999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于二氰根鉻的一系列氰根橋聯(lián)CrⅢ-CuⅡ-CrⅢ三核配合物的合成、結(jié)構(gòu)與磁性

2016-05-03 07:06:41張麗芳韓方方楊代勝倪中海

張麗芳 韓方方 楊代勝 陳 會(huì) 倪中海

(中國礦業(yè)大學(xué)化工學(xué)院,徐州 221116)

?

基于二氰根鉻的一系列氰根橋聯(lián)CrⅢ-CuⅡ-CrⅢ三核配合物的合成、結(jié)構(gòu)與磁性

張麗芳韓方方楊代勝陳會(huì)倪中海*

(中國礦業(yè)大學(xué)化工學(xué)院,徐州221116)

摘要:基于一系列二氰根鉻與[Cu(cyclam)](ClO4)2反應(yīng)合成了3個(gè)氰根橋聯(lián)Cr(Ⅲ)-Cu(Ⅱ)-Cr(Ⅲ)三核配合物[Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O (1)(cyclam=1,4,8,11-四氮雜環(huán)十四烷,bpmb(2-)=1,2-二(2-吡啶甲酰胺基)-4-甲基苯),[Cu(cyclam)][Cr(bpdmb)(CN)2]2(2)(bpdmb(2-)=1,2-二(2-吡啶甲酰胺基)-4,5-二甲基苯)和[Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3)(bpClb(2-)=1,2-二(2-吡啶甲酰胺基)-4-氯苯)。單晶衍射結(jié)果表明:3個(gè)化合物是結(jié)構(gòu)類似的中性三核配合物,均含有氰根橋聯(lián)的Cr-CN-Cu-NC-Cr連接;磁性研究表明:氰根橋在Cr(Ⅲ)和Cu(Ⅱ)離子間傳遞弱的鐵磁耦合作用,基于自旋哈密頓算符H?=-2J(CrCu)S(?)(Cu)(S(?)(Cr1)+S(?)(Cr2))擬合得到它們的磁耦合常數(shù)分別是J(CrCu)=1.53(2) cm(-1)(1),0.45(1) cm(-1)(2)和0.73(2) cm(-1)(3)。

關(guān)鍵詞:氰根橋聯(lián);晶體結(jié)構(gòu);磁性;雜金屬

江蘇省高校優(yōu)勢學(xué)科建設(shè)工程項(xiàng)目和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(No.2015XKMS047)資助。*通信聯(lián)系人。E-mail:nizhonghai@cumt.edu.cn

0 Introduction

Molecule-based magnetic materials have attracted much attention because of their fascinating structural features and excellent magnetic properties[1-6]. As one of the most known linkages, the cyanide group plays an important role in the synthesis and assembly of molecular magnets since the topological structure and the nature of the magnetic interaction between different metal ions can be relatively readily controlled and anticipated[7-11]. Thus far, a large number of cyanide -bridged complexes with various molecular topological structures and remarkable magnetic properties have been successfully prepared[12-23]. Among the well known cyanide-containing building blocks, cyanidechromatemay be more effective for the assembly of molecular magnetic compounds because the central Crion has three unpaired electrons. However, cyanide-bridged CrⅢ-M systems are relatively limited due to the shortage of stable and suitable cyanidechromatebuilding blocks[24-26].

In the past several years, we paid our continuous efforts to assemble new cyanide-bridged magnetic complexes, and the results have shown that the transdicyanide building blocks [Fe(L)(CN)2]-(L=pyridine carboxamide ligands) are versatile building blocks for the assembly of low-dimensional complexes[18-19,22-23]. Very recently, we reported the synthesis, magnetic properties and magneto-structural correlation of a series of trinuclar CrⅢ-NiⅡ-CrⅢcomplexes based on a series of trans-dicyanide building blocks [Cr(L)(CN)2]-[24]. As one of the important composition of a series of work based on [Cr(L)(CN)2]-building blocks, herein, we report the synthesis, crystal structures and magnetic properties of the three trinuclear CrⅢ-CuⅡcomplexes [Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O (1), [Cu(cyclam)] [Cr(bpdmb)(CN)2]2(2)and[Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3) based on [Cu(cyclam)](ClO4)2and a series of dicyanidechromatebuilding blocks (Scheme 1).

