999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

霉變稻谷脂肪酸含量的光譜檢測(cè)模型構(gòu)建與優(yōu)化分析

2016-04-09 03:17:08洪添勝李立君張仟仟中南林業(yè)科技大學(xué)機(jī)電工程學(xué)院長(zhǎng)沙000華南農(nóng)業(yè)大學(xué)工程學(xué)院南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室廣州5062國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械研究室廣州5062中南林業(yè)科技大學(xué)理學(xué)院長(zhǎng)沙000
關(guān)鍵詞:模型

文 韜,洪添勝,李立君,郭 鑫,趙 兵,張仟仟,劉 付(.中南林業(yè)科技大學(xué)機(jī)電工程學(xué)院,長(zhǎng)沙000;2.華南農(nóng)業(yè)大學(xué)工程學(xué)院南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州5062;3.國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械研究室,廣州5062;.中南林業(yè)科技大學(xué)理學(xué)院,長(zhǎng)沙000)

?

霉變稻谷脂肪酸含量的光譜檢測(cè)模型構(gòu)建與優(yōu)化分析

文韜1,2,洪添勝2,3※,李立君1,郭鑫4,趙兵1,張仟仟1,劉付1
(1.中南林業(yè)科技大學(xué)機(jī)電工程學(xué)院,長(zhǎng)沙410004;2.華南農(nóng)業(yè)大學(xué)工程學(xué)院南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州510642;3.國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械研究室,廣州510642;4.中南林業(yè)科技大學(xué)理學(xué)院,長(zhǎng)沙410004)

摘要:為了實(shí)現(xiàn)霉變稻谷脂肪酸含量無(wú)損、快速檢測(cè),該文研究應(yīng)用可見(jiàn)/近紅外光譜技術(shù)檢測(cè)霉變稻谷的脂肪酸含量。考慮到直接選用霉變稻谷可見(jiàn)/近紅外光譜數(shù)據(jù)構(gòu)建脂肪酸含量預(yù)測(cè)模型存在建模費(fèi)時(shí)、預(yù)測(cè)失準(zhǔn)等問(wèn)題,研究提出了霉變稻谷脂肪酸含量的可見(jiàn)/近紅外優(yōu)化校正模型。研究中通過(guò)光譜-理化值共生距離(sample set partitioning based on joint xy distance, SPXY)算法結(jié)合偏最小二乘法初步分析了不同校正集樣本預(yù)測(cè)霉變稻谷脂肪酸含量的差異;利用連續(xù)投影算法(SPA)提取了反映霉變稻谷脂肪酸含量變化的特征波段;采用偏最小二乘法(partial least square, PLS)和多元線性回歸法(multivariable linear regression, MLR)分別建立了基于特征波段光譜反射值的霉變稻谷脂肪酸含量預(yù)測(cè)模型,并對(duì)比分析了采用SPXY樣本集劃分的模型預(yù)測(cè)效果。結(jié)果表明:采用SPXY法篩選出的65個(gè)校正集樣本分布與初始校正集相近,脂肪酸含量變化范圍為18.55~127.26 mg,其標(biāo)準(zhǔn)差為32.39;SPA算法最終從256個(gè)全光譜波段中優(yōu)選出9個(gè)特征波段,實(shí)現(xiàn)了光譜數(shù)據(jù)的壓縮;分別建立的SPXY-SPA-PLSR模型和SPXY-SPA-MLR模型預(yù)測(cè)霉變稻谷脂肪酸含量相關(guān)系數(shù)RP為0.922 1和0.915 9,預(yù)測(cè)均方根誤差RMSEP為13.889 3和14.261 0;SPXY篩選校正集所構(gòu)建模型預(yù)測(cè)精度與初始校正集所建模型相當(dāng),但校正集樣本數(shù)量減少為初始校正集的41%,運(yùn)算時(shí)長(zhǎng)縮短為初始樣本集的32%,提高了模型的校正速度。

關(guān)鍵詞:模型;光譜檢測(cè);農(nóng)業(yè);霉變稻谷;脂肪酸;可見(jiàn)/近紅外光譜;特征波段;樣本集劃分

文韜,洪添勝,李立君,郭鑫,趙兵,張仟仟,劉付.霉變稻谷脂肪酸含量的光譜檢測(cè)模型構(gòu)建與優(yōu)化分析[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):193-199.doi:10.11975/j.issn.1002-6819.2016.01.027 http://www.tcsae.org

Wen Tao, Hong Tiansheng, Li Lijun, Guo Xin, Zhao Bing, Zhang Qianqian, Liu Fu.Optimization analysis and establishment of spectra detection model of fatty acid contents for mould paddies[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(01): 193-199.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.027 http://www.tcsae.org

中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:文韜(E041200816S)

中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:洪添勝(E041200036S)

0 引言

稻谷霉變過(guò)程實(shí)質(zhì)上就是微生物以稻谷為營(yíng)養(yǎng)基質(zhì),進(jìn)行消化、吸收和利用的物質(zhì)代謝和能量代謝的生物化學(xué)反應(yīng),其中脂肪酸是一種比較穩(wěn)定的代謝產(chǎn)物,容易在霉變的稻谷中積累,從而導(dǎo)致稻谷中脂肪酸值增高[1-3]。因此,脂肪酸含量的變化可以較好地表征稻谷霉變的程度。

