限制位移橋墩的連續(xù)剛構(gòu)橋抗震性能研究
劉鵬1,2
(1.中國(guó)中鐵二院工程集團(tuán)有限責(zé)任公司,四川 成都610031; 2.西南交通大學(xué) 土木工程學(xué)院,四川 成都610031)
摘要:沿著搖擺橋墩的概念提出一種限制位移橋墩連續(xù)剛構(gòu)橋體系。該體系通過(guò)對(duì)連續(xù)剛構(gòu)橋墩底和承臺(tái)之間采取一定措施,使橋梁在地震發(fā)生時(shí)能夠在限制的位移量?jī)?nèi)活動(dòng),減小輸入到橋梁結(jié)構(gòu)中的能量,達(dá)到減震的目的。通過(guò)對(duì)一座鐵路連續(xù)剛構(gòu)橋的分析,發(fā)現(xiàn)這種限制位移橋墩連續(xù)剛構(gòu)橋體系能大幅減小橋墩的延性和強(qiáng)度地震需求,減震效果明顯,在選擇合適的限制位移量的情況下,可保證橋墩在高烈度罕遇地震作用下幾乎保持彈性工作狀態(tài),震后經(jīng)簡(jiǎn)單處理即可保證使用功能,為震后救援工作帶來(lái)極大便利,也大大減少了修復(fù)成本。
關(guān)鍵詞:地震; 連續(xù)剛構(gòu)橋; 限制位移; 橋墩
收稿日期:*2014-04-29
基金項(xiàng)目:中國(guó)中鐵二院工程集團(tuán)有限公司院級(jí)課題(13164190(13-15),14126165(14-15))
作者簡(jiǎn)介:劉鵬(1982-),男,博士,高級(jí)工程師,主要從事橋梁抗震研究.E-mail:bridge.liupeng@qq.com
中圖分類號(hào):U442.55文獻(xiàn)標(biāo)志碼:A
DOI:10.3969/j.issn.1000-0844.2015.01.0120
Seismic Performance of a Continuous Rigid Frame Bridge
with Displacement-restricted Piers
LIU Peng1,2
(1.ChinaRailwayEryuanEngineeringGroupCo.Ltd,Chengdu,Sichuan610031,China;
2.SchoolofCivilEngineering,SouthwestJiaotongUniversity,Chengdu,Sichuan610031,China)
Abstract:Since the beginning of the 1990s,performance-based seismic design theory has entered the mainstream of structural seismic research.The purpose of performance-based seismic design theory is to determine the seismic performance objectives of a building based on its use,importance,and level of seismic fortification.Buildings designed in accordance with those objectives will safely withstand earthquakes that may occur in the future.On the bridge,plastic hinges placed on the piers were used to consume earthquake energy.Design for ductility can avoid collapse of the bridge.However,permanent deformation of the plastic hinges could cause serious damage to the pier.It is difficult to immediately repair bridges following earthquakes.Many transportation functions are significantly slowed or lost.In order to ensure that the transportation capacity of bridges is recovered quickly after a strong earthquake,many structural systems have been proposed,including rocking bridge piers and self-centering bridge piers.The continuous rigid frame bridge system with displacement-restricted piers was consistent with the concept of rocking piers.This structure can realize three important functions:(1) limit the maximum displacement of pier,(2) prevent the bridge from overturning,and (3)adjust the coefficient of friction at the pier bottom.By adhering to these objectives between the pier bottom and the pier cap,the displacement-restricted system allowed the bridge to move with under the action of the earthquake.In so doing,this method can reduce the input of energy to the bridge structure and achieve the purpose of earthquake mitigation.
This study concluded that the continuous rigid frame bridge system with displacement-restricted piers could reduce ductility and strength demands on the bridge piers.This paper comparedthe displacement limits of 2 cm,5 cm,8 cm and traditional piers.The results showed that the displacement of the pier top,the bending moment at the pier bottom,and the bending moment of the pier at the bridge beam with the displacement-restricted 2 cm,5 cm,8 cm piers were much less than the piers of a traditional continuous rigid frame bridge.The results also show that the amount of displacement restrictions is important.Choosing the appropriate displacement restriction can ensure that the elastic working state of the bridge will be maintained under severe earthquake conditions.This can improve the effectiveness of earthquake relief work and greatly reduce the cost of repairs.
