999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于小波神經網絡的攔渣壩變形分析研究

2016-03-30 10:06:45李超
科技視界 2016年2期

【摘 要】本文介紹了小波分析與神經網絡有機結合的小波神經網絡的基本原理,并將其應用于某大型攔渣壩變形監測實例中,通過將所建立的模型與常規BP神經網絡訓練和預測結果的比較,可以看出小波神經網絡在攔渣壩的變形預測中具有收斂速度快、預測精度高的特點。

【關鍵詞】攔渣壩; BP神經網絡;小波神經網絡

0 前言

為了確保各種大型工程在施工和生產運行中會產生大量的棄土、棄石等廢棄固體物質的安全放置,必須建立合適的攔渣壩。但是,隨著攔渣壩運行時間的推移,攔渣壩運行的各種條件(如結構、基礎、環境等)逐漸發生變化,使得壩體材料老化變質、壩體結構性能衰減甚至惡化等影響其安全運行,這樣有可能嚴重的威脅著周邊人民的生命和財產安全,這在在國內外均有著深刻教訓。因此,必須對攔渣壩進行安全監測,建立正確有效的變形預測模型,科學地分析和預測攔渣壩的變形,及時發現存在的安全隱患,制定合理的防治措施,以確保攔渣壩的安全運行。

由于各種條件和環境的復雜性,使得攔渣壩變形的影響因素存在多樣性,利用單一的理論方法來對工程變形進行預測,其變形的大小是難以準確預測的。將多種理論和方法進行有機結合,建立一種方法預測工程變形的大小是一種有效的途徑。本文基于這樣的思想,將小波分析與神經網絡有機結合的小波神經網絡應用于攔渣壩工程實例,對其變形分析研究。

1 小波神經網絡

小波神經網絡是將小波分析與人工神經網絡有機結合的產物。其基本思想是用小波元代替神經元,用已定位的小波函數代替Sigmoid函數作為激活函數,然后通過仿射變換建立起小波變換與神經網絡系數之間的連接,形成的新模型具有較強的網絡逼近能力和容錯能力。

目前,將小波分析與人工神經網絡的結合主要有下面兩種方式:松散性結合,即將小波分析與人工神經網絡進行輔助式結合;緊致性結合,即將小波和神經網絡直接融合的一種方式, 它主要是把小波元代替神經元,將相應的輸入層到隱層的權值及隱層閾值分別由小波函數的尺度與平移參數所代替。其中緊致性結合方式也是當前研究小波神經網絡模型最主要的結構形式。

小波神經網絡是在小波分析的基礎上提出的前饋型神經網絡。小波神經網絡激活函數是具有良好時頻局域化性質的小波基函數。設小波神經網絡有m(m=1,2,…,m)個輸入節點、N(N=1,2,…,N)個輸出層、n(n=1,2,…,n)個隱含層節點。并設xk為輸入層的第k個輸入樣本,yi為輸入層的第i個輸出值,wij為連接輸出層節點i和隱含層節點j的權值,wjk為連接隱含層節點j和輸入層節點k的權值。約定wi0是第j個輸出層節點閾值,wj0是第j個隱含層節點閾值,aj和bj分別為第j個隱含層節點的伸縮和平移因子,則小波神經網絡模型可以表示為:

2 工程實例應用

國家某重點高速公路第B4合同段內某攔渣壩,其壩體為混凝土重力壩,長約122米,高約30米,攔渣壩上面(上游)是巨大的高速路高填方路基,這在國內是比較罕見的,而下游是梅西河。本攔渣壩主要是為了防止高速路隧道挖方土回填的高填方路基滑動和垮塌發生危險,從而對高速路的運行和梅溪河的通航造成不必要的影響。通過對攔渣壩體上S5號點上的沉降監測數據分析,建立變形預測的小波神經網絡模型。將從2008年9月28日到2009年11月5日共11期數據作為學習樣本對攔渣壩小波神經網絡進行訓練和學習。對S5號從2010年2月1日到2010年12月29日共5期數據進行預測。

通過對混凝土壩的研究和本攔渣壩功能作用的分析,可知影響本攔渣壩沉降變化的因素主要有:溫度、土壓力、時效。其中取4個溫度因子,分別為C、C5、C15、C30(Ci為自觀測日起前i天的平均氣溫);土壓力因子1個(為S5號點附近土壓力盒的每期平均計算壓力);時效因子2個,分別為T、InT(T為觀測日到起算日的累計天數除以100)。故輸入層節點數為7個。而輸出層節點數為1個,即為觀測點S5每次垂直方向的累計沉降量。先用經驗公式確定一個初始節點數,然后進行試驗訓練,當隱含層節點數為13時網絡訓練最為合適,所以采用7-13-1的結構形式的小波神經網絡模型。通過對不同小波函數的試驗訓練,多次計算表明,當選用Morlet小波函數時網絡的總體性能較好。利用Matlab7.1語言編制相應的網絡模型程序進行計算。

