李宏俊,張晶晶,2,袁秀堂,*,張安國,柳圭澤,邵魁雙,王立俊
1國家海洋環境監測中心,大連 1160232大連海洋大學,大連 1160233遼寧醫學院,錦州 121001
?
利用線粒體COI和微衛星標記分析文蛤7個地理群體的遺傳變異
李宏俊1,張晶晶1,2,袁秀堂1,*,張安國3,柳圭澤1,邵魁雙1,王立俊1
1國家海洋環境監測中心,大連116023
2大連海洋大學,大連116023
3遼寧醫學院,錦州121001
摘要:利用線粒體細胞色素氧化酶亞基I(COI)和微衛星標記分析了文蛤7個地理群體(朝鮮新義州,遼寧丹東、蛤蜊崗和盤山,山東東營,江蘇如東和啟東)的遺傳多樣性和群體分化。PCR擴增獲得142條602 bp的COI核苷酸片段,比對到13個變異位點,包括11個轉換和2個顛換,定義了22個單倍型,共享單倍型12個,新義州、丹東和啟東群體分別擁有特有單倍型。單倍型多樣性最高的是如東群體(h=0.900),最低的是東營群體(h=0.600);核苷酸多樣性最高的是丹東群體(π=0.00350),最低的是蛤蜊崗群體(π=0.00115)?;贑OI數據的Fu's Fs中性檢驗和核苷酸不配對分析揭示文蛤種群歷史上曾經歷過群體擴張事件。分子變異分析(AMOVA)表明,群體內遺傳變異占71.64%,群體間遺傳變異占28.36%,群體間發生顯著的遺傳分化(P<0.05)。7個微衛星標記擴增280個個體共獲得54個等位基因,平均等位基因數為7.7個,平均觀測雜合度和期望雜合度分別為0.3878和0.7996。江蘇群體具有較高的遺傳多樣性,但7個群體間遺傳多樣性不存在顯著差異(Kruskal-Wallis檢驗,P>0.05)。Hardy-Weinberg平衡檢驗結果顯示49個群體-位點組合中有18個偏離平衡(P<0.05),表現為雜合子缺失。單倍型鄰接(NJ)樹顯示聚類未展示地域性特色,但某幾個同一或者相近地理群體的單倍型具有聚類現象(如東和啟東部分單倍型出現地理聚類)。依據群體間遺傳距離以Kimura 2-parameter為模型建立UPGMA系統發育樹,顯示丹東群體和江蘇的如東和啟東群體聚為一支,暗示江蘇苗種的異地養殖已經污染丹東文蛤的遺傳背景。
關鍵詞:文蛤;群體遺傳變異;細胞色素氧化酶亞基I;微衛星;增殖放流
李宏俊,張晶晶,袁秀堂,張安國,柳圭澤,邵魁雙,王立俊.利用線粒體COI和微衛星標記分析文蛤7個地理群體的遺傳變異.生態學報,2016,36(2): 499-507.
Li H J,Zhang J J,Yuan X T,Zhang A G,Liu G Z,Shao K S,Wang L J.Genetic diversity and differentiation of seven geographical populations of hard clam(Meretrix meretrix)assessed by COI and microsatellite markers.Acta Ecologica Sinica,2016,36(2): 499-507.