現(xiàn)有的脂肪酸值測(cè)定主要采取傳統(tǒng)的化學(xué)分析方法,該方法在分析稻谷脂肪酸含量時(shí)需要添加化學(xué)試劑對(duì)稻谷本身實(shí)施破壞性檢測(cè),處理反應(yīng)周期較長(zhǎng),易造成對(duì)環(huán)境的污染,難以達(dá)到快速檢測(cè)的要求[4-6]。因此,研究一種快速、無(wú)損檢測(cè)稻谷中脂肪酸含量的方法對(duì)于診斷稻谷霉變具有重要現(xiàn)實(shí)意義。可見(jiàn)光/近紅外光譜(Vis/ NIR)分析技術(shù)可以通過(guò)物質(zhì)內(nèi)部成分對(duì)可見(jiàn)/近紅外光的特征吸收實(shí)現(xiàn)定性和定量分析,是近年來(lái)發(fā)展起來(lái)的一種高效快速的現(xiàn)代分析技術(shù)。目前,國(guó)內(nèi)外研究學(xué)者應(yīng)用其對(duì)農(nóng)作物生長(zhǎng)及環(huán)境監(jiān)測(cè)和農(nóng)產(chǎn)品品質(zhì)檢測(cè)開(kāi)展了大量的研究工作[7-15]。近年來(lái),有學(xué)者將該技術(shù)應(yīng)用于稻谷內(nèi)部成分測(cè)定研究并取得了初步進(jìn)展。陸艷婷等[16]應(yīng)用近紅外光譜法建立了粳稻直鏈淀粉含量預(yù)測(cè)模型,模型決定系數(shù)為0.813,預(yù)測(cè)均方根誤差為2.74。郭詠梅等[17]采用偏最小二乘法建立糙米蛋白質(zhì)預(yù)測(cè)校正模型,模型決定系數(shù)為0.899。張強(qiáng)等[18]應(yīng)用近紅外光譜結(jié)合化學(xué)分析方法測(cè)定儲(chǔ)藏稻谷中黃曲霉毒素B1含量,建立稻谷黃曲霉毒素B1支持向量機(jī)模型,模型決定系數(shù)達(dá)0.913。然而,上述研究在采用光譜數(shù)據(jù)建模時(shí),為了使所建模型穩(wěn)定準(zhǔn)確,往往要求校正集中樣本數(shù)量較多,但未深入研究校正集樣本的質(zhì)量,可能導(dǎo)致大量的數(shù)據(jù)樣本間存在差異過(guò)小或相同的狀況,耗費(fèi)了大量的建模時(shí)間。

本研究選取稻谷霉變生物化學(xué)反應(yīng)產(chǎn)生的代謝產(chǎn)物脂肪酸為研究對(duì)象,通過(guò)分時(shí)段測(cè)定不同霉變時(shí)期稻谷的光譜信息和相應(yīng)的脂肪酸值,采用光譜-理化值共生距離(sample set partitioning based on joint x-y distance, SPXY)算法對(duì)稻谷可見(jiàn)/近紅外光譜初始校正集進(jìn)行劃分,篩選出具有代表性的校正樣本集,并選取該校正集建立基于特征波段光譜反射值的稻谷脂肪酸含量預(yù)測(cè)模型,通過(guò)與未經(jīng)篩選初始校正集建模結(jié)果比較,驗(yàn)證稻谷脂肪酸含量可見(jiàn)/近紅外光譜校正模型的優(yōu)化效果。

1 材料與方法

1.1稻谷樣本制備及脂肪酸測(cè)定

本研究所選用的稻谷樣本為C兩優(yōu)34156晚稻,含水率為14.2%,由湖南農(nóng)業(yè)大學(xué)提供。考慮到稻谷霉變程度對(duì)其脂肪酸含量的動(dòng)態(tài)影響,人工選取完整、無(wú)霉變、未發(fā)芽的稻谷樣本放置于恒溫恒濕箱,依據(jù)稻谷霉菌適宜滋生的條件,設(shè)定恒溫恒濕箱的溫度30℃,相對(duì)濕度90%,進(jìn)行霉變樣本培育[19]。上述霉變稻谷的制備過(guò)程按照稻谷儲(chǔ)藏過(guò)程中理化特性與感官指標(biāo)隨時(shí)間的變異情況,人工將培育階段劃分成3個(gè)周期,每個(gè)時(shí)間周期約為10 d[20],共得到不同霉變程度的稻谷樣本各50份。制備的樣本按照GB/T 20569-1995《谷物制品脂肪酸值測(cè)定法》測(cè)定稻谷脂肪酸含量[21],并將其作為建模的標(biāo)準(zhǔn)參考值。

1.2光譜信息校正及數(shù)據(jù)采集

考慮到采集的稻谷谷粒較小且樣本數(shù)量較多,本研究采用Hypersis農(nóng)產(chǎn)品高光譜儀(Hypersis-VNIR-PFH,卓立漢光,北京)完成稻谷光譜信息采集。該儀器主要包括圖像采集卡和高性能光譜相機(jī)(V10E-QE)、配套光源、PSA300-X型電動(dòng)位移臺(tái)、集成驅(qū)動(dòng)控制臺(tái)(高速I(mǎi)MS步進(jìn)電機(jī))及暗箱等部件。光譜儀設(shè)置理想曝光時(shí)間20 ms,移動(dòng)平臺(tái)運(yùn)行速度14.6 mm/s,掃描距離150 mm,光譜范圍380~1 000 nm,光譜分辨率2.8nm。由于光源的強(qiáng)度分布不均及暗電流噪聲存在,每次采樣均需利用全黑、全白標(biāo)定圖像對(duì)掃描的稻谷圖像進(jìn)行校正,校正公式如(1)所示:

式中Ia為校正后的稻谷掃描圖像;Io為校正前的稻谷掃描圖像;Iw為全白標(biāo)定圖像;Ib為全黑標(biāo)定圖像。光譜數(shù)據(jù)采集實(shí)驗(yàn)中,將稻谷樣本平鋪固定于反射率接近于0的黑色底板上(如圖1所示),黑色底板置于在載物臺(tái),在電機(jī)的驅(qū)動(dòng)下,樣本垂直于鏡頭縱向移動(dòng)。高光譜相機(jī)同時(shí)獲得樣本在各波長(zhǎng)處的光譜信息和圖像信息,每粒稻谷采集得到256個(gè)波段的圖像。

圖1 稻谷樣本在光譜檢測(cè)載物臺(tái)上分布Fig.1 Placement for paddy samples on workbench of spectral detection

利用遙感圖像處理平臺(tái)(environment for visualizing images,ENVI)選取矩形載物臺(tái)上的稻谷作為感興趣區(qū)域(region of interest, ROI),稻谷脂肪酸含量的實(shí)測(cè)值均與所選的ROI區(qū)域?qū)?yīng)。通過(guò)計(jì)算ROI的各個(gè)像素點(diǎn)的光譜響應(yīng)平均值來(lái)估算稻谷脂肪酸的相對(duì)反射率。

2 數(shù)據(jù)處理與模型建立

2.1SPXY樣本劃分方法

SPXY算法是一種基于統(tǒng)計(jì)基礎(chǔ)的樣本集選擇方法,能使校正集最大程度地表征樣本均勻分布,以提高模型穩(wěn)定性,試驗(yàn)證明SPXY法能有效地用于近紅外光譜模型的建立[22]。該算法的計(jì)算過(guò)程為:使用近紅外光譜-理化值的共生距離作為劃分依據(jù),SPXY在樣本間歐式距離計(jì)算時(shí)將x變量(樣本近紅外光譜值)和y變量(樣本理化值)同時(shí)考慮在內(nèi),其x和y距離公式如(2)、(3)所示:

式中xp(j)為樣本p實(shí)測(cè)的相對(duì)光譜反射值;xq(j)為樣本q實(shí)測(cè)的相對(duì)光譜反射值;j為對(duì)應(yīng)的近紅外光譜波長(zhǎng),nm;yp為樣本p實(shí)測(cè)的脂肪酸含量,mg/100 g;yq為樣本q實(shí)測(cè)的脂肪酸含量,mg/100 g。

SPXY算法逐步選擇的過(guò)程中用dxy(p,q)代替了dx(p,q),同時(shí)為了確保樣本在x和y空間中具有相同的權(quán)重,將dx(p,q)和dy(p,q)分別除以他們?cè)跀?shù)據(jù)集中的最大值,其標(biāo)準(zhǔn)化的xy距離公式如(4)所示:

2.2校正模型建立與評(píng)價(jià)

本研究運(yùn)用光譜技術(shù)建立近紅外光譜與稻谷脂肪酸含量之間的校正模型與評(píng)價(jià)過(guò)程如圖2所示:1)在稻谷樣本制備的正常、霉變初期、中期和后期4個(gè)區(qū)段隨機(jī)選取共計(jì)45個(gè)樣本作為模型預(yù)測(cè)集;2)對(duì)模型初始校正集和預(yù)測(cè)集樣本的光譜數(shù)據(jù)進(jìn)行savitzky-golay(SG)平滑[23]預(yù)處理,減弱噪聲影響;3)采用SPXY算法從剩余155個(gè)樣本中篩選出具有差異性及代表性的校正集樣本用于模型建立;4)采用連續(xù)投影算法(successive projections algorithm, SPA)[24]提取光譜數(shù)據(jù)的特征波段,消除原始光譜矩陣中冗余的信息,實(shí)現(xiàn)光譜數(shù)據(jù)壓縮;5)采用偏最小二乘法(partial least square, PLS)[25]和多元線性回歸法(multivariable linear regression, MLR)[26],分別建立光譜特征波段與脂肪酸含量之間的校正模型;6)使用預(yù)測(cè)集數(shù)據(jù)對(duì)校正模型進(jìn)行檢驗(yàn)和評(píng)價(jià)。模型建立過(guò)程中,使用相關(guān)系數(shù)Rp和預(yù)測(cè)均方根誤差(RMSEP)等指標(biāo)來(lái)評(píng)價(jià)模型質(zhì)量,其相應(yīng)的計(jì)算公式如(5)和(6)。

式中n為樣本數(shù);yTi為樣本實(shí)測(cè)值;ypi為樣本預(yù)測(cè)值;y-a為樣本實(shí)測(cè)平均值。

圖2 校正模型建立與評(píng)價(jià)流程Fig.2 Calibration model establishment and evaluation process

3 結(jié)果與分析

3.1制備樣本脂肪酸含量統(tǒng)計(jì)

本研究制備的200個(gè)稻谷樣本分布于正常期、霉變初期、中期和后期4個(gè)階段。通過(guò)理化試驗(yàn),測(cè)得不同時(shí)期稻谷脂肪酸含量分布如圖3所示,4個(gè)不同時(shí)期的霉變稻谷脂肪酸含量具有不同梯度分布,脂肪酸含量在稻谷霉變的初期和中期上升速率較快,到達(dá)后期上升速率基本趨于平緩,符合文獻(xiàn)提出的研究結(jié)論[27]。上述結(jié)果說(shuō)明試驗(yàn)制備的樣本具有一定代表性,脂肪酸含量可作為檢測(cè)稻谷發(fā)生霉變的依據(jù)。

圖3 不同霉變時(shí)期稻谷脂肪酸含量分布圖Fig.3 Distribution map of fatty acid value in paddy for different mould stage