Scheme 1 Structures of building blocks [Cr(L)(CN)2]-[L=bpClb (R1=Cl, R2=H), bpmb (R1=H, R2=CH3) or bpdmb (R1=R2=CH3)] and Cu(cyclam)]2+

1 Experimental

1.1 Materials and physical measurements

Elemental analyses (C, H and N) were carried out on an Elementary Vario EL instrument. The infrared spectra of solid samples on KBr pellets were recorded on a Nicolet 7199B FT/IR spectrophotometer in the region of 4 000~400 cm-1. The powder XRD data were measured on a Bruker D8 Advance X-ray diffractometer equipped with a Cu Kα radiation (λ=0.154 18 nm, Cathode voltage =40 kV, Cathode current =30 mA). Magnetic property measurements on crystal samples were carried out on a Quantum Design MPMS SQUID magnetometer. The experimental susceptibilities were corrected for the diamagnetism estimated based on Pascal′s tables.

All chemicals and solvents were purchased from commercial sources and used without further handing. The precursors Cu(cyclam)](ClO4)2[27]and K[Cr(L) (CN)2][28]were prepared according to literature methods.

1.2 Preparation of complexes 1~3

The complexes were prepared using one similar procedure. A red solution of K[Cr(L)(CN)2] (0.2 mmol) in CH3OH and H2O (10 mL, VCH3OH/VH2O=1) was mixed with a solution of [Cu (cyclam)](ClO4)2(0.1 mmol) in CH3OH and CH3CN (10 mL, VCH3OH/VCH3CN=1). After about several days, red brown single crystals were obtained with high yields (60%~75%).

1: Anal. Calcd. for CuCr2C52H60N16O8(%): C: 51.84; H: 5.02; N, 18.60. Found(%): C: 51.60; H: 4.98; N: 18.52. Selected IR frequencies (KBr disk, cm-1): 2 157 (m,νC≡N), 2 138 (m,νC≡N).

2: Anal. Calcd. for CuCr2C54H58N16O5(%): C: 55.03; H: 4.96; N: 19.01. Found (%): C: 55.15; H: 4.95; N: 18.73. Selected IR frequencies (KBr disk, cm-1): 2 155 (m,νC≡N), 2 134 (m,νC≡N).

3: Anal. Calcd. for CuCr2C50H54N16O8Cl2(%): C: 48.22; H, 4.37; N: 17.99. Found(%): C, 48.16; H: 4.40;N: 18.33. Selected IR frequencies (KBr disk, cm-1): 2 154 (m,νC≡N), 2 133 (m,νC≡N).

1.3 X-ray data collection and structure refinement

The diffraction data were collected at 123 K on a Bruker Smart ApexⅡCCD diffractometer equipped with a graphite-monochromatized Mo Kα radiation (λ= 0.071 073 nm). The structures of complexes 1~3 were solved by direct methods with the SHELXS-97 program[29]and refined by full-matrix least-squares methods on F2with the SHELXS-97[30]. Anisotropic thermal parameters were used for the non-hydrogen atoms and isotropic parameters for the hydrogen atoms. Hydrogen atoms were added geometrically and refined using a riding model. Images were created by using DIAMOND program. Crystallographic data and structure refinement parameters are listed in Table 1.

CCDC: 1444524, 1; 1444525, 2; 1444526, 3.

Table1 Crystal data and structure refinement parameters for complexes 1~3

2 Results and discussion

2.1 Crystal structures of complexes 1~3

The complexes have been characterized by single -crystal X-ray diffraction analysis. The stick and ball drawings of complexes 1 ~3 are presented in Fig.1, and the main structural parameters are listed in Table 2. The measured XRD patterns on powder samples of complex 1~3 are consistent well with the calculated data based on their single crystal structures (Fig.2), indicating the samples are high purity of these complexes.