文蛤(Meretrix meretrix)是我國重要的灘涂經濟貝類,在我國遼寧遼河口、山東蓬萊灣、江蘇南部和廣西北部灣等地廣泛分布[1]。近年來,我國文蛤養殖業發展迅速,但苗種供應制約產業發展[2],大規模苗種異地養殖造成我國文蛤種質遺傳背景混雜[3]。產業發展初期,文蛤養殖苗種依賴于采捕天然苗種,尤其近年來受圍填海工程和環境污染等因素影響,我國野生文蛤資源嚴重衰退[2]。為遏制我國野生文蛤資源衰退趨勢,基于文蛤增殖放流方式的資源恢復勢在必行,但由于我國文蛤地理群體的遺傳背景模糊,放流群體對當地野生資源的負面影響無法評估,因此開展文蛤不同地理種群的分子遺傳學研究,對我國文蛤種質資源的修復和保護具有重要意義。
細胞色素C氧化酶亞基I(COI)來源于線粒體DNA,基因變異大、進化速率快,在貝類分子系統發生[4-6]和種群遺傳結構分析[7-9]等領域應用廣泛。微衛星(Microsatellite)來源于核基因組,是由1—6個堿基重復單位首尾相連組成的串聯重復序列,微衛星標記具有數量多、分布廣、共顯性遺傳和多態信息含量高等特點,被廣泛應用于群體遺傳分析[10-11]、親緣關系鑒定[12]和遺傳連鎖圖譜構建[13-15]等研究中。考慮到增殖放流文蛤苗種的可操作性,應盡可能選擇地理距離近的群體放流,本研究聚焦于我國北方文蛤群體,以朝鮮群體作為參照,利用線粒體COI和微衛星2種標記分析了我國北方6個文蛤地理群體和1個朝鮮群體的遺傳多樣性和群體分化,以期為我國文蛤種質資源保護和修復提供理論指導。
1.1樣品采集和DNA提取
本研究所用文蛤來源于7個地理群體,分別采自朝鮮新義州,遼寧丹東、蛤蜊崗和盤山,山東東營,江蘇如東和啟東(圖1),每個地點隨機采集40個樣本,活體解剖取閉殼肌,保存于80%酒精中,用于DNA提取。采用常規酚/氯仿/異戊醇法提取基因組DNA,利用1%的瓊脂糖電泳和紫外分光光度計進行定量,無菌超純水稀釋至50 ng/μL備用。

圖1 本研究文蛤地理群體采集點矢量圖Fig.1 Collection locations of hard clam geographical populations in this study
1.2線粒體COI序列擴增
文蛤線粒體COI引物來源于通用引物LCO1490和HCO2198[16],為了提高擴增效率,稍加改動,上游序列為MmCOIF: TTTAGTACTAATCATAAAGATATTG,下游序列為MmCOIR: TACACTTCAGGATGACCAAAAAATCA。PCR反應體系為25.0 μL,內含10×PCR buffer 2.5 μL(含Mg2+25 mmol/L),正、反向引物各1.0 μL(10 μmol/L),dNTP 1.5 μL(各含2.5 mmol/L),Taq酶1 U,模板1.0 μL。PCR反應程序為94℃預變性5 min,94℃變性30 s,55℃退火30 s,72℃延伸1min,反應35個循環后,72℃延伸10 min。PCR產物經1%瓊脂糖凝膠電泳檢測后,切膠,送上海生工進行PCR產物測序。
1.3微衛星標記
查閱已發表文蛤微衛星引物文獻[17-18],篩選多態性高、擴增效果好的7個微衛星標記用于群體遺傳分析,其引物序列、等位基因數、等位基因大小、重復單元和GenBank登錄號等信息見表1。PCR反應體系為15 μL,內含10×buffer 1.5 μL(含Mg2+25 mmol/L),正、反引物各0.5 μL(10 μmol/L),dNTP 1.0 μL(各含2.5 mol/L),Taq酶0.5 U,模板1.0 μL。PCR程序為94℃預變性5 min,94℃變性30 s,最適退火溫度復性30 s,72℃延伸30 s,反應35個循環后,72℃延伸10 min。微衛星標記PCR產物經10%非變性聚丙烯酰胺凝膠電泳,300 V恒電壓1.5 h,紫外燈拍照。

表1 本研究中所用7個微衛星標記引物序列、等位基因數、有效等位基因數、等位基因大小、近交系數、重復單元和GenBank登錄號Table 1 Primer sequence,allele number,effective allele number,allele size,FIS,repeat motif and GenBank accession number of seven microsatellite markers used in this study