為了充分的分析小波神經網絡的訓練效果,本文中也采用相同結構的BP神經網絡對攔渣壩監測數據進行訓練、預測。在本實例中,設兩種模型的收斂誤差都取0.0001。訓練結果表明,兩種模型的收斂速度都比較快,BP神經網絡訓練了25次就低于誤差限差;而小波神經網絡只訓練了5次就低于誤差限差0.0001,總體上小波神經網絡比BP網絡精度高。小波神經網絡訓練與BP神經網絡訓練擬合殘差系統比較結果如表1。

從預測結果對比分析表可以看出,小波神經網絡和BP神經網絡對攔渣壩變形預測的預測殘差絕對值在一個數量級上,但是WNN網絡的預測殘差值總體上明顯小于BP神經網絡。小波神經網絡的預測值與BP神經網絡的預測值相比較更加接近于實際值,WNN預測結果好于BP神經網絡預測結果,其預測優越性是顯而易見的。

3 小結

本文通過對小波神經網絡模型的研究,建立了攔渣壩變形預測的小波神經網絡模型。通過對WNN網絡模型和BP神經網絡模型訓練擬合結果與預測結果的對比分析,可以看出小波神經網絡模型在攔渣壩變形預測中的收斂性和精度比BP神經網絡好,對攔渣壩的變形預測研究有一定的參考應用價值。

【參考文獻】

[1]謝國權,戚藍,曾新華.基于小波和神經網絡拱壩變形預測的組合模型研究[J]. 武漢:武漢大學學報,2006,39(2):17-19.

[2]李超.小波神經網絡在大壩變形監測分析預測中的應用研究[D].西安:長安大學,2012.

[責任編輯:楊玉潔]

主站蜘蛛池模板: 99资源在线| 亚洲第一国产综合| 久久动漫精品| 亚洲成人精品| 国产精品对白刺激| 欧美午夜视频| 精品国产www| 一本一道波多野结衣一区二区 | 91麻豆国产视频| 五月婷婷中文字幕| 久久无码高潮喷水| 香蕉视频国产精品人| 欧美国产在线一区| 亚洲第一视频网站| 国产精品久久久久久久伊一| 又粗又硬又大又爽免费视频播放| 国产97公开成人免费视频| 免费观看无遮挡www的小视频| 精品久久久久无码| 丰满人妻被猛烈进入无码| 巨熟乳波霸若妻中文观看免费| 毛片基地视频| 欧美精品黑人粗大| 四虎在线观看视频高清无码| 国产欧美又粗又猛又爽老| 久久亚洲国产最新网站| 国产精品亚洲片在线va| 91在线精品麻豆欧美在线| 国产女人18水真多毛片18精品| 丰满人妻久久中文字幕| 成人在线亚洲| 国产成人夜色91| 夜夜操国产| 亚洲日韩精品伊甸| 98超碰在线观看| 婷婷99视频精品全部在线观看| 一级毛片中文字幕| 精品国产aⅴ一区二区三区| 日韩精品一区二区三区视频免费看| 国产色婷婷视频在线观看| 狠狠操夜夜爽| 国产a在视频线精品视频下载| 国产精品自在在线午夜| 欧美午夜小视频| 18禁黄无遮挡免费动漫网站| 精久久久久无码区中文字幕| 国产亚卅精品无码| 99热国产这里只有精品9九| 一级看片免费视频| 亚洲精品高清视频| 精品91自产拍在线| 国产杨幂丝袜av在线播放| 91精品专区| 五月婷婷亚洲综合| 91精品国产91久久久久久三级| 日本欧美在线观看| 欧美成人一区午夜福利在线| 中文字幕资源站| 91娇喘视频| 国模私拍一区二区 | 亚洲美女一区| 国产精品一区在线麻豆| 欧美成人A视频| 在线看国产精品| 国产成人高清亚洲一区久久| AV不卡无码免费一区二区三区| a天堂视频| 高清国产在线| 欧美成人怡春院在线激情| 亚洲成a∧人片在线观看无码| 亚洲 欧美 偷自乱 图片| 色网站在线免费观看| 无码国内精品人妻少妇蜜桃视频| 午夜视频日本| 国产精品免费露脸视频| 久久中文字幕av不卡一区二区| 极品尤物av美乳在线观看| 亚洲成人手机在线| 久久99精品国产麻豆宅宅| 国产精品污污在线观看网站| 国产第四页| 亚洲成人一区二区三区|