3.2SPXY算法劃分校正集比較

校正集樣本的選取與確定直接影響模型的預(yù)測(cè)精度。本研究采用SPXY算法對(duì)稻谷初始校正集樣本進(jìn)行篩選,指定樣本數(shù)N范圍選為35~155,步長(zhǎng)為10,分別試建全光譜波段的PLS模型,根據(jù)模型預(yù)測(cè)集的相關(guān)系數(shù)Rp和預(yù)測(cè)均方根誤差(RMSEP)值,確定最佳的校正集樣本數(shù)量。研究獲得的Rp和RMSEP隨校正集樣本數(shù)量變化曲線如圖4所示。

從圖中曲線的變化趨勢(shì)可知,Rp曲線隨著校正集樣本數(shù)N的增加呈遞增趨勢(shì),與之相對(duì)應(yīng)的RMSEP曲線呈遞減趨勢(shì),N的取值在35~65范圍內(nèi),Rp變化差異明顯,N取值在65~155范圍內(nèi),Rp變化趨于平緩,N取值65為該變化曲線的數(shù)據(jù)拐點(diǎn),相對(duì)應(yīng)的(Rp,RMSEP)為(0.928 6,13.085 6),當(dāng)N取值為135時(shí),Rp達(dá)到極大值0.943 9,RMSEP降為極小值11.849 2。綜合上述Rp和RMSEP曲線的變化趨勢(shì)可知,校正集樣本數(shù)N取值為65以后,預(yù)測(cè)值與真實(shí)值之間的相關(guān)系數(shù)和均方根誤差均無(wú)明顯差異,考慮到建模的運(yùn)算量,本研究最終通過(guò)SPXY算法篩選出65個(gè)樣本組成模型校正集。

圖4 Rp和RMSEP隨校正集樣本數(shù)量變化曲線Fig.4 Variation curve of Rp and RMSEP values followed by calibration sample numbers change

預(yù)測(cè)集、初始校正集和SPXY篩選校正集的樣本脂肪酸含量統(tǒng)計(jì)結(jié)果如表1所示。由表中統(tǒng)計(jì)結(jié)果可知經(jīng)SPXY法篩選出的校正集樣本脂肪酸含量變化范圍與未經(jīng)挑選的初始校正集相同,并且標(biāo)準(zhǔn)差為32.39,與初始校正集相近,說(shuō)明SPXY法篩選后的校正集樣本具有一定代表性。

表1 不同集稻谷肪酸含量分布Tab.1 Fatty acid values distribution in different sample set

3.3校正模型特征波段選取

在利用Vis/NIR光譜建模過(guò)程中,通過(guò)特定方法篩選特征波段或波段區(qū)間有可能得到更好的定量校正模型[28]。本研究利用連續(xù)投影算法(SPA)對(duì)稻谷的校正模型進(jìn)行光譜特征波段選取,指定波段數(shù)N范圍為2~24[29],根據(jù)校正集的內(nèi)部交叉驗(yàn)證均方根誤差RMSECV值確定最佳的光譜特征波段個(gè)數(shù)。

稻谷校正集樣本的原始光譜經(jīng)過(guò)SG數(shù)據(jù)平滑,從256個(gè)波段中共優(yōu)選出9個(gè)特征波段,分別是392、404、430、442、619、636、870、885和899 nm,如圖5所示。

上述研究結(jié)果顯示,利用SPA算法選擇光譜波段實(shí)現(xiàn)了光譜數(shù)據(jù)的壓縮,降低了模型的復(fù)雜度。

圖5 稻谷平滑光譜模型特征波段數(shù)確定和優(yōu)選Fig.5 Optimal selection of characteristic wavelengths and numbers for paddy SG smoothing model

3.4預(yù)測(cè)模型建立與結(jié)果分析

1.2.1.2 成立在職培訓(xùn)管理組:由區(qū)護(hù)士長(zhǎng)任組長(zhǎng),指定護(hù)理組長(zhǎng)一對(duì)一帶教;根據(jù)CSSD制定的崗前培訓(xùn)計(jì)劃,專(zhuān)人負(fù)責(zé),落實(shí)到位。

采用SPXY算法選取的65份稻谷校正集樣本,經(jīng)過(guò)SG平滑對(duì)全波段光譜進(jìn)行預(yù)處理后,將SPA算法優(yōu)選的特征波段下的光譜反射率作為PLSR模型和MLR模型的輸入,利用預(yù)測(cè)集的45份稻谷樣本檢驗(yàn)構(gòu)建模型的預(yù)測(cè)效果,其模型預(yù)測(cè)值與實(shí)測(cè)值之間離散分布如圖6所示。

圖6 不同模型預(yù)測(cè)值與實(shí)測(cè)值相關(guān)性Fig.6 Correlation analysis between predicted value and actual value for different models

由圖6可知,利用SPA算法選取的特征波段分別建立的SPXY-SPA-PLSR模型和SPXY-SPA-MLR模型預(yù)測(cè)精度RP分別為0.922 1和0.915 9,模型預(yù)測(cè)均方根誤差RMSEP分別為13.889 3和14.261 0,說(shuō)明SPA算法所優(yōu)選出的波段是能夠基本表征待測(cè)組分信息,模型對(duì)不同霉變時(shí)期的稻谷脂肪酸含量均具有較強(qiáng)的預(yù)測(cè)能力。為了進(jìn)一步說(shuō)明采用SPXY算法篩選校正集對(duì)稻谷脂肪酸含量近紅外校正模型的影響,在相同的條件,本研究將SPXY算法篩選的校正集所建的SPA-PLSR模型與初始校正集所建的SPA-PLSR模型進(jìn)行了比較,相應(yīng)的比較結(jié)果如表2所示。