1.4數據統計與分析
利用Mega 4.0[19]對COI序列進行對位排列,結合人工核查,利用DNASP[20]統計單倍型,計算每個群體的單倍型多樣性(h)和核苷酸多樣性(π)。利用Arlequin 3.5[21]計算群體分化指數(Fst),分析群體內和群體間的分子方差(Analysis of Molecular Variance,AMOVA),并進行Fu`s Fs檢驗和核苷酸不配對分布分析。利用TCS 1.21[22]構建單倍型網絡圖,以Kimura 2-parameter模型分別建立單倍型Neighbor-Joining(NJ)進化樹以及7個群體的Unweighted Pair Group Method with Arithmatic Mean(UPGMA)系統進化樹,利用Geodis 2.6[23]檢測單倍型與地理學特征的相關性。
借助Gel-Pro(Media Cybernetics,USA)統計微衛星標記基因型,利用FSTAT[24]統計微衛星位點的等位基因數、有效等位基因數、近交系數(FIS)、觀測雜合度(Ho)和期望雜合度(He),利用非參數分析(Kruskal-Wallis test)檢驗群體間差異顯著性。利用Arlequin計算群體分化指數(FST),用Bonferroni[25]法對多重比較的顯著水平進行校正。利用MICRO-CHECKER[26]檢測無效等位基因概率。采用馬爾科夫鏈(Markov Chain)方法進行Hardy-Weinberg平衡檢驗。
2.1群體內遺傳變異
對7個文蛤地理群體的總DNA進行PCR擴增,獲得特異性的COI基因片段,經Mega同源排序,去除部分端部序列,獲得142條602bp的COI基因片段,經BLAST比對分析,確認所得片段為COI序列。序列組成顯示平均A、T、G、C堿基含量分別為21.2%、45.3%、19.4%、14.1%,A+T含量大于G+C的含量,具有明顯的堿基組成偏倚性。602bp的片段共鑒定出13個變異位點(占位點總數的2.16%),包括11個轉換和2個顛換,沒有插入和缺失突變,共檢測出22個單倍型(GenBank登錄號: KJ657746-KJ657749,KJ657752-KJ657769),共享單倍型12個,占總數的54.5%,Hap01被3個群體共享(朝鮮蛤蜊崗、和盤山),Hap02被6個群體共享(朝鮮、丹東、蛤蜊崗、盤山、如東和啟東),Hap03被5個群體共享(蛤蜊崗、盤山、東營、如東和啟東),Hap04被5個群體共享(朝鮮、東營、盤山、蛤蜊崗和如東),Hap05被2個群體共享(朝鮮和盤山),Hap06被3個群體共享(丹東、如東和啟東),Hap08被4個群體共享(朝鮮、丹東、如東和啟東),Hap13被3個群體共享(朝鮮、盤山和東營),Hap14、Hap15、Hap16和Hap17分別都被2個群體共享(啟東和如東)。Hap07和Hap12是新義州特有單倍型,Hap09、Hap10和Hap11是丹東特有單倍型,Hap18、Hap19、Hap20、Hap21和Hap22是啟東特有單倍型。文蛤7個地理群體的遺傳學參數見表2,平均單倍型及核苷酸多樣性處于中等水平(h=0.886,π=0.00314)。單倍型多樣性最高的是如東群體(h = 0.900),最低的是東營群體(h = 0.600);核苷酸多樣性最高的是丹東群體(π=0.00350),最低的是蛤蜊崗群體(π=0.00115)。總體來說,來自江蘇的兩個群體顯示出較高的遺傳多樣性。

表2 基于COI和微衛星標記的文蛤7個群體的遺傳學參數Table 2 Genetic diversity indices for cytochrome c oxidase subunit(COI)gene and microsatellite markers for seven populations of the hard clam,Meretrix meretrix