Complexes 1 ~3 have similar neutral trinuclear sandwich-like structures with the general formula [Cu(cyclam)][Cr(L)(CN)2]2. Each [Cr(L)(CN)2]-unit acts as a monodentate ligand through one of its two cyanide groups toward the central copperion. Each chromiumion in complexes 1~3 is hexacoordinated with two bridging cyanide nitrogen atoms and four coplanar nitrogen atoms of L ligand, which forms a slightly distorted octahedron. The average bond distances of Cr-N(amide) and Cr-N(pyridine) are 0.197 7(4) and 0.208 1(35) nm for 1, 0.196 7(2) and 0.207 2(66) nm for 2, and 0.196 5(7) and 0.207 5(4) nm for 3, which are comparable with those in complexes [Ni(cyclam)] [Cr(L)(CN)2]2and [Cr(bpb)(H2O)(N3)]·H2O[24,28]. The Cr-C(bridging cyanide) bond distances are 0.210 9(4) nm for 1, 0.210 2(3) nm for 2 and 0.209 7(4) nm for 3. The Cr-C (non-bridging cyanide) bond distances fall within a narrow range of 0.209 5(4)~0.210 4(4) nm. The Cr-C≡N (bridging cyanide) bond angles in these complexes are bent with 173.0(3)°for 1, 172.5(2)°for 2 and 172.9(3)°for 3, while the Cr-C≡N(non-bridging cyanide) bond angles are almost linear with the value from 174.8(2)°to 178.5(4)°. Besides, the C-Cr-C bond angles with the value from 171.88(9)°to 176.63(16)° are also nearly linear.

Table2 Selected bond distances (nm) and bond angles (°) of complexes 1~3

Symmetry codes:i-x, -y, -z for 1;ii1/2-x, 1/2-y, 2-z for 2;iii1-x, 1-y, 2-z for 3Fig.1  Crystal structure of complex 1 (a), 2 (b) and 3 (c)

Fig.2 XRD patterns for powder samples of complex 1~3

The CuⅡcenters are also hexacoordinated with six nitrogen atoms which come from two bridging cyanides in the axial position and cyclam ligand in the equatorial plane, forming an elongated octahedron due to the Jahn-Teller effect of CuⅡion. The Cu-N (cyanide) bond length with the value of 0.246 8(3) nm for 1, 0.252 6 nm for 2 and 0.246 8(4) nm for 3, and the corresponding Cu-N≡C bond angles are very bent with 139.0(3)°for 1, 139.23°for 2 and 140.0(3)°for 3, respectively. The intramolecular Cr…Cu separations through bridging cyanides are 0.531 8 nm for 1, 0.533 3 nm for 2 and 0.5316 nm for 3.