表2 不同校正集預(yù)測(cè)的稻谷脂肪酸含量比較Tab.2 Comparison of predicted fatty acid values in different calibration models

表2的對(duì)照結(jié)果表明,選用SPXY篩選校正集,經(jīng)SG平滑光譜預(yù)處理后建立的SPA-PLSR模型,校正時(shí)其內(nèi)部驗(yàn)證的相關(guān)系數(shù)RC和均方根誤差RMSEC分別為0.915 1、12.957 3;其外部驗(yàn)證的相關(guān)系數(shù)RP和均方根誤差RMSEP分別為0.922 1、13.889 3;SPXY篩選校正集所構(gòu)建模型預(yù)測(cè)精度與初始校正集所建模型相當(dāng),但校正集樣本數(shù)量減少為初始校正集的41%,運(yùn)算時(shí)長(zhǎng)縮短為初始樣本集的32%,說(shuō)明經(jīng)過(guò)SPXY算法篩選后的校正集樣本是基本能夠正確反映初始樣本集信息,較好的消除冗余樣本,提高了模型的校正速度。

4 結(jié)論

本文研究了霉變稻谷脂肪酸含量的可見(jiàn)/近紅外光譜校正模型構(gòu)建和優(yōu)化方法,并通過(guò)試驗(yàn)進(jìn)行了驗(yàn)證,得到以下結(jié)論:

1)試驗(yàn)制備的4個(gè)不同霉變時(shí)期的稻谷脂肪酸含量具有不同梯度分布。脂肪酸含量在稻谷霉變的初期和中期上升速率較快,到達(dá)后期基本趨于平緩。脂肪酸含量可作為檢測(cè)稻谷霉變的依據(jù)。

2)采用SPXY法篩選出的65個(gè)校正集樣本脂肪酸含量變化范圍與未經(jīng)挑選的初始155個(gè)校正集相同,并且標(biāo)準(zhǔn)差為32.39,與初始校正集相近,說(shuō)明SPXY法篩選后的校正集樣本具有一定代表性。

3)經(jīng)SG平滑處理后的光譜數(shù)據(jù),利用SPA算法進(jìn)行光譜特征波段選擇,最終從256個(gè)波段中優(yōu)選出9個(gè)光譜波段,極小化光譜變量之間的共線性影響,實(shí)現(xiàn)了光譜數(shù)據(jù)的壓縮,降低了模型的復(fù)雜度。

4)分別建立的SPXY-SPA-PLSR模型和SPXY-SPAMLR模型預(yù)測(cè)霉變稻谷脂肪酸含量RP為0.922 1和0.915 9,預(yù)測(cè)均方根誤差RMSEP為13.889 3和14.261 0,說(shuō)明模型對(duì)不同霉變時(shí)期的稻谷脂肪酸含量均具有較強(qiáng)的預(yù)測(cè)能力;SPXY篩選校正集所構(gòu)建的SPA-PLSR模型預(yù)測(cè)精度與初始校正集所建的SPA-PLSR模型相當(dāng),但校正集樣本數(shù)量減少為初始校正集的41%,運(yùn)算時(shí)長(zhǎng)縮短為初始樣本集的32%,進(jìn)一步說(shuō)明經(jīng)過(guò)SPXY算法篩選后的校正集樣本是能夠正確反映初始樣本集信息,較好的消除冗余樣本,提高了模型的校正速度。

[參考文獻(xiàn)]

[1] Aibara S, Ismail I A.Changes in rice bran lipids and fatty acids during storage[J].Agriculture Biology Chemistry,1986, 50(3): 665-673.

[2]蔡靜平,等.糧油微生物學(xué)[M].中國(guó)輕工業(yè)出版社,2002.

[3]成巖萍.淺析糧食微生物與糧食儲(chǔ)藏的關(guān)系[J].糧油食品科技,2005, 13(1):28-29.Cheng Yanping.Ontherelationshipbetween grain microorganism and grain storage[J].Science and technology of cereals, oils and foods, 2005, 13(1): 28-29.(in Chinese with English abstract)

[4]包清彬,豬谷富雄.儲(chǔ)藏條件對(duì)糙米理化特性影響的研究[J].農(nóng)業(yè)工程學(xué)報(bào),2003, 19(6):25-27.Bao Qinbing, Tomio ITANI.Influence of storage conditions on physicochemical characteristic of brown rice[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2003, 19(6): 25-27.(in Chinese with English abstract)

[5]邵龍,邵懷宗,彭啟琮.稻谷脂肪自動(dòng)酸滴定儀設(shè)計(jì)與實(shí)現(xiàn)[J].電子測(cè)量與儀器學(xué)報(bào),2008, 22(6): 97-102.Shao Long, Shao Huaizong, Peng Qicong.Design and realization of rice fatty acid automatic titrator[J].Journal of electronic measurement and instrument, 2008, 22(6): 97-102.(in Chinese with English abstract)

[6]周顯青,張玉榮.儲(chǔ)藏稻谷品質(zhì)指標(biāo)的變化及其差異性[J].農(nóng)業(yè)工程學(xué)報(bào),2008, 24(12): 238-242.Zhou Xianqing, Zhang Yurong.Changes and differential analysis of the quality indexes of stored paddy[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24(12):238-242.(in Chinese with English abstract)

[7]宋海燕,岑海燕,應(yīng)霞芳,等.基于光譜技術(shù)的禽畜污水化學(xué)需氧量快速測(cè)定方法的研究[J].農(nóng)業(yè)工程學(xué)報(bào),2006, 22(6): 148-151.Song Haiyan, Cen Haiyan, Ying Xiafang, et al.Approach to rapid detection of chemical oxygen demand in livestock waste water based on spectroscopy technology[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(6): 148-151.(in Chinese with English abstract)

[8]洪添勝,喬軍,Ning Wang,等.基于高光譜圖像技術(shù)的雪花梨品質(zhì)無(wú)損檢測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2007, 23(2):151-155.Hong Tiansheng, Qiao Jun, Ning Wang, et al.Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23 (2): 151-155.(in Chinese with English abstract)

[9] He Yong, Huang Min, Song Haiyan, et al.Prediction of soil macronutrients content using near-infrared spectroscopy [J].Computers and Electronics in Agriculture, 2007, 58(2): 144-15.