中性檢驗結果顯示,平均Fu`s Fs值為-11.97063(P<0.05)(表3),Fu`s Fs值達到顯著水平,表明文蛤偏離中性選擇,曾經歷群體擴張事件。核苷酸不配對分布分析的結果表明,文蛤觀測到的核苷酸不配對分布呈單峰類型,符合群體擴張模型下的預期分布(圖2)。基于觀測值和模擬值間的擬合優度檢驗結果顯示,平方離差之和(Sum of squared deviations,SSD)較小,且統計檢驗不顯著(P>0.05),表明觀測值與模擬值擬合程度較好,符合群體擴張模型,與中性檢驗結果一致。

表3 基于COI序列的文蛤7個群體的選擇中性檢驗和核苷酸不配對分析Table 3 Selective neutrality test and mismatch distribution analysis of 7 populations of hard clam(Meretrix meretrix)based on COI sequences

圖2 文蛤線粒體細胞色素氧化酶亞基I(COI)單倍型的核苷酸不配對分布Fig.2 Mismatch distributions of Meretrix meretrix COI haplotypes
分單倍型之間只保留1步變異,僅少數單倍型之間(Hap06→Hap12、Hap06→Hap16、Hap12→Hap10和Hap21→Hap11)保留2步變異。啟東擁有13種單倍型,如東擁有9種單倍型,新義州擁有8種單倍型,盤山擁有6種單倍型,丹東擁有6種單倍型,蛤蜊崗擁有4種單倍型,東營擁有3種單倍型。如東群體的單倍型大部分和啟東相同,僅Hap04是如東特有單倍型,推測如東和啟東的遺傳背景相似?;贙imura雙參數模型建立的NJ(圖3)聚類圖顯示單倍型聚類并未完全展示地域性特色,但是對于某幾個同一或者相近地理群體的單倍型具有聚類現象(如Hap09、Hap10、Hap14)。
7個微衛星標記共檢測到54個等位基因,每個位點的等位基因數從5—10個不等,平均等位基因數為7.7個。在所有微衛星位點中,MM12736的等位基因數最多(10個),Mm38的等位基因數最少(5個)(表1);朝鮮新義州和江蘇如東、啟東群體的平均等位基因數最多(Na= 7.7),盤山群體的平均等位基因數最少(Na= 7.1);丹東群體的平均觀測雜合度最高(Ho= 0.4750),盤山群體的平均觀測雜合度最低(Ho= 0.2964)??傮w上,7個群體均具有較高的微衛星遺傳多樣性,7個群體平均等位基因數(Kruskal-Wallis test,P = 0.951)和觀測雜合度(P=0.592)不存在顯著差異。在49組群體位點組合中(7群體×7位點),有18個組合由于雜合子缺失偏離HWE平衡(P<0.05)。利用MICRO-CHECKER檢驗微衛星位點的無效等位基因概率,結果表明偏離HWE平衡的位點在不同群體中均存在無效等位基因,表現為雜合子缺失,但未檢測到微衛星PCR擴增過程中易出現的“影子帶”和大片段等位基因丟失現象。
2.2群體間遺傳變異
文蛤7個群體COI序列的分子變異分析(AMOVA)結果見表4,群體間的遺傳分化系數FST為0.28360(P<0.05),表明在整個遺傳變異中群體間遺傳變異占28.36%,群體內遺傳變異占71.64%,群體內的遺傳變異大于群體間,群體間發生顯著的遺傳分化(P<0.05)。文蛤COI群體間FST的顯著性檢驗結果見表5,兩兩群體間FST介于0.00714—0.45390之間,只有丹東和如東(FST=-0.00714)、新義州和盤山(FST= 0.01018)、啟東和如東(FST=0.02529)、如東和丹東(FST=0.03713)的P值大于0.05,說明啟東、丹東和如東之間,新義州、蛤蜊崗
文蛤線粒體COI單倍型網絡圖(圖3)顯示絕大部和盤山之間,東營和盤山之間未發生顯著遺傳分化。微衛星標記各群體間FST范圍為0.01139—0.03935(表5),經Bonferroni校正,各群體間均處于顯著分化(P<0.0083)。