2.2 Magnetic properties of complexes 1~3

The temperature dependences of magnetic susceptibilities for the complexes 1~3 were measured in the 2~300 K temperature range under an applied field of 2 000 Oe, the χmT versus T plots are illustrated in Fig.3. Apparently, all the three complexes show very similar magnetic properties. The room temperature values of χmT for the three complexes are in the range of 4.15~4.20 emu·K·mol-1, which are slightly higher than the spin-only value of 4.125 emu·K·mol-1expected for the isolated trinuclear system of two chromate(S=3/2) ions and one copper(S=1/2) ion, assuming g =2.00. A gradual increase in χmTvalues of the three complexes are observed as the temperature is decreased until about 20 K and then the χmT values increase sharply to a maximum value of 4.29 emu·K·mol-1at 28 K for 1, 4.22 emu·K·mol-1at 15 K for 2 and 4.40 emu·K·mol-1at 6 K for 3. After that, the χmT values rapidly decrease to about 3.54 emu·K·mol-1, 3.72 emu·K·mol-1, 3.92 emu·K·mol-1at 2 K for 1, 2 and 3, respectively. Theses χmT versus T plots distinctly indicate that the magnetic interactions between Crand Cuare ferromagnetic. The abrupt decrease of χmT values at low temperature probably due to the intermolecular antiferromagnetic interactions. The magnetic susceptibilities of the three complexes in the range of 10~300 K obey the Curie-Weiss law with a positive Weiss constant θ=0.71 K and Curie constant C=4.17 emu·K·mol-1for 1,θ= 0.29 K, C=4.16 emu·K·mol-1for 2, and θ=0.38 K, C= 4.18 emu·K·mol-1for 3. The field dependence of the magnetizations of complexes 1~3 performed under the field range of 0~50 kOe at 2.0 K (Inset in Fig.2) are close to the corresponding Brillouin curve deduced from isolated CrⅢspin (S=3/2) and CuⅡspin (S=1/2) with g=2.00, further indicating the presence of overall ferromagnetic interaction in all three cyanide-bridged complexes.

Inset: Field dependence of magnetization at 2.0 K; the line and the broken line represent the Brillouin function that correspond to S=7/2 and S=3/2+1/2+3/2 based on g=2.0, respectivelyFig.3 Temperature dependences of χmT for the complex 1 (a), 2 (b) and 3 (c)

On the bases of the linear trinuclear magnetic model of Cr-Cu-Cr, the magnetic susceptibilities of complexes 1~3 can be fitted according to the following expressions based on the isotropic spin exchange Hamiltonian

The best-fit parameters obtained are J=1.53 (2) cm-1, g=2.02(1) and zJ′=-0.24(3) cm-1for 1, J=0.45(2) cm-1, g=2.02(1) and zJ′=-0.078(1) cm-1for 2, J=0.73(2) cm-1, g=2.02(2) and zJ′=-0.096(3) cm-1for 3, where zJ′represents the intermolecular magnetic coupling. The small positive J values also support the overall weak ferromagnetic coupling for complexes 1~3. The ferromagnetic coupling between Cr(d3, t2g3) and Cu(d9, t2g6eg3) ions through the bridging cyanide group is reasonable and can be compared with other cyanidebridged CrⅢ-CuⅡcomplexes[33]. It is still noteworthy that the ferromagnetic coupling interactions are very weak in the three complexes, which is due to the relatively small Cu-N≡C bond angles[18]and the relatively long Cu-N bond distance. The similar magnetic coupling constants are due to their similar bond parameters.

3 Conclusions

References:

[1] Caneschi A, Gatteschi D, Renard J P, et al. Inorg. Chem., 1989,28:1976-1980

[2] Cha M J, Shin J W, Lee Y H, et al. Inorg. Chem. Commun., 2009,12:520-522

[3] Li G L, Ni Z H, Cheng W Q, et al. Inorg. Chem. Commun., 2013,31:58-61

[4] Ni Z H, Kou H Z, Zhang L F, et al. Angew. Chem. Int. Ed., 2005,44:7742-7745

[5] Brechin E K, Boskovic C, Wernsdorfer W, et al. J. Am. Chem. Soc., 2002,124:9710-9711

[6] Sato O, Kawakami T, Kimura M, et al. J. Am. Chem. Soc., 2004,126:13176-13177

選取我院2017年1月~2018年1月收治的100例ERCP術(shù)患者進(jìn)行了研究,隨機(jī)抽簽分為兩組各50例。對(duì)照組中,男31例、女19例,年齡32~74歲,年齡(54.9±3.7)歲。觀察組中,男32例、女18例,年齡33~73歲,平均(55.1±3.8)歲。兩組一般臨床資料無明顯差異,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。

[7] Murugesu M, Habrych M, Wernsdorfer W, et al. J. Am. Chem. Soc., 2004,126:4766-4767

[8] MIAO Bao-Xi(苗保喜), LI Guo-Ling(李國玲), ZHAO Yun(趙云), et al. Chinese J. Inorg. Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2013, 29:2470-2474