Key words: earthquake; continuous rigid frame bridge; displacement-restricted; bridge pier
0引言
基于性能的抗震設(shè)計(jì)是指根據(jù)建筑物的用途和重要性以及地震設(shè)防水準(zhǔn)確定建筑物的抗震性能目標(biāo),按照該目標(biāo)進(jìn)行建筑抗震設(shè)計(jì),使設(shè)計(jì)的建筑在未來(lái)可能發(fā)生的地震作用下具有預(yù)期的抗震性能和安全度,從而將建筑的震害損失控制在預(yù)期的范圍內(nèi)。對(duì)橋梁而言,是利用橋墩產(chǎn)生塑性鉸消耗地震所輸入的能量。然而,如何在地震發(fā)生后,使整個(gè)建筑物乃至整個(gè)城市甚至整個(gè)社會(huì)具有恢復(fù)功能,近幾年來(lái)引起了地震工程界的密切關(guān)注與廣泛討論[1]。道路暢通在震后救援中起到了決定性的作用,而橋梁功能即時(shí)恢復(fù)則在道路暢通中起到關(guān)鍵作用。延性設(shè)計(jì)方法,雖可避免橋梁倒塌,但塑性鉸的永久變形卻導(dǎo)致橋墩嚴(yán)重受損,致使地震過(guò)后難以即時(shí)修復(fù),若塑性鉸出現(xiàn)在橋墩中部[2],則更難修復(fù),從而失去災(zāi)后亟需的運(yùn)輸功能。研究一種在震后具有恢復(fù)功能的橋梁結(jié)構(gòu),可在震后及時(shí)恢復(fù)鐵路運(yùn)輸功能,保證物資、人員運(yùn)輸,在震后人民生命財(cái)產(chǎn)搶救中將起到至關(guān)重要的作用,具有非常重要的經(jīng)濟(jì)效益和社會(huì)效益。
為保證結(jié)構(gòu)的即時(shí)恢復(fù)功能能力,有學(xué)者提出剛體搖晃概念[3]。在早期的搖擺結(jié)構(gòu)中,一般做法為放松結(jié)構(gòu)與基礎(chǔ)之間的約束,即上部結(jié)構(gòu)與基礎(chǔ)交界面可以受壓但幾乎沒(méi)有受拉能力,在水平傾覆力矩作用下,允許上部結(jié)構(gòu)在與基礎(chǔ)交界面處發(fā)生一定的抬升。地震作用下上部結(jié)構(gòu)的反復(fù)抬升和回位就造成了上部結(jié)構(gòu)的搖擺,一方面降低了強(qiáng)地震作用下上部結(jié)構(gòu)本身的延性設(shè)計(jì)需求,減小了地震破壞,節(jié)約了上部結(jié)構(gòu)造價(jià);另一方面,減小了基礎(chǔ)在傾覆力矩作用下的抗拉設(shè)計(jì)需求,節(jié)約了基礎(chǔ)造價(jià)。
根據(jù)剛體搖擺概念,有學(xué)者提出了地震過(guò)后避免橋墩損壞的設(shè)計(jì)方法,稱之為DAD(Damage Avoidance Design)[4-5]。該方法主要將橋墩連接蓋梁及基礎(chǔ)的鋼筋切斷,使橋墩在地震時(shí)可在期間來(lái)回晃動(dòng),避免橋墩產(chǎn)生塑性變形而破壞。運(yùn)用該方法設(shè)計(jì)的搖晃橋墩系統(tǒng),在往復(fù)地震力作用下,橋墩沒(méi)有強(qiáng)度或剛度衰退情形。Hao等[6]通過(guò)數(shù)值方法研究了一座兩跨簡(jiǎn)支梁橋搖擺橋墩的抗震性能,認(rèn)為可以有效減輕結(jié)構(gòu)的地震響應(yīng),減震效果明顯。為了使搖擺橋墩在地震作用下具有復(fù)位能力從而減小殘余變形,研究人員在搖擺橋墩中引入無(wú)黏結(jié)后張預(yù)應(yīng)力,后張預(yù)應(yīng)力使橋墩與基礎(chǔ)交界面處的抗側(cè)力小于傳統(tǒng)固定基礎(chǔ)橋墩,但大于無(wú)預(yù)應(yīng)力的搖擺橋墩,并為橋墩的搖擺提供一定的復(fù)位能力。Lee[7]、Palermo等[8]對(duì)后張預(yù)應(yīng)力自復(fù)位式橋墩的抗震性能進(jìn)行了研究;Solberg等[9]通過(guò)試驗(yàn)對(duì)比了搖擺橋墩和傳統(tǒng)墩底固結(jié)橋墩的抗震性能,認(rèn)為搖擺橋墩抗震性能優(yōu)越性明顯;Marriott[10]、Palermo[11]、Jeong[12]、郭佳等[13-14]進(jìn)行了類似的自復(fù)位橋梁試驗(yàn),都認(rèn)為自復(fù)位橋梁在地震中表現(xiàn)出了很好的抗震性能。Astaneh-Asl 和Shen進(jìn)行了半剛性搖擺橋墩的研究,允許橋墩與基礎(chǔ)間有限搖擺,這一研究已用于美國(guó)舊金山-奧克蘭海灣大橋改造的加固設(shè)計(jì)中[1]。
鐵路連續(xù)剛構(gòu)橋有其特殊性,橋墩剛度大,現(xiàn)有文獻(xiàn)未發(fā)現(xiàn)專門(mén)針對(duì)搖擺橋墩在鐵路連續(xù)剛構(gòu)橋中的應(yīng)用研究。而在中國(guó)西南地區(qū)修建鐵路,需要跨越多條地震斷裂帶,橋址不可避免要位于高烈度地區(qū),因此本文將專門(mén)針對(duì)大跨鐵路橋梁進(jìn)行研究。
1思路提出
根據(jù)搖擺橋墩的概念,本文提出一種限制位移橋墩的思路,構(gòu)造示意圖如圖1所示,簡(jiǎn)述如下:
把橋墩底部設(shè)計(jì)成一個(gè)平臺(tái),與承臺(tái)分離,承臺(tái)做成凹槽狀,而在墩底、承臺(tái)的頂面預(yù)埋鋼板,平臺(tái)在凹槽內(nèi)可以平動(dòng),平動(dòng)的最大位移量通過(guò)平臺(tái)與凹槽之間的間距進(jìn)行限制;在凹槽的頂部增加防傾覆裝置,防止結(jié)構(gòu)傾覆(盡管這種情況幾乎不會(huì)出現(xiàn)),在防傾覆裝置和承臺(tái)頂部加塞類似軟鋼等彈模較低的延性材料(圖1中黑色實(shí)體部分),對(duì)橋墩在凹槽內(nèi)的轉(zhuǎn)動(dòng)進(jìn)行一定程度的限制。這樣,橋墩的最大位移量能得到很好的約束。在強(qiáng)地震作用下,橋墩首先發(fā)生轉(zhuǎn)動(dòng),當(dāng)水平力大于墩底摩擦力時(shí),橋墩開(kāi)始滑動(dòng)。通過(guò)橋墩的滑移和轉(zhuǎn)動(dòng)減小地震能量的輸入,同時(shí)又能保證最大位移量不超過(guò)限制值,地震后保證橋梁的正常通行能力。

