祝榮欣,王金武,唐 漢,周文琪,潘振偉,王 奇,多天宇(.東北農業大學工程學院,哈爾濱50030;2.黑龍江科技大學機械工程學院,哈爾濱50022)
?
基于心率變異性的聯合收割機駕駛員疲勞分析與評價
祝榮欣1,2,王金武1※,唐漢1,周文琪1,潘振偉1,王奇1,多天宇1
(1.東北農業大學工程學院,哈爾濱150030;2.黑龍江科技大學機械工程學院,哈爾濱150022)
摘要:為探究聯合收割機駕駛員的疲勞變化規律,應用RM6240C多通道生理信號采集系統,在約翰迪爾S660型聯合收割機上進行了駕駛疲勞監測試驗,采集了10名駕駛員120 min收獲駕駛的心電數據。選取非線性動力學指標樣本熵作為疲勞監測的特征參數,分析樣本熵隨駕駛時間的變化規律,確定駕駛疲勞發生時間段,對比不同作業環節的疲勞程度。結果表明:樣本熵值隨駕駛時間的增加呈下降趨勢;樣本熵值與主觀駕駛疲勞程度的皮爾遜相關系數為-0.824,兩者顯著負相關;根據樣本熵值判定,駕駛疲勞于50 min后開始出現,100 min后疲勞程度加深;轉向行駛階段比直線行駛階段的駕駛疲勞程度高。基于樣本熵的駕駛疲勞判定方法可客觀的反映聯合收割機駕駛員的體力和精神疲勞狀況。
關鍵詞:農業機械;聯合收割機;監測;駕駛疲勞;心率變異性;樣本熵
祝榮欣,王金武,唐漢,周文琪,潘振偉,王奇,多天宇.基于心率變異性的聯合收割機駕駛員疲勞分析與評價[J].農業工程學報,2016,32(01):77-83.doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org
Zhu Rongxin, Wang Jinwu, Tang Han, Zhou Wenqi, Pan Zhenwei, Wang Qi, Duo Tianyu.Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(01): 77-83.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org
聯合收割機是農業生產中一種重要的收獲機械。與交通運輸車輛相比,聯合收割機作業環境較差,顛簸嚴重,且駕駛員連續工作時間長,勞動強度大,使駕駛員容易產生生理和心理上疲勞,駕駛機能下降,影響工作效率。目前,中國在農業機械駕駛員疲勞方面的研究尚處于起步階段,多數生產企業注重于產品性能和質量的提高,較少考慮駕駛舒適性;科研機構在農機駕駛員疲勞領域的研究成果也較少。趙永超根據表面肌電信號(surface electromyography,sEMG)的變化規律描述拖拉機倒車作業駕駛員頸部疲勞狀態,發現積分肌電值、平均功率頻率、小波分解系數等特征量在疲勞前后存在顯著性差異,頭部轉動角度對積分肌電值和平均功率頻率有明顯影響[1-2]。孔德剛以心率(heart rate,HR)和作業時間綜合評價方法對比了機械化播種作業中駕駛進口大功率和國產拖拉機的勞動強度和最長作業時間[3]。田曉峰等基于HR和sEMG研究了振動對拖拉機駕駛員全身及腰部疲勞的影響,分析HR和腰部sEMG特征值隨駕駛時間、振動頻率和振動加速度增加的變化規律[4-6]。
目前國內學者多對拖拉機駕駛員的疲勞進行分析和評價,對于聯合收割機等其他農機的駕駛疲勞研究較少,且上述研究多在模擬駕駛平臺上采集駕駛員的生理信號,雖然可排除一些干擾因素,但與實際駕駛獲得的結果有所差別。評價駕駛疲勞的手段主要有HR和sEMG,這2種生理信號監測法具有對駕駛影響較小,對測量者無傷害的優點,在疲勞評價領域有所應用[7-14]。研究表明,精神負荷的增加對HR信號的影響不明顯,多將HR作為衡量體力疲勞的指標,不能較好地反映體力和腦力綜合的駕駛疲勞狀況[15-16]。對于sEMG,雖可無損傷的實時反映局部肌肉活動水平和功能狀態,但同樣無法反映精神疲勞的影響。心率變異性(heart rate variability,HRV)是心電信號的另一重要分析手段,通過將每個心動周期的心率差異數量化來評價自主神經性活動,定量評估工作負荷中心臟交感和迷走神經張力及其平衡性,可同時表達體力疲勞和精神疲勞對人體的影響,已有研究使用HRV反映人在駕駛工作中綜合疲勞程度的變化[17-20],該方法預期能夠更為科學地描述聯合收割機駕駛員的疲勞變化規律。HRV是典型的非線性時間序列,非線性動力學方法有助于精確捕捉HRV信號的本質特征,在眾多非線性分析方法中樣本熵計算方便快捷,適用于試驗獲得的短時數據,因此選取樣本熵作為駕駛疲勞分析的特征參數。