[9] Palii A, Tsukerblat B, Klokishner S, et al. Chem. Soc. Rev., 2011,40:3130-3156

[10]Zhang K L, Chen W, Xu Y, et al. Polyhedron, 2001,20:2033 -2036

[11]Mironov V S, Chibotaru L F, Ceulemans A J. J. Am. Chem. Soc., 2003,125:9750-9760

[12]Visinescu D, Toma L M, Fabelo O, et al. Dalton Trans., 2008,31:4103-4105

[13]Berlinguette C P, Vaughn D, Cristina C V, et al. Angew. Chem. Int. Ed., 2003,42:1523-1526

[14]Shen W Z, Chen X Y, Cheng P, et al. Z. Anorg. Allg. Chem., 2003,629:591-594

[15]Tang J K, Si S F, Wang L Y, et al. Inorg. Chem. Commun., 2002,5:1012-1015

[16]Andruh M, Costes J P, Diaz C, et al. Inorg. Chem., 2009,48: 3342-3359

[17]Yeung W F, Man W L, Wong W T, et al. Angew. Chem. Int. Ed., 2001,40:3031-3033

[18]Ji Y J, Zhang L F, Zhao Y, et al. Transition Met. Chem., 2015,40:437-444

[19]Ni Z H, Tao J, Wernsdorfer W, et al. J. Chem. Soc. Dalton Trans., 2008,31:2788-2794

[20]Liu W, Wang C F, Li Y Z, et al. Inorg. Chem., 2006,45: 10058-10065

[21]Catala L, Cacoin T, Boilot J P, et al. Adv. Mater., 2003,15: 826-829

[22]Zhang D P, Zhang L F, Li G L, et al. Chem. Commun., 2013, 49:9582-9586

[23]Ni Z H, Zhang L F, Ge C H, et al. Inorg. Chem. Commun., 2008,11:94-96

[24]Chen H, Miao B X, Zhang L F, et al. Inorg. Chim. Acta, 2013,404:34-39

[25]Yao M X, Zheng Q, Cai X M, et al. Inorg. Chem., 2012,51: 2140-2149

[26]Li G L, Zhang L F, Ni Z H, et al. Bull. Korean Chem. Soc., 2012,33:1675-1680

[27]Barefiel E K. Inorg. Chem., 1972,11:2273-2274

[28]Leung W H, Ma J X, Che C M, et al. J. Chem. Soc. Dalton Trans., 1991:1071-1076

[29]Sheldrick G M. Acta Crystallogr., 2008,A64:112-122

[30]Shelkdrick G M. SHELXL-97, Program for Refinement of Crystal Structure, University of G?ttingen, Germany, 1997.

[31]Shen X P, Zhou H B, Zhang Q, et al. Eur. J. Inorg. Chem., 2012:5050-5057

[32]Lim J H, Yoon J H, Choi S Y, et al. Inorg. Chem., 2011,50: 1749-1757

[33]YANG Dai-Sheng(楊代勝), XU Li-Hua(許麗華), CHEN Hui(陳會(huì)), et al. Chinese J. Inorg. Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2015, 31:565-570

Syntheses, Crystal Structures and Magnetic Properties of a Series of Cyanide-Bridged Trinuclear Cr-Cu-CrComplexes Based on DicyanidechromateBuilding Blocks

ZHANG Li-Fang HAN Fang-Fang YANG Dai-Sheng CHEN Hui NI Zhong-Hai*
(School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China)