1-凹槽狀承臺(tái);2-防傾覆裝置;3-預(yù)埋鋼板 圖1 限制位移橋墩局部構(gòu)造示意圖 Fig.1 Local structure of the displacement-restricted pier
2模型建立
下面以一座3跨鐵路連續(xù)剛構(gòu)橋?yàn)槔芯可鲜鏊悸返目拐鹦阅堋_x用FRAME3D分析軟件,該軟件在日本工程界抗震分析時(shí)廣泛應(yīng)用。選用的橋梁橋跨徑布置為72 m+128 m+72 m;主梁為箱型變截面,采用C50混凝土,用彈性梁?jiǎn)卧M;橋墩為圓端形變截面,墩頂矩形部分長(zhǎng)7 m、寬2 m,圓端半徑1 m,截面沿墩高方向按1∶40的比例變化,墩身采用C40混凝土,用纖維單元模擬;不考慮地震中橋臺(tái)發(fā)生破壞,選用彈性梁?jiǎn)卧M。建立的有限元模型如圖2所示。下面對(duì)模型中采用的材料模型、限制位移的模擬方式進(jìn)行詳細(xì)介紹。

圖2 連續(xù)剛構(gòu)橋有限元模型 Fig.2 Finite element model of the continuous rigid frame bridge
2.1材料模型
在鋼筋混凝土纖維模型中, 纖維可以劃分為三類:保護(hù)層混凝土、核心混凝土和鋼筋,所以需要定義無(wú)約束混凝土、約束混凝土和鋼筋三種材料的本構(gòu)關(guān)系模型。對(duì)無(wú)約束混凝土和約束混凝土均采用Mander單軸混凝土模型,鋼筋則選用Menegotto和Pinto建議的修正MP(S-K)模型,本構(gòu)關(guān)系如圖3所示。