本文基于HRV序列,通過主觀和客觀方法探究聯合收割機駕駛員的疲勞產生與變化機理,分析駕駛員在實際收獲駕駛中樣本熵隨駕駛時間的變化規律,探討樣本熵與駕駛疲勞程度之間的聯系,期望對聯合收割機駕駛疲勞進行客觀的判斷與評測,為進一步開展農機駕駛疲勞實時檢測技術的研究提供參考。
1.1HRV及其研究方法
心臟搏動在體表形成電位變化從而形成心電信號(electrocardiogram,ECG)[21],正常ECG波形如圖1所示,每個心動周期包括P波、P-R間期、QRS波、S-T段、T波、Q-T間期和U波7個階段,QRS波群中的R波波形陡峭,幅度高,變化最劇烈,常作為ECG特征檢測的標志。相鄰2個R波之間的時間間隔稱為R-R間期,表示心臟逐次心跳的時間差距。健康人體逐次心跳間期存在微小的變異,這種變異稱為HRV,具體體現為連續心跳間R-R間期時間值的微小漲落,這種微小漲落是由于腦的高級神經活動、中樞神經系統的自發性節律活動、呼吸活動以及由壓力、化學感受器傳入的心血管反射活動等因素對心臟交感神經和副交感神經的綜合調節作用而產生的,蘊含了有關心血管調節的大量信息,可作為心血管疾病的早期診斷、病中監護及預后評估的輔助工具,同時HRV序列也可定量評估駕駛環境中在不同負荷水平和疲勞程度下心臟交感神經和迷走神經活動的緊張性、均衡性及其對心血管系統活動的影響,綜合反映體力和腦力負荷產生疲勞的狀況[22]。

圖1 心電信號波形圖Fig.1 Waveform of ECG
HRV的分析方法有時域分析法、頻域分析法和非線性動力學分析法。時域分析法是通過統計學離散趨勢分析法的指標來表達R-R間期的變化[23],此種方法計算簡單,但無法表達出數據中蘊含的時間規律。頻域分析法是應用FFT(fast fourier transformation)的經典譜估計或自回歸AR(auto regressive)模型的現代譜估計方法獲得R-R間期變化曲線的功率譜密度,并按不同頻段描述HRV信號能量的分布情況[24],該法雖然能反映交感神經、副交感神經活動對心率的調制作用,但將R-R間期時間序列看作是平穩的離散信號,尚屬于線性分析范疇。非線性分析法是從基于混沌和分形理論的角度,應用回歸映象(散點圖)、分形維數、復雜度、熵等非線性動力學特征量分析自主神經系統的復雜性,探究HRV信號時間順序中的有用信息。HRV信號被普遍認為是混沌或含有混沌成分的非線性、非平穩信號[25-26],具有非周期性和非隨機性,用非線性動力學分析法研究HRV信號,沒有丟失信號中所包含的非線性信息,能夠反映心血管系統調節模式的變化,并能較完整地描述包含非線性成份的HRV信號本質特征。
1.2樣本熵
樣本熵是一種時間序列復雜程度的度量方法[27],是在近似熵算法的基礎提出的,這種改進的算法具有方法簡單、運算快速、抗干擾能力強、適合于短時數據等優點,更適合心電等生物時間序列的分析,廣泛應用在生物醫學工程領域。心臟被認為是一個復雜的非線性動力學系統,具有混沌特征,其交感神經和迷走神經相互調節的有序程度可通過HRV序列的復雜度來體現。研究表明[26],樣本熵可表征HRV序列的復雜程度,其數值大小能夠反映HRV序列復雜度的高低。樣本熵值越大,HRV序列的復雜度越大,說明人體心臟的交感神經與迷走神經相互調節的能力高,自身調節能力強,能夠更好地隨著外界環境的變化調整自己的狀態。樣本熵具體計算步驟如下:
已知長度為N的R-R間期時間序列{x(i),i=1,2,…,N},從任意點開始,任意選取連續的m個數據,構造一組m維向量Xm(i),記為Xm(i)=[x(i),x(i+1),…,x(i+m-1)],其中i=1,2,…,N-m+1。
定義向量Xm(i)和Xm(j)之間的距離d為向量對應元素之差的最大絕對值,即

HRV信號的樣本熵定義為:

在上述計算過程中,m為重構相空間的維數,稱為嵌入維數,前期研究建議選擇m=2[28];r為任意給定的距離,稱為相似容限,經驗得出r=(0.1-0.25)Std(Std表示數據的標準差),這里選擇r=0.15 Std。
2.1試驗對象與設備
為避免年齡與疾病等外部條件對心率變異性的影響,駕駛疲勞監測試驗選取黑龍江省農墾總局北安分局格球山農場10名職工(男性)作為試驗樣本,年齡(34.2±7.39)歲,身高(173.6±4.16)cm,質量(72.5±10.6)kg,且具有5a以上聯合收割機的駕駛經驗。所有樣本均身體健康,無心腦血管疾病,睡眠充足,且在試驗前無疲勞癥狀,情緒穩定,不飲含咖啡因、酒精的飲料。