[10]李曉麗,唐月明,何勇,等.基于可見(jiàn)/近紅外光譜的水稻品種快速鑒別研究[J].光譜學(xué)與光譜分析,2008, 28(3): 578-581.Li Xiaoli, Tang Yueming, He Yong, et al.Discrimination of varieties of paddy based on Vis/NIR spectroscopy combined with chemometrics[J].Spectroscopy and spectral analysis, 2008, 28 (3): 578-581.(in Chinese with English abstract)

[11] Liu Fei, Zhang Fan, Jin Zonglai, et al.Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.)leaves using visible/near-infrared spectroscopy[J].Analytica Chimica Acta, 2008, 629(1-2): 56-65

[12]周子立,張瑜,何勇,等.基于近紅外光譜技術(shù)的大米品種快速鑒別方法[J].農(nóng)業(yè)工程學(xué)報(bào),2009, 25(8): 131-135.Zhou Zili, Zhang Yu, He Yong, et al.Method for rapid discrimination of varieties of rice using visible NIR spectroscopy [J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2009, 25(8): 131-135.(in Chinese with English abstract)

[13] Dissing B S, Nielsen M E, Ersboll B K, et al.Multispectral imaging for determination of astaxnthin concentration in salmonids[J].PLoS One, 2011, 6(5):19-32.

[14]梅慧蘭,鄧小玲,洪添勝,等.柑橘黃龍病高光譜早期鑒別及病情分級(jí)[J].農(nóng)業(yè)工程學(xué)報(bào),2014, 30(9):140-147.Mei Huilan, Deng Xiaoling, Hong Tiansheng, et al.Early detection and grading of citrus huanglongbing usinghyperspectral imaging technique[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(9): 140-147.(in Chinese with English abstract)

[15]鄒小波,張小磊,石吉勇,等.基于高光譜圖像的黃瓜葉片葉綠素含量分布檢測(cè)[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(13):169-175.Zou Xiaobo, Zhang Xiaolei, Shi Jiyong, et al.Detection of chlorophyll content distribution in cucumber leaves based on hyperspectral imaging[J].Transactions of the Chinese Society of Agricultural Engineering Transactions of the CSAE, 2014, 30 (13):169-175.(in Chinese with English abstract)

[16]陸艷婷,金慶生,葉勝海,等.應(yīng)用近紅外光譜技術(shù)快速測(cè)定粳稻品種的直鏈淀粉含量[J].中國(guó)糧油學(xué)報(bào),2007,22(3):149-153.Lu Yanting, Jin Qingsheng, Ye Shenghai, et al.Application of near infrared spectroscopy for rapid analysis of amylose content in short-grain rice[J].Journal of the Chinese Cereals and Oils Association, 2007, 22(3):149-153.(in Chinese with English abstract)

[17]郭詠梅,李華慧,李少明,等.糙米蛋白質(zhì)含量與礦質(zhì)元素含量的相關(guān)分析及NIRS模型的建立[J].植物遺傳資源學(xué)報(bào),2013,14(1):173-178.Guo Yongmei, Li Huahui, Li Shaoming, et al.Correlation analysis of protein content and mineral content in brown rice and establishment of the math model for the NIRS analysis [J].Journal of Plant Genetic Resources, 2013, 14(1): 173-178.(in Chinese with English abstract)

[18]張強(qiáng),劉成海,孫井坤,等.基于支持向量機(jī)稻谷黃曲霉毒素B1近紅外無(wú)損檢測(cè)[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(5):84-88.Zhang Qiang, Liu Chenghai, Sun Jingkun, et al.Near-infrared spectroscopy nondestructive determination of aflatoxin B1 in paddy rice based on support vector machine regression [J].Journal of Northeast Agricultural University, 2015, 46(5): 84-88.(in Chinese with English abstract)

[19]周建新.論糧食霉變中的生物化學(xué)[J].糧食儲(chǔ)藏,2004, 32(1): 9-12.Zhou Jianxin.The biochemistry during grain mildewing[J].Grain storage, 2004, 32(1): 9-12.(in Chinese with English abstract)

[20]張瑛,吳先山,吳敬德,等.稻谷儲(chǔ)藏過(guò)程中理化特性變化的研究[J].中國(guó)糧油學(xué)報(bào),2003, 29(5): 565-566.Zhang Ying, Wu Xianshan, Wu Jingde, et al.Study on physical and chemical characters in rice storage[J].Journal of the Chinese cereals and oils association, 2003, 18(6):565-566.(in Chinese with English abstract)

[21] GB/T 15684,《谷物制品脂肪酸值測(cè)定法》測(cè)定稻谷脂肪酸含量[S].