圖3 文蛤COI基因單倍型網絡圖(A)和NJ系統樹(B),外群毛蚶(Scapharca subcrenata)Genbank登錄號AB729113Fig.3 The COI haplotype network and NJ tree for Meretrix meretrix,the GenBank accession number of outgroup Scapharca subcrenata is AB729113單倍型網絡圖反映的是單倍型之間的關系,每個圓圈代表一個單倍型,中間缺失的單倍型用黑圈表示,圓圈大小代表單倍型的出現頻率,圓圈里的不同顏色代表不同的地理群體

表4 文蛤7個群體的COI序列遺傳差異的分子方差分析(AMOVA)Table 4 Analysis of molecular variance(AMOVA)of mitochondrial cytochrome oxidase c subunit(COI)gene among seven populations of hard clam(Meretrix meretrix)
利用Mega構建7個群體遺傳距離UPGMA樹(圖4),7個群體聚類為兩大分支,其中蛤蜊崗、盤山、新義州和東營聚為一大支,啟東和如東相聚再與丹東群體聚為另一支。利用Geodis檢測,未發現7個群體遺傳距離與地理距離間的顯著相關(r=0.4035,P=0.0600),但去掉丹東群體后,檢測到遺傳距離與地理群體間的顯著相關(r=0.7129,P=0.0280)。

表5 基于線粒體COI序列(成對FST,對角線下)和微衛星標記(成對FST,對角線上)的文蛤群體遺傳分化Table 5 E stimates of population genetic differentiation based on microsatellite markers(pairwise FST,above diagonal)and mitochondrial cytochrome oxidase c subunit(COI)gene(pairwise FST,below diagonal)for the hard clam(Meretrix meretrix)

圖4 文蛤7個地理群體的UMPGA系統樹Fig.4 UMPGA tree constructed from genetic distance among 7 populations of hard clam,Meretrix meretrix
近年來,過度捕撈和環境惡化使我國近岸海域漁業資源量銳減,單純依靠漁業資源自身補給已經不能修復受損的資源,增殖放流作為一種有效的資源修復手段,已經在世界各地得到推廣和應用。放流苗種往往來源于養殖群體,隨著放流數量的增加,人們越來越關注放流苗種的遺傳多樣性,以降低養殖群體污染野生種質資源的風險,對親本和放流群體的遺傳監測與管理已經成為評價增殖放流效果的指標之一[27]。已有研究表明,群體內遺傳多樣性降低會導致適應能力和生存能力降低[28],對于經濟物種,遺傳多樣性的降低會導致隱形有害基因表達增加和經濟性狀衰退,導致品種退化[29]。因此,利用DNA分子標記對放流群體進行遺傳監測,研究放流群體與野生群體的遺傳差異,對評估增殖放流效果具有重要意義。本研究利用線粒體COI和微衛星標記檢測了文蛤7個地理群體的遺傳多樣性,兩種分子標記的結果均顯示江蘇的如東和啟東群體存在高的遺傳多樣性,這與文蛤地理種群的ISSR研究結果吻合,江蘇文蛤ISSR的位點多態性(80.7%)高于遼寧文蛤的位點多態性(68.4%)[30],說明江蘇文蛤具有較強的遺傳適應能力和選擇育種潛力。
線粒體COI來源于通用引物擴增,可以用于物種間遺傳多樣性的橫向比較。本研究檢測到文蛤線粒體COI序列的單倍型多樣性為0.763,核苷酸多樣性為0.00239,與我國其他海水貝類同源序列[7,31-32]相比,具有較低的遺傳多樣性。本研究樣品來源于我國主要的文蛤養殖海域,各群體的養殖規模大,但大群體不代表高遺傳多樣性,可能是由于貝類COI序列多樣性具有種屬特異性決定的。此外,對各群體Hardy-Weinberg檢驗結果表明,各群體均表現一定的雜合子缺失,可能是有效群體小、近交和群體親本性別比例失衡等因素[33]造成,從而導致文蛤群體COI遺傳多樣性偏低。由于早期的文蛤養殖缺乏科學性指導,采取“野捕家養”供苗系統,沒有充分考慮有效群體數量和利用雜種優勢進行人工育種,稀有等位基因很可能在大規模人工育苗情況下丟失而導致Hardy-Weinberg失衡。