試驗機型選擇約翰迪爾S660型聯合收割機如圖2a所示。試驗測試儀器為RM-6240C多通道生理信號采集處理系統,由成都儀器廠生產,共有4個通道和1個12導聯ECG接口,適用于對人體心電、血壓、肌張力等體表生理信號的多道同步檢測、記錄和分析處理。心電信號采樣頻率為1 Hz~100 kHz,掃描速度為0.02~20 cm/s,靈敏度為20 μV~10 mV,儀器可通過參數設置實現心電信號的高通和低通濾波,同時具備強大的數字濾波功能,供試驗后處理波形時使用。

圖2 駕駛疲勞監測試驗現場Fig.2 Test site in monitoring experiment of driver fatigue
2.2試驗條件與方法
收獲作業在黑龍江省農墾總局北安分局格球山農場,收獲作物為大豆。測試時間為2014年10月1日—10 月7日,測試期間氣溫0~10℃。考慮時間和天氣等因素對試驗的影響,選擇天氣晴朗的工作日,上午8:00—11:00點之間進行試驗。試驗過程中駕駛室溫度變化不大,對測試結果不會產生影響。
試驗前對被試者貼電極片處皮膚進行去死皮和去油脂等預處理工作。采用三電極的方式測量心電信號,將電極片貼在左腋前線第四肋間、右側鎖骨中點下緣和劍突下偏右3處[29],并分別與正極、負極和參考極導線連接,如圖2b所示。設置多通道生理信號采集系統的采樣頻率為1 kHz,掃描速度為0.2 cm/s,靈敏度為1 mV。
在收割地塊起點處,被試者填寫試驗前主觀疲勞調查問卷,并靜坐在駕駛室中5 min,獲得駕駛前安靜時的心電數據,作為基礎數據;然后被試者開始收獲駕駛,時速保持在8~10 km/h,測試時間為120 min,每隔20 min填寫一次主觀疲勞調查問卷,多通道生理信號采集儀實時采集心電信號(如圖3所示),并存儲在計算機中,供后續數據處理時使用;試驗結束后再次填寫主觀疲勞調查問卷。

圖3 心電信號示例(直行路段)Fig.3 ECG signal sample(straight section)
2.3數據預處理
試驗結束后,將駕駛過程采集的120 min心電數據進行分段處理,每段10 min,共12段。對每段心電信號采用bior6.8小波進行9尺度的小波分解消除噪聲,除去工頻干擾和基線漂移;然后進行心電信號的QRS波群檢測,標定R波的峰值點;最后計算相鄰R波峰值點的時間間隔,得到每段信號的R-R間期數據。
3.1駕駛疲勞主觀評價
采用被試自我疲勞評價的方式進行疲勞主觀評測。調查問卷的駕駛疲勞程度等級劃分為7級:非常舒服、比較舒服、有點舒服、無影響、有點疲勞、比較疲勞、非常疲勞,對應的分值為:-3、-2、-1、0、1、2、3。每等級對應的疲勞狀態特征如表1所示。試驗中每個樣本共填寫7份主觀疲勞調查問卷,對應時刻為0、20、40、60、80、100、120 min。根據調查問卷的結果求得各個時刻主觀疲勞程度得分的平均值,如圖4所示。

表1 駕駛疲勞等級狀態特征Table 1 Characteristics of driver fatigue grade

圖4 主觀疲勞程度調查結果Fig.4 Result of subjective fatigue investigation
由圖4可知,隨著時間的增加,主觀疲勞程度逐漸加深,并且呈現先快后慢再快的趨勢。0~40 min曲線上升較快,說明疲勞程度積累迅速,40~100 min疲勞程度積累較慢,而100~120 min疲勞程度積累加快。從調查問卷可得,60 min時大多數被試者(80%)感覺到有點疲勞,100 min 時90%的被試者感覺到比較疲勞,120 min時90%的被試者感覺到非常疲勞。
3.2樣本熵變化趨勢分析
將獲得的R-R間期數據按樣本熵求解過程計算得出各個樣本各時段的樣本熵值,并取每個時段的平均值。收獲駕駛過程中樣本熵均值的變化趨勢如圖5所示。

圖5 樣本熵變化趨勢圖Fig.5 Variation trend of SampEn
從圖5可以看出,樣本熵隨駕駛時間的增加呈下降趨勢,表明HRV序列的復雜度降低,隨著駕駛疲勞程度的加深,駕駛員心臟調控變化的能力減弱,對外界環境變化的辨別與適應能力降低,根據收獲地塊的不同及各種儀表刺激的差異來調整自身狀態的能力下降。但是曲線在駕駛初期震蕩較大,這是由于駕駛員初期對作業地形、作物含水量等收獲條件不熟悉,需要做復雜的調試工作,情緒較緊張,因此樣本熵下降較快;隨著駕駛時間的推移,駕駛條件逐漸適應,曲線有所回升,波動減小。
3.3樣本熵與疲勞程度相關性分析
為探究樣本熵的變化與駕駛疲勞程度的關系,對10~20、30~40、50~60、70~80、90~100、110~120 min時間段的樣本熵值和第2~6次主觀疲勞程度得分進行相關性分析,利用SPSS18.0軟件,計算皮爾遜相關系數。從結果可知,樣本熵值與主觀駕駛疲勞的皮爾遜相關系數為-0.824,顯著性水平為0.006,說明兩者之間存在顯著的線性關系且相關程度高。在聯合收割機駕駛過程中,HRV序列的樣本熵值對駕駛員疲勞的反應較為敏感,可以反應駕駛疲勞程度。