[22]展曉日,朱向榮,史新元,等.SPXY樣本劃分法及蒙特卡羅交叉驗(yàn)證結(jié)合近紅外光譜用于橘葉中橙皮苷的含量測(cè)定[J].光譜學(xué)與光譜分析,2009,29(4):964-968.Zhan Xiaori, Zhu Xiangrong, Shi Xinyuan, et al.Spectroscopy with SPXY algorithm for sample subset partitioning and mote carlo cross validation [J].Spectroscopy and spectral analysis, 2009, 29(4): 964-968.(in Chinese with English abstract)

[23] Bauriegel E, Giebel A, Geyer M, et al.Early detection of Fusarium infection in wheat using hyper-spectral imaging [J].Computers and Electronics in Agriculture, 2011, 75(2): 304-312.

[24] Moreira E D T, Pontes M J C, Galváo R K H, et al.Nearinfrared reflectance spectrometry classification of cigarettes using the successive projections algorithm for variable selection [J].Talanta, 2009, 79: 1260-1264.

[25] Fei Liu, Fan Zhang, Zonglai Jin, et al.Determination of acetolactate synthase activity and protein content of oilseed rape (Brassicanapus L.)leavesusingvisible/near-infraredspectroscopy [J].Analytica chimica acta, 2008(629): 56-65.

[26]劉天玲,蘇琪雅,孫群,等.基于NIR分析和模式識(shí)別技術(shù)的玉米種子識(shí)別系統(tǒng)[J].光譜學(xué)與光譜分析,2012,32(6):1550-1553.Liu Tianling, Su Qiya, Sun Qun, et al.Recognition of corn seeds based on pattern recognition and near infrared spectroscopy technology[J].Spectroscopy and spectral analysis,2012, 32(6):1550-1553.(in Chinese with English abstract)

[27]楊曉蓉,周建新,姚明蘭,等.不同儲(chǔ)藏條件下稻谷脂肪酸值變化和霉變相關(guān)性研究[J].糧食儲(chǔ)藏,2006,35(5):49-52.Yang Xiaorong, Zhou Jianxin, Yao Minglan, et al.Study on a correlation between the fatty acid value change and mould of paddy in different storage conditions[J].Grain Storage, 2006, 35 (5): 49-52.(in Chinese with English abstract)

[28]褚小立,袁洪福,陸婉珍.近紅外分析中光譜預(yù)處理及波長(zhǎng)選擇方法進(jìn)展與應(yīng)用[J].化學(xué)進(jìn)展,2004,16(4):528-542.Chu Xiaoli, Yuan Hongfu, Lu Wanzhen.Progress and appliaction of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J].Progress in chemistry, 2004, 16 (4): 528-542.(in Chinese with English abstract)

[29]高洪智,盧啟鵬,丁海泉,等.基于連續(xù)投影算法的土壤總氮近紅外特征波長(zhǎng)的選取[J].光譜學(xué)與光譜分析,2009,29 (11):2951-2954.Gao Hongzhi, Lu Qipeng, Ding Haiquan, et al.Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm[J].Spectroscopy and spectral analysis, 2009, 29(11): 2951-2954.(in Chinese with English abstract)

·農(nóng)業(yè)生物環(huán)境與能源工程·

Optimization analysis and establishment of spectra detection model of fatty acid contents for mould paddies

Wen Tao1,2, Hong Tiansheng2,3※, Li Lijun1, Guo Xin4, Zhao Bing1, Zhang Qianqian1, Liu Fu1
(1.School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; 2.Key Laboratory of Key Technology for South Agricultural Machinery and Equipment, Ministry of Education, Engineering College of South China agricultural University, Guangzhou 510642, China; 3.Division of Citrus Machinery, China Agriculture Research System,Guangzhou 510642, China;4.School of Science, Central South University of Forestry and Technology, Changsha 410004, China)

Abstract:Fatty acids were stable metabolites and easily accumulated in paddies mould process which could better express mould extend of paddies.To achieve the non-destructive and rapid detection in fatty acid contents(FAC)for mould paddies, the detection of FAC for mould paddies was studied using the Visible/Near-infrared reflectance(Vis/NIR)spectral technology.The variety C liang-you 34156 late rice was used as paddy samples, which was obtained from Hunan Agricultural University.The mould paddy cultivating test and FAC determination experiments were carried out from October 15, 2014 to January 31, 2015 in Central South University of Forestry and Technology.Normal and complete paddies were selected and loaded into 200 sample boxes by numbers.Each sample box was loaded with 100g weights.Among them, 50 sample boxes were put into the No.A constant temperature humidity chamber to store according to requirements of cereal storage(temperatures:10℃, humidities:15%)and the remaining 150 sample boxes were placed in the No.B constant temperature humidity chamber to cultivate according to mould paddies breeding conditions(temperatures: 30℃, humidities: 90%).In view of the FAC variations affected by degree of mould paddies, the cultivated process of mould paddies was divided into three periods for better representative and generalization of samples.It was 10 days in each period, and 50 pieces of mould paddy samples in different degrees were measured during the preparation process.The Vis/NIR-infrared spectral detection testing for mould paddy samples were performed in corresponding periods in South China Agricultural University.A Vis/NIR-infrared spectral device for agro-products was used for scanning of reflectance spectra for paddies.Taking into consideration that the disadvantage of time consumption and low precision in building the model, the Vis/NIR calibration model of the fatty acid in mould paddies was proposed using sample set partition based on joint X-Y distances(SPXY)algorithm in sample set.The difference of predicting FAC in mould paddies from different calibration set was preliminarily analyzed using the combination of the SPXY algorithm and the partial least-squares regression(PLSR)algorithm.The successive projection algorithm(SPA)was applied to obtain the characteristic wavelength which indentified the variation of FAC in mould paddies.The predicted models of the FAC in mould paddies based on reflection values of characteristic wavelengths were built using the PLSR and multiple linear regression(MLR)methods, and then the prediction performance were compared between the model built by the selected calibration sample set and the model built by initial calibration sample set.The results indicated that FAC of paddies which were determined from different stages had a varying gradient distribution.The related FAC from the normal stage, early stage of mould, middle stage of mould and last stage of mould ranged from 18.55 to 24.40 mg, from 27.03 to 80.90 mg, from 84.44 to 127.26 mg, and from 101.09 to 124.88 mg, respectively.The range of FAC in 65 calibration sample sets by the SPXY was consistent with in 155 initial calibration sample sets.The standard deviation of FAC in 65 calibration sample sets was 32.39, which was close to the initial calibration sample sets.Nine characteristic wavelengths were selected from 256 full wavelengths by the SPA, which fulfilled the spectral data compression.The prediction set correlation coefficient(Rp)of the SPXY-SPA-PLSR model and the SPXYSPA-MLR model were 0.922 1 and 0.915 9 and their prediction mean square root errors were 13.889 3 and 14.261 0, respectively.The model prediction precision built by the SPXY calibration set was close to its by the initial calibration, while the number of the SPXY calibration set was dropped to 41% and its computing time was reduced to 32% compared with the initial calibration, which may contribute to speed up the model establishment.

