β is a constant,which has been extensivelyused in the literature.Our main results complete and develop some known results.

2 Preliminaries

We first introduce some notations,inequalities and variational structure of(1),which will be used in our main results.={u:[0,T]→RN|u is absolutely continuous,

with the norm

for all u∈H1T.

one has Sobolev’s inequality

and Wirtinger’s inequality

for all u∈H1T(see Proposition 1.3 in[7]),where

Lemma 2.1[11-12]Define the corresponding functional φ onby

It follows from the assumption(H)that φ is continuously differentiable and the solutions of problem(1) corresponding to the critical points of φ.Moreover,one has

3 Main results

For convenience,we denote various positive constants as Ci,i=1,2,….Now we give our main results.

Theorem 3.1 Suppose that F(t,u)satisfies condition(H).Moreover,we have the following assumptions: (i)‖A‖where‖A‖ i s the norm of A as a linear operator from RNto RN;

(ii)there exist f,g∈L1([0,T];R+)withsuch that

f

or all x∈RNand a.e.t∈[0,T];

(iii)

Then problem(1)has at least one solution which minimizes φ on

then a>0.It follows from(ii)and Sobolev’s inequality and Young inequality that

as‖u‖→∞ by(iii)and

By Theorem 1.1 and Corollary 1.1 in[7],the proof is completed.

Remark 3.2 In[12],Han proved the corresponding results when F(t,x)is sublinear growth,i.e.(3)holds.Theorem 3.1 is a complementary and development of this result corresponding to α=1.

Corollary 3.3 Suppose that A=0 and F(t,u) satisfies condition(H)and(ii),(iii)in Theorem 3.1,then problem(2)has at least one solution which minimizes φ on

Remark 3.4 Corollary 3.3 improves Corollary 3 in[15].Instead of(iii),Corollary 3 in[15]requires Ahmad-Lazer-Paul condition

It is easy to see that(iii)in Theorem 3.1 is weaker that(7).

Theorem 3.5 Suppose that F(t,u)satisfies condition(H),and(i)in Theorem 3.1 holds.Moreover,assume F satisfies

(iv)there exist h,k∈L1([0,T];R+)with‖A‖)such that for every ε>0 there exists C(ε)

for all x∈RNand a.e.t∈[0,T];

(v)

where M will be specialized in the proof.Then problem(1)has at least one solution in H1T.

Proof We will accomplish the proof by three steps.

Step 1 First,we prove that φ satisfies the(PS) condition.Assume that{un}is a(PS)sequence for φ,that is{φ(un)}is bounded and φ'(un)→0 as n→∞.In a similar way to(6),we have

for large n.It follows from Wirtinger’s inequality that

for all n,thus we can get

Similar to(6),we can estimate

Combining with(8)and Young inequality,we can estimate

It follows from the boundedness of φ(un)and(8) and(9),we have

for all large n.From(v),by choosing ε small enough such that M >C11ε,combining with(10),we can deduce that{珔un}is bounded.Hence{un}is bounded in H1Tby(8).In a way similar to the proof of Proposition 4.1 in[7],see also the proof of Theorem 2.1 in[12],we conclude that the(PS)condition is satisfied.

In fact,similar to(6),we have

Step 3 By(v),we can easily find thatx)dt→+∞ as|x|→∞ for all x∈RN.Hence we can obtain that

Combining with step 1 to 3,by applying the Saddle Point Theorem 4.6 in[16],the proof is completed.

Remark 3.6 In[12],Han proved the corresponding results when F(t,x)is sublinear growth,i.e.(3)holds.Theorem 3.5 is a complementary and development of this result corresponding to α=1.

Corollary 3.7 Suppose that F(t,u)satisfies condition(A)and(iv),(v)in Theorem 3.5,then problem(2)has at least one solution which minimizes φ on

Remark 3.8 Under conditions(3)and(4),in[17],Tang proved the problem(2)has at least one solution in Theorem 1 and Theorem 2.Our Corollary 3.3 and Corollary 3.7 is a complementary and development of Theorem 1 and Theorem 2 in[17]respectively.

[1]ARNOLD V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlag,1978.

[2]MEIROVITCH L.A separation principle for gyroscopic conservative systems[C]//36th Structures,Structural Dynamics and Materials Conference.New Orleans:American Institute of Aeronautics and Astronautics,1997,119:110-119.

[3]SUI Y F,ZHONG W Y.An adjoint symplectic subspace iteration method of gyroscopic dynamic system and the application in rotor dynamic system[C]//ECCOMAS.Jyv skyl ,2004:24-28.

[4]TISSEUR F,MEERBERGEN K.The quadratic eigenvalue problem[J].SIAM Rev,2001,43(2):235-286.

[5]EKELAND I.Convex Methods in Hamiltonian Mechanics[M].Berlin:Springer-Verlag,1990.

[6]BERGER M S,SCHECHTER M.On the solvability of semilinear gradient operator equations[J].Adv Math,1977,25:97-132.

[7]MAWHIN J,WILLEM M.Critical Points Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.

[8]TANG C L,WU X P.Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems[J].J Diff Eqns,2010,248(4):660-692.

[9]MENG F J,ZHANG F B.Periodic solutions for some second order systems[J].Nonlinear Anal,2008,68:3388-3396.

[10]MENG F J,ZHANG F B.Existence of periodic solutions for n-dimensional systems of Duffing type[J].Int J Nonlinear Sci,2009,8:162-167.

[11]HAN Z Q.Periodic Solutions for n-dimmensional Duffing Systems(I)[C]//GUO D J.Nonlinear Analysis and its Applications.Beijing:Beijing Sci and Tech Publishing House,1994.