3.4駕駛疲勞發生時間的確定
通過上述樣本熵反映駕駛疲勞程度的有效性驗證得知,樣本熵指標可以反映駕駛疲勞,即當某一時段樣本熵值與對比時段樣本熵值出現顯著性變化時,說明該時段駕駛產生疲勞。
首先采用單樣本K-S檢驗方法對試驗獲得的各樣本各時段樣本熵值的分布規律進行檢驗,結果表明樣本熵值(樣本數為120)為正態分布(雙側檢驗Z=0.718,顯著性概率P=0.639>0.05)。然后選取安靜時段的樣本熵值作為參考數據,記為s0,將該時段與其他12個時段的樣本熵值(記為s1,s2,...,s12)進行配對T檢驗,分析配對樣本的平均數是否有差異,結果如表2所示。
從表2可以看出,隨著時間的變化,t值有逐漸變大的趨勢,這說明,各時段與安靜時段樣本熵值的差異逐漸變大。根據配對T檢驗的結果可知,50 min時樣本熵值開始出現顯著性差異(顯著性水平P<0.05),說明駕駛開始產生疲勞,100 min后,樣本熵值的顯著性差異非常明顯(顯著性水平P<0.01),說明駕駛疲勞程度進一步加深。樣本熵值平均數差異性檢驗表明50 min后產生疲勞,而駕駛疲勞主觀評測結果表明駕駛員60 min后產生疲勞,這主要是由于主觀疲勞評測的間隔時間與心電信號分段處理的時間不同造成的,考慮主觀疲勞評測對駕駛有影響,且較短時間主觀感受差別不大,因此填寫調查問卷的時間與信號分段處理時間選擇不同。

表2 樣本熵值配對樣本檢驗結果Table 2 Results of paired-samples T test for SampEn
3.5不同作業環節疲勞程度對比
聯合收割機收獲駕駛包括直線收獲行駛、田邊轉向行駛2個階段,直線收獲行駛階段駕駛員需要使割臺對齊壟臺,保持收割機直線行駛,而田邊轉向行駛階段駕駛員需要完成升降割臺、收割機轉向、對齊壟臺,操作過程相對較多。
將收獲駕駛過程采集的心電數據按照作業環節進行分段,分成直行和轉向交替的若干個階段,按照前述處理過程計算各段的R-R間期數據和樣本熵,并分別取所有直行和轉向階段樣本熵的平均值,對兩者進行比較。為判斷直行和轉向階段樣本熵平均數與安靜時段是否有差異,分別將直行和轉向階段的樣本熵值(記為ss和st)與安靜時段的樣本熵值進行配對T檢驗,結果如表3所示。

表3 不同作業環節樣本熵值配對T檢驗結果Table 3 Results of paired-samples T test for SampEn in different sections
聯合收割機駕駛員直線行駛和轉向行駛HRV序列的樣本熵均值不同,直線行駛階段的樣本熵均值為1.534±0.27,轉向行駛階段的樣本熵均值為1.312±0.14,轉向階段的樣本熵均值比直行階段的小,說明在轉向階段心臟HRV序列的復雜度比直行階段低,駕駛員心臟調控變化的能力略弱,情緒緊張,操作復雜費力。此外由表3可知,直行階段與安靜時段樣本熵值無顯著性差異(顯著性水平P>0.05),轉向階段與安靜時段樣本熵值存在顯著性差異(顯著性水平P<0.05),表明與安靜時段相比,轉向行駛階段產生駕駛疲勞,勞動強度較大,而直線行駛階段的疲勞不明顯,轉向行駛階段比直線行駛階段駕駛疲勞程度高。
1)基于HRV序列分析駕駛員在收獲駕駛中樣本熵隨駕駛時間的變化規律可知,隨著疲勞程度的增加,樣本熵值呈下降趨勢,駕駛員對外界環境變化的辨別與適應能力降低。
2)樣本熵值與主觀駕駛疲勞程度的皮爾遜相關系數為-0.824,兩者顯著相關,可以反映駕駛疲勞;根據駕駛過程樣本熵值判定,聯合收割機駕駛疲勞于50 min后開始出現,100 min后疲勞程度加深;轉向行駛階段的樣本熵均值比直行行駛階段的小,且與安靜時段存在顯著差異,轉向行駛階段比直線行駛階段的駕駛疲勞程度高。
3)與駕駛疲勞主觀評測法相比,根據樣本熵值的變化判定疲勞的方法,可以客觀的反映聯合收割機駕駛疲勞產生和加深的時段,有效地分析與評價聯合收割機駕駛疲勞的產生和變化規律。
[參考文獻]
[1]趙永超,孔德剛.拖拉機駕駛員頸部疲勞的肌電評價[J].農業工程學報,2010,26(3):146-150.Zhao Yongchao, Kong Degang.Evaluation of tractor drivers’neck fatigue by surface electromyogram[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(3): 146-150.(in Chinese with English abstract)