Keywords:models; spectrometry; agriculture; mould paddies; fatty acids; Vis/NIR spectra; characteristic wavelengths; sample set selection

通信作者:※洪添勝(1955-),男,廣東梅縣人,博士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)工程、機(jī)電一體化和信息技術(shù)應(yīng)用研究。廣州華南農(nóng)業(yè)大學(xué)工程學(xué)院510642。Email:tshong@scau.edu.cn

作者簡(jiǎn)介:文韜(1983-),男,湖南長(zhǎng)沙人,博士,副教授,主要從事農(nóng)業(yè)工程、機(jī)電一體化和信息技術(shù)應(yīng)用研究。長(zhǎng)沙中南林業(yè)科技大學(xué)機(jī)電工程學(xué)院410004。Email:wt207@sina.com

基金項(xiàng)目:國(guó)家自然科學(xué)基金(31401281);湖南省自然科學(xué)基金(14JJ3115);湖南省大學(xué)生研究性學(xué)習(xí)和創(chuàng)新性實(shí)驗(yàn)計(jì)劃項(xiàng)目(湘教通[2014]248號(hào));湖南省高校科技創(chuàng)新團(tuán)隊(duì)支持計(jì)劃(2014207)

收稿日期:2015-08-19

修訂日期:2015-11-13

中圖分類(lèi)號(hào):S123;S51

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1002-6819(2016)-01-0193-07

doi:10.11975/j.issn.1002-6819.2016.01.027

猜你喜歡
模型
一半模型
一種去中心化的域名服務(wù)本地化模型
適用于BDS-3 PPP的隨機(jī)模型
提煉模型 突破難點(diǎn)
函數(shù)模型及應(yīng)用
p150Glued在帕金森病模型中的表達(dá)及分布
函數(shù)模型及應(yīng)用
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 免费午夜无码18禁无码影院| 精品自拍视频在线观看| 国产丝袜精品| 欧美中文字幕无线码视频| 国产午夜福利亚洲第一| 在线中文字幕网| 久久久国产精品免费视频| 亚洲三级影院| 国产成人综合亚洲欧美在| 中文纯内无码H| 91国内视频在线观看| 色综合久久无码网| 久久久久免费精品国产| 国产一国产一有一级毛片视频| 国产青榴视频| 久久综合激情网| 午夜在线不卡| 国模沟沟一区二区三区| 中文字幕在线欧美| 欧美国产精品不卡在线观看 | 99国产精品国产| 九九热精品免费视频| 久久性视频| 成人午夜视频在线| 久久综合丝袜日本网| 天堂av高清一区二区三区| 午夜视频免费试看| 9久久伊人精品综合| 亚洲精品第一在线观看视频| 久久综合五月婷婷| 国产精品制服| 国产精品久久久久无码网站| 丁香五月激情图片| 特级毛片8级毛片免费观看| 波多野结衣久久精品| 黄色网在线| 人妻无码AⅤ中文字| 国产在线小视频| 四虎AV麻豆| 亚洲一区毛片| h网址在线观看| 热伊人99re久久精品最新地| 欧亚日韩Av| 午夜少妇精品视频小电影| 亚洲女同一区二区| 日韩精品亚洲人旧成在线| a毛片免费在线观看| 欧美在线视频不卡第一页| 国产精品一区二区国产主播| 欧美成人日韩| 国产成人精品亚洲77美色| 深夜福利视频一区二区| 亚洲欧美日韩动漫| 久久精品亚洲专区| 啪啪永久免费av| 91久久大香线蕉| 四虎成人精品在永久免费| 日韩AV无码免费一二三区| 国产成人精品一区二区秒拍1o| 依依成人精品无v国产| 久草中文网| 无码免费的亚洲视频| 成人无码区免费视频网站蜜臀| 婷婷在线网站| 亚洲日本一本dvd高清| 9999在线视频| 97视频在线精品国自产拍| 午夜免费视频网站| 亚洲国产成人久久精品软件| 一本视频精品中文字幕| 毛片基地视频| 精品一区二区三区自慰喷水| 欧美日韩国产在线人成app| 尤物精品视频一区二区三区| 国产精品自在拍首页视频8| 亚洲无码高清一区二区| 欧美精品亚洲精品日韩专| 看av免费毛片手机播放| 国产91丝袜| 日本中文字幕久久网站| 国产微拍精品| 欧美www在线观看|