張 喆,黃曉曉,吳仁彪
(中國民航大學天津市智能信號與圖像處理重點實驗室,天津 300300)
?
基于靜電場模型的自由飛行空域沖突探測方法
張喆,黃曉曉,吳仁彪
(中國民航大學天津市智能信號與圖像處理重點實驗室,天津300300)
摘要:針對自由飛行空域中飛行活動自由、飛行條件復雜、易發生飛行沖突等特點,提出了一種基于靜電場模型的自由飛行空域沖突探測方法。本方法使用點電荷類比自由飛行空域中的飛行活動,則點電荷之間的庫侖力可表征空域中飛行活動之間的相互影響程度,系統的電勢能則可體現空域中飛行活動之間沖突的嚴重程度。本方法同時具備多飛行活動之間沖突群的探測能力,也為自由飛行空域的飛行沖突探測和沖突解脫方法提供一種新的思路。
關鍵詞:自由飛行;沖突探測;靜電場模型
在自由飛行體系中,飛行員可以更加自由靈活地選擇適合自己的航路和速度,以自定義的最快捷、最經濟的路線飛行[1]。消除以往飛行器必須集中到狹窄航線上飛行的弊端,自由飛行可以有效提高空域的利用率。然而,處于自由飛行狀態的飛行器將會出現在任何時間和任何地點,每一架飛行器都不可能單獨地占用整個空域,其周圍可能有許多飛行器同時飛行,飛行器所遇到的沖突可能不僅僅只涉及一架飛行器,多架飛行器之間可能會發生多個沖突。因此,研究一定空域內飛行器與飛行器之間以及多架飛行器之間的沖突探測問題具有重要的實際意義。
然而,現有的沖突探測方法,無論是概率型沖突探測還是確定型沖突探測,關注的都是2架飛行器之間的沖突特性,如沖突時間、當前距離等,無法同時研究多架飛行器之間的沖突。另一方面,當前大多數沖突探測方法僅僅針對飛行器沿固定航路飛行的情況,而在自由飛行中,飛行員的意圖成為影響飛行航線的最主要因素,這使得傳統的沖突探測方法難以有效發揮作用[2-6]。
針對上述問題,本文基于靜電場理論[7],不將飛行器沿預定航路飛行作為條件,提出一種適用于自由飛行條件下的沖突探測方法。通過將飛行器類比為理想電荷,空域能量與空域中飛行器數量以及飛行器之間距離的大小相關,利用空域能量的變化作為標準來衡量飛行器距離的變化,以此進行2架飛行器之間的沖突探測或者多機沖突群的探測。
在空中交通管制中,為保證飛行安全,飛行器之間必須保持一定的間隔。違反間隔標準,將會引起沖突。隨著兩飛行器距離的不斷接近,沖突的等級也將不斷嚴重[8-9]。
根據靜電場理論,真空中的點電荷與周圍電荷之間存在相互作用的庫侖力,庫侖力的大小與它們之間距離的平方成反比。也就是說,隨著兩個電荷距離的減小,它們之間的電場強度不斷增加,電荷之間累積的能量也越大。類比于此,若將某時刻空域中飛行的飛行器看做是在特定位置的理想電荷,則該飛行器對整個空域將產生電場能量,且單架飛行器對整個空域產生的能量不隨飛行器位置的變化而變化。在飛行器距離不斷接近的過程中,空域累積的能量不斷增大,同時整個空域的平均能量也越大。
將空域中某位置的飛行器看做理想帶電電荷,其對整個空域產生的場強滿足下面的關系


圖1 單架飛行器對其周圍區域產生的場強分布Fig.1 Electrostatic field intensity around aircraft
空域以相等間隔劃分為正方形網格,將飛行器類比為點電荷,則單架飛行器Ai在空域各網格頂點產生的電場強度為


根據場強的疊加定理,N架飛行器A1,A2,…,AN對空域各個網格頂點產生的電場強度滿足

圖2所示為2架飛行器對空域各個網格頂點產生的場強分布圖。其中,空域以5 km為間隔劃分為24×24個正方形網格,共25×25個網格頂點。飛行器位置分別為(72.5 km,62.5 km)、(52.5 km,62.5 km)。

圖2 2架飛行器對空域各個網格點產生的場強分布Fig.2 Electrostatic field intensity on grids’vertices
為討論方便,現考慮飛行器均位于空域中的同一巡航高度,即二維情況。模型本身對三維情景同樣適用。依據N架飛行器所產生的電場分布,整個空域中所儲存的電場能量與平均能量分別由式(5)~式(7)所定義,即