[2]趙永超,孔德剛,劉立意.基于表面肌電信號的拖拉機駕駛員頸部疲勞研究[J].農機化研究,2010,32(2):129-132.Zhao Yongchao, Kong Degang, Liu LiYi.Study on the fatigue of tractor drivers' neck based on SEMG[J].Journal of Agricultural Mechanization Research, 2010, 32(2): 129-132.(in Chinese with English abstract)
[3]孔德剛,張帥,朱振英,等.機械化播種作業中駕駛員疲勞分析與評價[J].農業機械學報,2008,39(8):74-78.Kong Degang, Zhang Shuai, Zhu Zhenying, et al.Driver's fatigue evaluation and analysis in mechanized sowing work [J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 74-78.(in Chinese with English abstract)
[4]田曉峰,孔德剛,劉立意,等.長時間振動對拖拉機駕駛員腰部疲勞的影響研究[J].農機化研究,2011,33(2):193-196.Tian Xiaofeng, Kong Degang, Liu LiYi, et al.Study on the influence of long-time vibration to tractor driver' low back fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(2): 193-196.(in Chinese with English abstract)
[5]劉軍,孔德剛,劉立意,等.拖拉機座椅振動對駕駛員腰部疲勞影響研究[J].農機化研究,2011,33(1):53-56.Liu Jun, Kong Degang, Liu LiYi, et al.The study on the effect of tractor seat vibration to driver lumbar fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 53-56.(in Chinese with English abstract)
[6]蘇錦濤,孔德剛,李紫輝,等.拖拉機座椅振動加速度對駕駛疲勞的影響[J].農機化研究,2011,33(1):161-164.Su Jintao, Kong Degang, Li Zihui, et al.The impact of tractor seats vibration acceleration on drivers' driving fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 161-164.(in Chinese with English abstract)
[7]付榮榮,王宏,王琳,等.基于無線體域網中多生理信號駕駛疲勞檢測[J].東北大學學報(自然科學版),2014,35(6):850-853.Fu Rongrong, Wang Hong,Wang Lin, et al.Detection of driver fatigue based on multi-physiological signals in wireless body area network[J].Journal of Northeastern University(Natural Science), 2014, 35(6): 850 -853.(in Chinese with English abstract)
[8]焦昆,李增勇,陳銘,等.模擬駕駛過程中腰部疲勞的表面肌電信號分析[J].人類工效學,2004,10(3):10-12.Jiao Kun, Li Zengyong, Chen Ming, et al.sEMG analysis of lumbar fatigue during simulated driving[J].Chinese Journal of Ergonomics,2004,10(3):10-12.(in Chinesewith Englishabstract)