微衛星的雜合度和等位基因數是反映群體遺傳多樣性的重要參數。本研究中文蛤群體平均觀測和期望雜合度分別為0.2964—0.4750和0.7413—0.8228,但7個群體之間的差異不顯著。各群體不同位點的雜合度也沒有明顯差異,說明各群體遺傳多樣性的差別不大。從等位基因數來看,每個位點的等位基因數為5—10個,而各群體平均等位基因數從7.1到7.7個不等,差異亦不顯著,這與雜合度的檢測結果基本一致。而從COI單倍型網絡圖來看,各群體單倍型數量從3到13個不等,群體間差異明顯,與等位基因數和雜合度結果不一致,這可能是因為線粒體DNA屬于母系遺傳和單倍體的特性,與核遺傳DNA相比擁有更小的有效群體,更容易受瓶頸效應影響[9]。
群體遺傳分化指數FST是反映群體間遺傳分化程度的重要指數。赫崇波等[3]研究遼寧和山東沿海5個文蛤群體遺傳多樣性,AFLP的分析得到的FST值為0.0596,結果表明群體間相似性較大,本研究中7個文蛤群體的FST值為0.28360,群體間發生顯著的遺傳分化,與本研究中文蛤取樣地理范圍廣有關,這正好和Geodis的結果遺傳距離和地理距離顯著相關(丹東群體除外)相符。從系統進化樹來看,丹東群體與江蘇的2個群體聚為一類,暗示江蘇苗種的異地養殖已經污染丹東文蛤的遺傳背景。從分子遺傳學角度來看,文蛤遠距離異地養殖或者增殖放流可能對當地野生群體的遺傳結構造成影響,因此,文蛤增殖放流應盡量“就地取材,避免異地文蛤種質資源污染當地文蛤。在選用優良苗種的同時,應適當提高放流親本數量,提高有效群體數量,避免放流群體遺傳多樣性降低和遺傳結構改變,并制定科學合理的遺傳多樣性監測方案,以確保增殖放流科學合理開展。
參考文獻(References):
[1]莊啟謙.中國動物志:軟體動物門雙殼綱簾蛤科.北京:科學出版社,2001: 1-278.
[2]張安國,李太武,蘇秀榕,劉保忠.文蛤養殖現狀及展望.水產科學,2005,24(2): 31-33.
[3]赫崇波,叢林林,葛隴利,劉衛東,周遵春,高祥剛.文蛤養殖群體和野生群體遺傳多樣性的AFLP分析.中國水產科學,2008,15(2): 215-221.
[4]程漢良,夏德全,吳婷婷,孟學平,吉紅九,董志國,陳淑吟.6種簾蛤科貝類及4個地理種群文蛤線粒體COI基因片段序列分析.海洋學報,2007,29(5): 109-116.
[5]陳愛輝,李朝霞,封功能.基于線粒體COI基因序列的文蛤屬(軟體動物門:簾蛤科)系統發育關系.動物學研究,2009,30(3): 233-239.
[6]程漢良,彭永興,董志國,易樂飛,孟學平,申欣,周旻純,陳冬勤.基于線粒體細胞色素c氧化酶亞基I基因序列的簾蛤科貝類分子系統發育研究.生態學報,2013,33(9): 2744-2753.
[7]牛東紅,李家樂,沈和定,姜志勇.縊蟶六群體線粒體DNA-COI基因序列變異及群體遺傳結構分析.海洋學報,2008,30(3): 109-116.
[8]沈玉幫,張俊彬,馮冰冰,李家樂.基于線粒體COI序列分析對紫貽貝群體遺傳多樣性的研究分析.海洋通報,2011,30(4): 435-440.
[9]Zhan A B,Perepelizin P V,Ghabooli S,Paolucci E,Sylvester F,Sardina P,Cristescu M E,MacIsaac H J.Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America.Diversity and Distributions,2012,18(10): 1042-1055.
[10]Zhan A B,Hu J J,Hu X L,Zhou Z C,Hui M,Wang S,Peng W,Wang M L,Bao Z M.Fine-scale population genetic structure of Zhikong scallop(Chlamys farreri): do local marine currents drive geographical differentiation?.Marine Biotechnology,2009,11(2): 223-235.