其中:EAi為單架飛行器Ai在空域各網格頂點產生的電場強度;N為飛行器架數。考慮空域被劃分為若干邊長為d的正方形網格,若X軸方向共k個網格,Y軸方向共l個網格,式(5)可轉化為離散狀態下的表達式,即

N架飛行器對空域產生的平均能量為

N架飛行器在排列最緊密的情況下保持最小安全間隔且互相無沖突的飛行,將整個空域看做一個整體,此時空域處于安全的臨界狀態,空域中由N架飛行器引起的平均能量將達到安全狀態下的最大值。當某時刻空域能量超過該最大值,說明N架飛行器分布過于密集,必然存在著沖突群現象。能量越大,說明沖突飛行器數量越多或者沖突等級更嚴重,空域危險性更高。反之,能量越小,飛行器分布越分散,相互之間距離越遠,空域安全性更好。
3.1單一沖突情況
研究空域為120 km×120 km的正方形區域,考慮二維情況,即2架飛行器A和B位于同一巡航高度,飛行器水平方向最小安全間隔為10 km,以500 m為間隔將空域劃分為若干正方形網格。式(3)中平滑參數a= 1。飛行器A初始位置為(25 km,25 km),速度vA=(0.25,0.25)km/s;飛行器B初始位置為(95 km,25 km),速度vB=(-0.25,0.25)km/s。A、B兩飛行器航跡如圖3所示。

圖3 兩飛行器飛行態勢圖Fig.3 Flight scenario of two aircrafts
圖3中,初始時刻兩飛行器相距70 km,分別以初始速度勻速運動。1min后,兩飛行器相距40 km,2min后,兩飛行器間距達到最小安全間隔,存在短期沖突。此時空域平均能量為3.4 a.u.。文中場強與能量的單位均為任意單位(a.u.)。為了清楚描述飛行器運動過程中整個空域能量的變化,假設飛行器在沖突情況下繼續沿原來航向飛行,且相遇后背離飛行。從T=0時刻開始,研究5 min內整個空域平均能量的變化,如圖4所示。從圖中可以看出,初始時刻由于A、B兩架飛行器相距較遠,整個空域的平均能量低。隨著飛行器距離的不斷減小,空域平均能量隨之增大,能量最大值點對應兩飛行器間距為0的點。由曲線的對稱性可知,空域平均能量與飛行器間隔成正比,而與飛行器在空域中的位置無關,能量的變化能很好地反映出飛行器間隔的變化。因此可選取兩飛行器相距最小安全間隔時刻空域的平均能量作為閾值,即等于3.4 a.u.,以此來判斷2架飛行器是否存在短期沖突。當某時刻空域平均能量大于該閾值時,說明此時兩飛行器距離小于最小安全間隔,存在飛行沖突。

圖4 5 m in內空域平均能量的變化Fig.4 Average airspace energy change 5 m inutes
3.2多沖突對情況
對于N(N≥3)架飛行器的沖突探測,考慮N架飛行器安全飛行狀態下最密集的分布作為臨界狀態,即兩兩飛行器之間均保持最小安全間隔無沖突條件下,占用最小空域面積的飛行態勢。由正多邊形的鑲嵌規律可知,在正多邊形中,只有正三角形、正方形與正六邊形3種圖形能夠用來鋪滿1個平面而中間沒有空隙,6個正三角形鑲嵌為1個正六邊形,4個正方形鑲嵌為1個正方形。因為1個正方形仍然可以分解為2個等腰直角三角形,因此以三角形為基本單位研究飛行器的排布。設飛行器間最小間隔為D,圖5中左邊一列是以D為邊長的等邊三角形組合排列法,右邊列是以D為邊長的等腰直角三角形排列法。

圖5 多架飛行器安全狀態下最緊密的排布示意圖Fig.5 M ost close arrangem ent of aircrafts in safety state
對于圖5中的每個等邊三角形與等腰直角三角形來說,等腰直角三角形的面積較大。若飛行器位于三角形頂點上,在3架飛行器的基礎上,每增加1架飛行器,飛行器之間所圍成的空域面積相當于增加1個三角形面積。N架飛行器時,按等邊三角形鑲嵌排布的情況下,飛行器群所圍成的空域面積達到安全飛行狀態下的最小值,也就是飛行器之間互相無沖突時最緊密的排布情況。以該態勢下N架飛行器在空域產生的平均能量為閾值當空域某時刻能量超過閾值,說明此時N架飛行器之間必然存在著沖突群現象,飛行器密度過大,應采取適當沖突解脫與流量控制手段保證飛行安全。
研究空域為120 km×120 km的正方形區域,飛行器水平方向最小安全間隔為10 km,以500 m為間隔將空域劃分為若干正方形網格。以空域中的7架飛行器為例,初始時刻,飛行器按以10 km為邊長的正三角形分布,如圖6所示,線條表示飛行器運動方向。T= 0時刻,空域平均能量等于4.4 a.u.,該平均能量為7架飛行器無沖突飛行條件下所能達到的最大能量,若能量超過說明7架飛行器飛行密度過大,必然有互相影響的連環沖突,空域存在安全隱患。在進行沖突解脫的過程中,不能僅僅進行2架飛行器之間的沖突解脫,解脫策略必須考慮到涉及沖突的所有飛行器。圖7表示飛行器運動過程中不同時刻整個空域能量的變化趨勢,從圖中可以看出,隨著各個飛行器的不斷分離,飛行器間距不斷增大,空域平均能量也逐漸減小。