[9]羅仕鑒.基于生物學反應的駕駛舒適度研究[D].杭州:浙江大學,2005.Luo Shijian.Study On Driving Comfort Based On Biological Response[D].Hangzhou: Zhejiang University, 2005.(in Chinese with English abstract)
[10] Chen Xiaojing, Qi Chunhua, Zhu Shoulin.On study of driver’s shoulder fatigue in manual and automatic on grassland highway [J].Advanced Materials Research,2014, 3470(1030): 2054-2060.
[11] Hostens I,Ramon H.Assessment of muscle matigue in low level monotonous task performance during car driving [J].Journal of Electromyography and KineSiology, 2005, 15(2): 266-274.
[12]張祖懷.基于人體生理信號的駕駛疲勞研究方法及其應用[D].哈爾濱:哈爾濱工業大學,2006.Zhang Zuhuai.A Research Method for Driving Fatigue Based on Physiological Signal and Its Application[D].Harbin: Harbin Institute of Technology, 2006.(in Chinese with English abstract)
[13]徐冬青.草原公路環境下連續駕駛時間對疲勞的影響研究[D].呼和浩特:內蒙古農業大學,2011.Xu Dongqing.Study on the Effect of the Continuous Driving Time on the Driving Fatigue Under Environment of Prairie Highway[D].Hohhot:InnerMongoliaAgriculturalUniversity,2011.(in Chinese with English abstract)
[14]王琳虹,李世武,高振海,等.基于粒子群優化與支持向量機的駕駛員疲勞等級判別[J].哈爾濱工業大學學報,2014,46 (12):102-107.Wang Linhong, Li Shiwu, Gao Zhenhai, et al.A driver fatigue level recognition model based on particle swarm optimization and support vector machine[J].Journal of Harbin Institute of Technology, 2014, 46(12): 102-107.(in Chinese with English abstract)
[15] Lee D H,Park K S.Multivariate analysis of mental and physical load components in sinus arrhythmia scores [J].Ergonomics.1990,33(1):35-47.
[16]董占勛,孫守遷,吳群,等.心率變異性與駕駛疲勞相關性研究[J].浙江大學學報(自然科學版),2010,44(1):46-50.Dong Zhanxun, Sun Shouqian, Wu Qun, et al.Study of correlation between heart rate variability and driving fatigue[J].Journal of Zhejiang University(Natural Science), 2010, 44(1): 46-50.(in Chinese with English abstract)
[17] Jiao Kun,Li Zengyong,Chen Ming.Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers[J].Int Arch Occup Environ Health,2004,77(5):205-212.