[11]Xing K,Gao M L,Li H J.Genetic differentiation between natural and hatchery populations of Manila clam(Ruditapes philippinarum)based on microsatellite markers.Genetics and Molecular Research,2014,13(1): 237-245.
[12]Lu X,Wang H X,Liu B Z,Xiang J H.An effective method for parentage determination of the clam(Meretrix meretrix)based on SSR and COI markers.Aquaculture,2011,318(1/2): 223-228.
[13]Li H J,Liu X,Zhang G F.Development and linkage analysis of 104 new microsatellite markers for bay scallop(Argopecten irradians).Marine Biotechnology,2012,14(1): 1-9.
[14]Li H J,Liu X,Zhang G F.A consensus microsatellite-based linkage map for the hermaphroditic bay scallop(Argopecten irradians)and its application in size-related QTL analysis.PLoS One,2012,7(10): e46926.
[15]Zhan A B,Hu J J,Hu X L,Hui M,Wang M L,Peng W,Huang X T,Wang S,Lu W,Sun C,Bao Z M.Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop(Chlamys farreri).Animal Genetics,2009,40(6): 821-831.
[16]Folmer O,Black M,Hoeh W,Lutz R,Vrijenhoek R.DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.Molecular Marine Biology Biotechnology,1994,3(5): 294-299.
[17]Lu X,Wang H X,Dai P,Liu B Z.Characterization of EST-SSR and genomic-SSR markers in the clam,Meretrix meretrix.Conservation Genetics Resources,2011,3(4): 655-658.
[18]Dong Y H,Yao H H,Lin Z H,Sun C S,You Z J.Development of 53 novel polymorphic EST-SSR markers for the hard clam Meretrix meretrix and cross-species amplification.Conservation Genetics Resources,2013,5(3): 811-816.
[19]Tamura K,Dudley J,Nei M,Kumar S.MEGA4: molecular evolutionary genetics analysis(MEGA)software version 4.0.Molecular Biology and Evolution,2007,24(8): 1596-1599.
[20]Rozas J,Sánchez-DelBarrio J C,Messeguer X,Rozas R.DnaSP,DNA polymorphism analyses by the coalescentand other methods.Bioinformatics,2003,19(18): 2496-2497.
[21]Excoffier L,Lischer H E L.Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Molecular Ecology Resources,2010,10(3): 564-567.
[22]Clement M,Posada D,Crandall K A.TCS: a computer program to estimate gene genealogies.Molecular Ecology,2000,9(10): 1657-1659.
[23]Posada D,Crandall K A,Templeton A R.GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes.Molecular Ecology,2000,9(4): 487-488.
[24]Goudet J.FSTAT,a program to estimate and test gene diversities and fixation indices(version 2.9.3),2001[2005-08-23].http://www2.unil.ch/popgen/softwares/fstat.htm.
[25]Rice W R.Analyzing tables of statistical tests.Evolution,1989,43(1): 223-225.
[26]Van Oosterhout C,Hutchinson W F,Wills D P,Shipley P.MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Molecular Ecology Notes,2004,4(3): 535-538.
[27]Blankenship H L,Leber K M.A responsible approach to marine stock enhancement.American Fisheries Society Symposium,1995,15: 167-175.
[28]Barrett R D H,Schluter D.Adaptation from standing genetic variation.Trends in Ecology&Evolution,2008,23(1): 38-44.
[29]Beaumont A,Boudry P,Hoare K.Biotechnology and Genetics in Fisheries and Aquaculture.Singapore: Wiley-Blackwell,2010.
[30]陳大鵬,沈懷舜,丁亞平,楊家新,沈頌東,許璞.文蛤(Meretrix meretrix)地理種群ISSR分子標記的初步研究.南京師大學報:自然科學版,2004,27(3): 74-77.
[31]鄭文娟,朱世華,沈錫權,劉必謙,潘志崇,葉央芳.基于線粒體COI基因序列探討泥蚶的遺傳分化.動物學研究,2009,30(1): 17-23.