圖6 7架飛行器飛行態勢圖Fig.6 Flight scenario of seven aircrafts

圖7 不同時刻空域平均能量的變化Fig.7 Average energy change of airspace
通過仿真實驗可以看出,若利用基于距離標準的傳統沖突探測方法檢測7架飛行器兩兩之間的飛行沖突,則最多需要進行次2架飛行器之間的沖突探測才能確定[10-11]。而本文所提方法不僅適用于飛行器與飛行器之間的短期沖突探測,而且能夠同時關注到空域多架飛行器的飛行態勢,快速實時地進行多機沖突群的探測。
本文基于靜電場理論提出一種適用于自由飛行空域的沖突探測方法。將空域中的飛行活動類比為點電荷,飛行活動之間的相互影響程度可以用點電荷之間的庫侖力來表示,而系統的電勢能則體現空域中飛行活動之間沖突的嚴重程度。該方法還具有關注空域中所有飛行活動形成的整體飛行態勢,實時進行多架飛行器沖突群探測的能力。本文模型可進一步為自由飛行條件下沖突解脫算法提供依據和方案。
參考文獻:
[1] Final Reportof RTCA Task Force 3- Free Flight Imp Lementation[R]. W ashington DC:RTCA Inc,1995.
[2] KUCHAR J,YANG L.A Review of conflict detection and resolution modelingmethods[J].IEEE Transon IntelligentTransportation Systems,2000,1(4):179-189.
[3]李丹,崔德光.基于布朗運動的空中交通短期沖突探測[J].清華大學學報(自然科學版),2008,48(4):477-481.
[4]劉小龍,羅以寧,趙喜求,等.一種改進的Prandini概率型中期沖突探測方法[J].計算機技術與發展,2013,1(23):214-216.
[5]梁海軍,楊紅雨,肖朝,等.3維坐標系下的飛行沖突探測算法[J].四川大學學報(工程科學版),2013,45(2):88-93.
[6] LIU W,HW ANG I.Probabilistic trajectory prediction and conflict detection for air traffic control[J].JournalofGuidance,Control,and Dyna-mics,2011,34(6):1779-1789.
[7]蔡保平,杜乃珍.普通物理學[M].北京:化工工業出版社,2007:56-76.
[8] HU J.A Study of Conflict Detection and Resolution in Free Flight[D]. Berkeley:UniversityofCalifornia,1999.
[9]劉星,韓松臣.用于自由飛行沖突探測的Delaunay方法[J].數據采集與處理,2002,17(4):446-449.
[10]靳學梅.自由飛行空域中多機探測與解脫技術研究[D].南京:南京航空航天大學,2004.
[11]周向華.沖突探測與解脫技術在未來空中交通管理中的應用[D].南京:南京航空航天大學,2009.
(責任編輯:楊媛媛)
Conflict detection for free flight using electrostatic approach
ZHANG Zhe,HUANG Xiaoxiao,W U Renbiao
(Intelligent Sigaland Image Processing Key Lab of Tianjin,CAUC,Tianjin 300300,China)
Abstract:A conflictdetection method for free flightbased on electrostatic theory is proposed.Flights in such an airspace usually have the freedom to choose routes and speeds,which elevates the complexity of flightenvironmentand conflict probability.The proposed method uses Coulomb force between point charges to evaluate severity of conflict between flights,while the potential system energy gives a global view of flight safety for the whole airspace.And ithas the intrinsic capability ofmulti-flight conflictdetection among flight clusters.Both conflict detection and conflict resolution in free flightoperation scenario can find benefitswith thismethod.
Key words:free flight;conflictdetection;electrostatic fieldmodel
作者簡介:張喆(1982—),男,天津人,講師,博士,研究方向為時頻信號處理.
收稿日期:2015-03-05;修回日期:2015-04-30基金項目:國家科技支撐計劃(2011BAH24B12);中國民航大學科研啟動基金項目(2011QD04S)
中圖分類號:TP391;O441.4
文獻標志碼:A
文章編號:1674-5590(2016)01-0001-04