[18]付川云.疲勞狀態下駕駛人生理及眼動特征研究[D].哈爾濱:哈爾濱工業大學,2011.Fu Chuanyun.Research on Physiological and Eye Movement Characteristics of Driver Under Fatigue Condition [D].Haerbin: Harbin Institute of Technology, 2011.(in Chinese with English abstract)
[19]楊程程.駕駛疲勞檢測研究[D].沈陽:遼寧師范大學,2014.Yang Chengcheng.The Study on the Detection of Driving Fatigue[D].Shengyang: Liaoning Normal University, 2014.(in Chinese with English abstract)
[20] Zuz.ewicz K, Roman-Liu D, Konarska M, et al.Heart rate variability(HRV)and muscular system activity(EMG)in cases of crash threat during simulated driving of a passenger car[J].International Journal of Occupational Medicine and Environmental Health,2013,26(5):710-723.
[21]寧新寶.生物醫學電子學[M].長沙:湖南科學技術出版社,1988:20-30.
[22]霍鋮宇.基于龐加萊散點圖和遞歸圖的心率變異性研究[D].南京:南京大學,2014.Huo Chengyu.The Study of Heart Rate Variability Based on Poincare Scatterplot and Recursive Figure[D].Nanjing: Nanjing University, 2014.(in Chinese with English abstract)
[23]董紅生,張愛華,邱天爽,等.基于Hilbert譜的心率變異信號時頻分析方法[J].儀器儀表學報,2011,32(2):271-278.Dong Hongsheng, Zhang Aihua, Qiu Tianshuang, et al.Timefrequency analysis method of heart rate variability signal based on the Hilbert spectrum [J].Chinese Journal of Scientific Instrument, 2011, 32(2): 271-278.(in Chinese with English abstract)
[24]彭葳,王篤明,尹爽,等.駕駛疲勞的心電和肌電信號分析[J].人類工效學,2013,19(1):24-27.Peng Wei, Wang Duming, Yin Shuang, et al.Exploring the characters of physiological signals for fatigued drivers [J].Chinese Journal of Ergonomics, 2013, 19(1): 24-27.(in Chinese with English abstract)
[25]吳群.基于心電信號的駕駛疲勞檢測方法研究[D].杭州:浙江大學,2008.Wu Qun.An ECG-based Approach to Driving Fatigue Detection [D].Hangzhou: Zhejiang University, 2008.(in Chinese with English abstract)
[26]劉紅奪兒,朱逸,湛萍,等.短時非線性方法用于心率變異性分析[J].中國生物醫學工程學報,2015,34(2):229-236.Liu Hongduoer, Zhu Yi, Zhan Ping, et al.The application of short-term nonlinear methods to heart rate variability analysis[J].Chinese Journal of Biomedical Engineering, 2015, 34(2): 229-236.(in Chinese with English abstract)
[27] Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology:Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.
[28]趙曉華,許士麗,榮建,等.基于ROC曲線的駕駛疲勞腦電樣本熵判定閾值研究[J].西南交通大學學報,2013, 48(1): 178-183.Zhao Xiaohua, Xu Shili, Rong Jian, et al.Discriminating threshold of driving fatigue based on the electroencephalography sample entropy by receiver operating characteristic curve analysis[J].Journal of Southwest Jiaotong University, 2013, 48 (1): 178-183.(in Chinese with English abstract)
[29]潘大明.心電圖學教程[M].杭州:浙江大學出版社,2008:10-15.