Abstract:Three cyanide-bridged trinuclear chromate-copper-chromatecomplexes [Cu(cyclam)][Cr(bpmb) (CN)2]2·4H2O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane and bpmb(2-)=1,2-bis(pyridine-2-carboxamido)-4-methylbenzenate), [Cu(cyclam)][Cr(bpdmb)(CN)2]2(2) (bpdmb(2-)=1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzenate) and [Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3) (bpClb(2-)=1,2-bis(pyridine-2-carboxamido)-4-chlorobenzenate), have been synthesized by the reaction of [Cu(cyclam)](ClO4)2with a series of dicyanidechromatebuilding blocks. Single crystal X-ray diffraction analyses show that complexes 1~3 have similar neutral trinuclear structures with Cr-CN-Cu-NC-Crlinkages. Magnetic investigations indicate that complexes 1~3 exhibit weak ferromagnetic coupling between Crand Cucenters through the cyanide bridge with J(CrCu)=1.53(2) cm(-1)for 1, 0.45(1) cm(-1)for 2 and 0.73(2) cm(-1)for 3 based on the spin exchange Hamiltonian H?=-2J(CrCu)S(?)(Cu)(S(?)(Cr1)+S(?)(Cr2)). CCDC: 1444524, 1; 1444525, 2; 1444526, 3.

Keywords:cyanide-bridged; crystal structure; magnetic property; heterometallic

收稿日期:2015-12-29。收修改稿日期:2016-03-02。

DOI:10.11862/CJIC.2016.090

中圖分類號(hào):O614.121;O614.61+1

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1001-4861(2016)04-0731-07

主站蜘蛛池模板: 在线无码av一区二区三区| 中文字幕亚洲第一| 波多野结衣无码视频在线观看| 国产毛片片精品天天看视频| 在线免费亚洲无码视频| 四虎精品国产永久在线观看| 毛片网站免费在线观看| 日韩精品免费一线在线观看| 欧美一级黄片一区2区| 国产极品美女在线播放| 亚洲Aⅴ无码专区在线观看q| 中文字幕第4页| 欧美在线伊人| 亚洲色无码专线精品观看| 手机在线看片不卡中文字幕| 婷婷久久综合九色综合88| 日日碰狠狠添天天爽| 永久免费无码日韩视频| 波多野吉衣一区二区三区av| 免费国产不卡午夜福在线观看| 亚洲精品国产成人7777| 国产成+人+综合+亚洲欧美| 免费无码一区二区| 亚洲日韩欧美在线观看| 国产极品美女在线| 激情综合网址| 一级香蕉视频在线观看| 国产在线专区| 92午夜福利影院一区二区三区| 91国内外精品自在线播放| 欧美不卡视频一区发布| 麻豆精品国产自产在线| 67194成是人免费无码| 国产精品3p视频| 亚洲成aⅴ人在线观看| 狠狠做深爱婷婷久久一区| 日韩欧美国产综合| 114级毛片免费观看| 久久久久亚洲av成人网人人软件 | 免费av一区二区三区在线| 美女无遮挡免费视频网站| 国产精品香蕉在线观看不卡| 99这里只有精品免费视频| www亚洲天堂| 精品国产免费人成在线观看| 国产人成网线在线播放va| Jizz国产色系免费| 国产亚洲高清在线精品99| 亚洲AV免费一区二区三区| 久久亚洲国产一区二区| 欧美中文一区| 国产农村精品一级毛片视频| 国产成人综合亚洲欧洲色就色| 国产产在线精品亚洲aavv| 国产嫩草在线观看| 亚洲精品手机在线| 国产久操视频| 日本免费福利视频| 2021国产精品自产拍在线观看| 中日韩一区二区三区中文免费视频| 人妻21p大胆| 成人福利在线观看| 99久久国产综合精品2023| 毛片在线播放a| 国产成人精品一区二区免费看京| 在线国产你懂的| 亚洲成网站| 国产在线观看人成激情视频| 污污网站在线观看| 午夜a级毛片| 激情综合网激情综合| 福利国产微拍广场一区视频在线| 精品一区二区无码av| 天堂网亚洲综合在线| 国产91av在线| 日本免费a视频| 啪啪啪亚洲无码| 国产亚洲精久久久久久久91| 日韩美女福利视频| 国产精品一区不卡| 亚洲一级毛片免费观看| 一本色道久久88亚洲综合|