[32]Mao Y L,Gao T X,Yanagimoto T,Xiao Y S.Molecular phylogeography ofRuditapes philippinarum in the Northwestern Pacific Ocean based on COI gene.Journal of Experimental Marine Biology and Ecology,2011,407(2): 171-181.
[33]Avise J C,Arnold J,Ball R M,Bermingham E,Lamb T,Neigel J E,Reeb C A,Saunders N C.Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.Annual Review of Ecology and Systematics,1987,18: 489-522.
Genetic diversity and differentiation of seven geographical populations of hard clam(Meretrix meretrix)assessed by COI and microsatellite markers
LI Hongjun1,ZHANG Jingjing1,2,YUAN Xiutang1,*,ZHANG Anguo3,LIU Guize1,SHAO Kuishuang1,WANG Lijun1
1 National Marine Environmental Monitoring Center,Dalian 116023,China
2 Dalian Ocean University,Dalian 116023,China
3 Liaoning Medical University,Jinzhou 121001,China
Abstract:The hard clam(Meretrix meretrix)is a commercially important shellfish in China.With the rapid development of the aquaculture industry of M.meretrix,the demand for seed cultures has led to the over-exploitation of natural populations,which makes stock enhancement a high priority.Stock enhancement programs that use a small number of breeders for the production of hatchery-reared juveniles to be released to the environment may have negative effects on the genetic diversitybook=575,ebook=303of wild populations due to a reduction in the genetic variability of the released stock.In this study,the genetic diversity of seven geographical populations(Sinuiju in North Korea; Dandong,Geligang,and Panshan in Liaoning Province; Dongying in Shandong Province; and Rudong and Qidong in Jiangsu Province)of M.meretrix was assessed using the mitochondrial cytochrome c oxidase subunit I(COI)gene and microsatellite markers.We obtained a total of 142 COI sequences.Each COI sequence was 602 bp in length.These sequences contained 14 variant sites,including 12 transitions and 2 transversions.Twenty-two haplotypes were identified,with 12 haplotypes shared among populations.Population-specific haplotypes were identified in the Sinuiju,Dandong,and Qidong population,respectively.The haplotype diversity was highest in Rudong(h=0.900)and lowest in Dongying(h=0.600).The nucleotide diversity was highest in Dandong(π= 0.00350)and lowest in Geligang(π= 0.00115).Neutral test(Fu's Fs)and mismatch distribution analysis revealed that the hard clam experienced a population expansion event.Analysis of molecular variance(AMOVA)indicated that 71.64% of the genetic variance was within populations and 28.36% of the variance was among populations,demonstrating significant genetic differentiation among populations(P<0.05).A total of 54 alleles were amplified from 280 individuals by using 7 microsatellite markers,with an average of 7.7 alleles per locus.The mean observed heterozygosity(Ho)and expected heterozygosity(He)was 0.387 and 0.7996,respectively.Compared with other populations,genetic diversity in the Jiangsu population was highest,but the difference was not significant(Kruskal-Wallis test,P>0.05).Among the 49 populationlocus combinations(7 populations×7 loci),18 cases deviated from the Hardy-Weinberg equilibrium(P<0.05),indicating heterozygote deficiencies.The neighbor-joining tree showed that the haplotypes were not clustered according to geographical location,but some haplotypes from the same or neighboring locations grouped together(e.g.Rudong and Qidong showing geographical clustering).The unweighted pair group with arithmetic mean(UPGMA)phylogenetic tree showed that the Dandong population was grouped with the Jiangsu population,suggesting that the introduced Jiangsu clam seed has contaminated the genetic background of the Dandong population.These results highlight the need to monitor the genetic effects of releasing large numbers of juveniles.
Key Words:Meretrix meretrix; population genetic variation; COI; microsatellite; stock enhancement
*通訊作者
Corresponding author.E-mail: xtyuan@ nmemc.org.cn
收稿日期:2014-09-15;
修訂日期:2015-07-27
基金項目:國家海洋公益項目(201305043,201305027);國家自然科學基金項目(31101899)
DOI:10.5846/stxb201409151822