Analysis and evaluation of combine harvester driver fatigue based on heart rate variability
Zhu Rongxin1, 2, Wang Jinwu1※, Tang Han1, Zhou Wenqi1, Pan Zhenwei1, Wang Qi1, Duo Tianyu1
(1.Engineering Institute, Northeast Agricultural University, Harbin 150030, China; 2.Mechanical Engineering Institute, Heilongjiang University of Science and Technology, Harbin 150022, China)
Abstract:The study on combine harvester driver fatigue is important and necessary to reduce the accidents, improve the operation efficiency and protect the health of the driver.In order to explore the change rule of combine harvester driver fatigue, monitoring experiment of combine harvester driver fatigue was carried out with John Deere S660 at Gegiushan farm of Bei'an Agricultural Reclamation Administration in Heilongjiang province from October 1, 2014 to October 7, 2014.The experiment was performed in sunny day during the forenoon to eliminate the influences of time and weather on the experiment.The crops harvested were soybean, and the conditions of test land were similar.The noise of cab was 95 dB(A), of which temperature basically remain unchanged.The monitoring equipment was RM-6240C multi-channel physiological signal acquisition processing system produced by Chengdu Instrument Factory with four channels and one interface of 12 lead ECG, which is suitable for multi-channel synchronous detection, records and analysis of human body physiological signal such as Electrocardiogram(ECG), blood pressure, muscle tension.Before the test, skin preparation work was carried out such as removing dead skin, oil and grease.ECG signals were measured by three electrodes method; The electrodes were pasted on three places, for instance between the fourth rib on the left armpit front, below the right clavicle middle and the lower right of xiphoid process, which were connected with the positive(red), the negative(green)and the reference (black)wire respectively.The sampling frequency of multi-channel physiological signal acquisition system was 1 kHz, scanning speed 0.2 cm/s, sensitivity 1 mV.The ECG data of 10 male drivers sitting quietly in the cab were recorded for 5 minutes before harvesting(marked as quiet segment), at the same time subjective fatigue questionnaire were finished.Then the ECG data of drivers were recorded for 120 minutes when combine harvester running at the speed of 8~10 km/h.Subjective fatigue questionnaire were filled in every 20minutes.The ECG data collected in driving were divided into 12 parts with 10 minutes per part.The ECG data both of quiet segment and 12 parts were denoised and detected for R waveform by the way of Wavelet Transform, and then the R-R interval value of each part was computed.Nonlinear dynamic index SampEn was selected as the characteristic parameter of fatigue testing which characterizes the complexity of heart rate variability.Firstly, the change curve of SampEn along with driving time and the scores of subjective fatigue degree at specified moment were achieved, and correlation analysis was researched between SampEn and scores of subjective fatigue degree.Secondly, driver fatigue occurred time was determined by the results of paired-samples T test of SampEn between quiet segment and other 12 parts.Finally, degrees of fatigue in straight section and that of turn section were compared by the results of paired-samples T test of SampEn between each section and quiet segment respectively.The results showed that the average values of SampEn significantly declined with the increase of the driving time.Pearson correlation coefficient between SampEn and subjective fatigue score was -0.824, which showed that their relationship was negatively significant.According to the results of paired-samples T test of SampEn between quiet segment and other 12 parts, the values of SampEn of the fifth part was significantly different from that of quiet segment(P<0.05), and the values of SampEn of tenth part was very significantly different from that of quiet segment(P<0.01), which indicated that combine harvester driver fatigue began to appear after 50 minutes, and deeped after 100 minutes.The values of SampEn in turn section was significantly different from that of quiet segment(P<0.05), there was not significant difference between straight section and quiet segment(P>0.05), and the values of SampEn in turn section was smaller than that of straight section, which indicated that degree of fatigue of the former was higher than that of the latter.Compared with the subjective evaluation method of driver fatigue, determining diver fatigue method according to the change of the value of SampEn can more accurately reflect the beginning and deepening period of combine harvester driver fatigue, and objectively reflect the driver's physical and mental fatigue status.
Keywords:agricultural machinery; combine harvester; monitoring; driver fatigue; heart rate variability; SampEn
通信作者:※王金武,男,教授,博士生導師,從事田間機械與機械可靠性方面的研究。哈爾濱東北農業大學工程學院,150030。Email:jinwuw@163.com
作者簡介:祝榮欣,女,講師,博士生,主要從事車輛人機工程方面的研究。哈爾濱東北農業大學工程學院,150030。Email:zhu-rongxin@126.com
基金項目:國家科技支撐計劃資助項目(2014BAD06B04);國家自然科學基金資助項目(51205056)
收稿日期:2015-08-16
修訂日期:2015-11-12
中圖分類號:TB18
文獻標志碼:A
文章編號:1002-6819(2016)-01-0077-07
doi:10.11975/j.issn.1002-6819.2016.01.010