[12]HAN Z Q.Periodic solutions to second order nonautonomous differential systems with unbounded nonlinearities[J].Math Nachr,2011,284(13):1669-1677.

[13]HAN Z Q,WANG S Q,YANG M H.Periodic solutions to second order nonautonomous differential systems with gyroscopic forces[J].Appl Math Lett,2011,24:1343-1346.

[14]HAN Z Q,WANG S Q.Multiple solutions for nonlinear systems with gyroscopic forces[J].Nonlinear Analysis,2012,75: 5756-5764.

[15]ZHAO F K,WU X.Periodic solutions for a class of non-autonomous second order systems[J].J Math Anal Appl,2004,296: 422-434.

[16]RABINOWITW P H.Minimax Methods in Critical Point Theory with Application to Differential Equations[C]//CBMS,65.Providence:Am Math Soc,1986.

[17]TANG C L.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[J].Proc Am Math Soc,1998,126:3263-3270.

[18]居加敏,王智勇.一類帶阻尼項的次二次二階Hamilton系統的周期解[J].四川師范大學學報(自然科學版),2015,38(3):329-332.

[19]葉一蔚.具有變號位勢的二階Hamilton系統周期解的存在性定理[J].四川師范大學學報(自然科學版),2013,36(3): 337-341.

[20]賀鐵山,陳文革,雷友發.二階離散Hamiltonian系統的多重變號周期解[J].四川師范大學學報(自然科學版),2010,33(4):462-466.

[21]TANG C L,WU X P.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285(1): 8-16.

[22]TANG C L,WU X P.Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems[J].J Math Anal Appl,2002,275(2):870-882.

帶gyroscopic項的二階系統周期解的存在性

孟鳳娟

(江蘇理工學院數理學院,江蘇常州213001)

利用臨界點理論中的極小作用原理和極小極大方法,研究了帶有gyroscopic項的二階非自治微分系統周期解的存在性,得到了一些新的可解條件,推廣和改進了已有的結果.

周期解;臨界點;變分方法

O175

A

1001-8395(2016)05-0643-06

2015-07-27

國家自然科學基金(11526100)、江蘇省高校自然科學基金(15KJB110005)和江蘇省青藍工程作者簡介:孟鳳娟(1982—),女,副教授,主要從事非線性泛函分析的研究,E-mail:fjmeng@jsut.edu.cn

10.3969/j.issn.1001-8395.2016.05.005

(編輯 周 俊)

date:2015-07-27

s:This work was supported by NSFC Grant(11401459),Natural Science Fund For Colleges and Universities in Jiangsu Province (15KJB110005)and Qinglan Project of Jiangsu Province

2010 MSC:34C25;58E05;58K05

猜你喜歡
系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統
基于UG的發射箱自動化虛擬裝配系統開發
半沸制皂系統(下)
FAO系統特有功能分析及互聯互通探討
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統 德行天下
PLC在多段調速系統中的應用
主站蜘蛛池模板: 野花国产精品入口| 亚洲首页在线观看| 日韩免费毛片视频| 色综合久久88| 高清色本在线www| 亚洲成人在线网| 欧美国产在线看| 亚洲欧美一区二区三区蜜芽| 日本一区二区不卡视频| 天天综合色网| 亚洲国产综合精品中文第一| 亚洲天堂首页| 麻豆精品视频在线原创| 中文字幕啪啪| 欧美日本在线观看| 成人国产免费| 亚洲色图欧美视频| 久草热视频在线| 国产成a人片在线播放| 欧美日韩福利| 福利姬国产精品一区在线| 狠狠综合久久久久综| 亚洲中文字幕av无码区| 中文精品久久久久国产网址| 日韩小视频在线播放| 强奷白丝美女在线观看| 国产精品自拍露脸视频| 91亚洲视频下载| 国产成人凹凸视频在线| 欧美人在线一区二区三区| 亚洲中文字幕在线观看| 日韩欧美国产另类| 国产精品yjizz视频网一二区| 久久久久青草大香线综合精品| 天天摸天天操免费播放小视频| 国产导航在线| 男人的天堂久久精品激情| 国产福利在线免费| 国产小视频网站| 尤物亚洲最大AV无码网站| 亚洲国产一区在线观看| 日韩成人午夜| 2020久久国产综合精品swag| 毛片免费在线| 中文字幕久久精品波多野结| 成人免费视频一区| 日本a级免费| 欧美在线一二区| a级毛片免费播放| 色综合中文| 成人免费视频一区二区三区| jizz在线观看| 亚洲精品无码日韩国产不卡| 91精品国产综合久久香蕉922 | 秘书高跟黑色丝袜国产91在线 | 无码精品国产VA在线观看DVD| 美女免费精品高清毛片在线视| 国产午夜精品一区二区三| 69av免费视频| 亚洲中文无码av永久伊人| 黑色丝袜高跟国产在线91| 欧美劲爆第一页| 91福利片| 日韩国产精品无码一区二区三区| 国产日韩欧美视频| 波多野结衣亚洲一区| 国产第一福利影院| 国产成人艳妇AA视频在线| 91偷拍一区| 天堂av高清一区二区三区| 亚洲人成网址| 欧美五月婷婷| 欧美不卡二区| 日韩在线永久免费播放| 久久婷婷综合色一区二区| 中文字幕 91| 久久久噜噜噜久久中文字幕色伊伊 | 色偷偷一区二区三区| 日韩一二三区视频精品| 小说 亚洲 无码 精品| 精品中文字幕一区在线| 一本色道久久88|