圖3 材料本構(gòu)關(guān)系 Fig.3 Constitutive relation of materials
2.2邊界條件模擬
對(duì)于限制位移的模擬是本次模擬的關(guān)鍵所在,如前所述,既需要保證橋墩底部有不超過(guò)設(shè)定范圍大小的位移量,又要保證橋墩有一定程度的轉(zhuǎn)動(dòng)能力,同時(shí)需要考慮一定的摩擦力,基于此,本文用彈簧單元進(jìn)行模擬。對(duì)于限制位移的水平方向約束,用圖4(a)所示的彈簧表示,圖中的Gap為預(yù)設(shè)的限制位移量,達(dá)到該值后,橋墩和承臺(tái)凹槽發(fā)生碰撞,用線性剛度模擬,同時(shí)設(shè)定了破壞位移,即到達(dá)該位移后意味著凹槽被撞壞,喪失對(duì)橋墩的約束作用;對(duì)于豎直方向的約束,用圖4(b)所示的彈簧模擬,表示承臺(tái)只對(duì)橋墩向下位移有約束(K2=1×1010kN/m),對(duì)橋墩在地震作用下向上抬升不施加約束(K1=0);對(duì)于轉(zhuǎn)動(dòng)方向的約束,采用圖4(c)所示的線彈簧進(jìn)行簡(jiǎn)單模擬(K1=1×103kN/m);而用圖4(d)所示的彈簧模擬墩底與承臺(tái)頂部之間的摩擦力,可以通過(guò)調(diào)整墩底和承臺(tái)頂板預(yù)埋鋼板的摩擦系數(shù)μ調(diào)整該摩擦力F(其中F=μN(yùn),而N為靜力得到的墩底反力),雖然墩底反力在地震中有所變化,但相對(duì)于結(jié)構(gòu)自重來(lái)說(shuō)一般小很多,所以簡(jiǎn)單認(rèn)為該力保持常數(shù)不變。邊跨支座采用彈簧模擬,為了保證橋梁在正常使用情況下的橫向剛度,只放松縱橋向平動(dòng)自由度和橫橋向轉(zhuǎn)動(dòng)自由度,約束包括橫橋向平動(dòng)自由度在內(nèi)的其他方向各自由度,如圖4(e)所示。

圖4 邊界條件 Fig.4 Boundary condition
2.3地震波選取
地震波輸入選用Kobe地震波(圖5),進(jìn)行三向地震動(dòng)輸入,水平向加速度峰值調(diào)整至0.64 g,即《鐵路工程抗震設(shè)計(jì)規(guī)范》規(guī)定的Ⅸ度設(shè)防烈度區(qū)對(duì)應(yīng)的罕遇地震的水平地震基本加速度值。

圖5 Kobe地震波 Fig.5 Kobe seismic wave
3計(jì)算結(jié)果及分析
為了更清楚地了解限制位移橋墩的抗震性能,計(jì)算了墩底固結(jié)、限制位移量分別為2 cm、5 cm和8 cm四種情況,進(jìn)行了一個(gè)系統(tǒng)的比較。
選取容易形成塑性鉸的墩底部位、橫系梁處橋墩截面,查看塑性發(fā)展情況,這里只列出墩底固結(jié)和限制位移量為5 cm時(shí)的計(jì)算結(jié)果(圖6、圖7)。

圖6 墩底固結(jié)時(shí)截面塑性發(fā)展情況 Fig.6 Plastic situation of the section when the bottom of pier is consolidated
從計(jì)算結(jié)果可以看出,傳統(tǒng)墩底固結(jié)橋墩經(jīng)過(guò)加強(qiáng)配筋的橋墩墩底、橫系梁部位橋墩依次進(jìn)入塑性,直至墩底部位混凝土到達(dá)抗壓強(qiáng)度形成塑性鉸,在這過(guò)程中由于地震作用過(guò)于強(qiáng)烈,導(dǎo)致橋墩其他部位混凝土要超過(guò)抗壓強(qiáng)度的1/3,產(chǎn)生塑性變形;而限制位移橋墩混凝土只在墩底處、橫系梁部位產(chǎn)生少量塑性變形,其余部位混凝土基本在彈性變形范圍內(nèi)工作。這表明,限制位移橋墩有非常強(qiáng)的抵御強(qiáng)震的能力,而且在強(qiáng)震中基本能保證橋墩混凝土在彈性范圍內(nèi)工作,這樣橋墩幾乎沒(méi)有損傷和破壞,在震后也就不必對(duì)橋墩進(jìn)行修復(fù)或只需對(duì)個(gè)別部位進(jìn)行簡(jiǎn)單處理。
再對(duì)限制位移量的大小進(jìn)行一個(gè)分析。分別對(duì)墩底固結(jié)、限制位移量2 cm、限制位移量5 cm、限制位移量8 cm四種情況的橫橋向墩底彎矩和橫系梁處橋墩彎矩(都取橋墩同一肢的相同位置截面)、墩頂位移進(jìn)行一個(gè)對(duì)比(表1)。上述后三種情況下,摩擦力均取值為8 000 kN。

圖7 限制位移5 cm時(shí)截面塑性發(fā)展情況 Fig.7 Plastic situation of the section when the limit displacemenis is 5 m

圖8 墩底橫橋向反力時(shí)程 Fig.8 Transversal counter-force time history of the bottom of pier
從表1看出,限制位移結(jié)構(gòu)體系的墩底彎矩比傳統(tǒng)的墩底固結(jié)的結(jié)構(gòu)體系減小很多,減小幅度超過(guò)2/3;而比較有意思的是,墩頂最大位移不但沒(méi)有因?yàn)闃蚨盏幕顒?dòng)增加,反而降至只有墩底固結(jié)墩頂最大位移的約2/3。另外,墩頂最大位移跟限制位移量關(guān)系不大,墩底彎矩相差也不大,但橫系梁處橋墩彎矩相差較大,說(shuō)明限制位移量的選擇很重要。
接下來(lái)再對(duì)墩底橫橋向的反力進(jìn)行一個(gè)比較。圖8分別給出了墩底固結(jié)、限制位移量分別為2 cm、5 cm和8 cm時(shí)墩底橫橋向反力,后面三種情況實(shí)際上是橋墩墩底與承臺(tái)凹槽側(cè)壁之間的碰撞力。可以看出,限制位移橋墩與承臺(tái)凹槽側(cè)壁之間的碰撞力遠(yuǎn)大于墩底固結(jié)時(shí)的反力,但在限制位移量為8 cm時(shí),碰撞力基本已降到限制位移量為2 cm和5 cm時(shí)50%的水平。這再一次說(shuō)明限制位移量的選擇很重要,通過(guò)選擇合適的限制位移量可以減小橋墩墩底與承臺(tái)凹槽側(cè)壁之間的碰撞力。這里需要說(shuō)明的是,我們可以采取一些緩沖措施來(lái)減小該碰撞力,這將在以后的研究中專門(mén)進(jìn)行分析。
表 1位移、彎矩對(duì)比
Table 1Displacement comparison and bending moment comparison

墩底約束方式墩頂位移/mm墩底彎矩/(kN·m)橫系梁處橋墩彎矩/(kN·m)墩底固結(jié)300.7553298319540限制位移量2cm216.0136135221745限制位移量5cm206.9122045154703限制位移量8cm207.2136419187858
4結(jié)論
通過(guò)對(duì)傳統(tǒng)墩底固結(jié)結(jié)構(gòu)體系和限制位移橋墩結(jié)構(gòu)體系的對(duì)比,可以看到后一種結(jié)構(gòu)體系減震效果明顯,基本能保證橋墩在高烈度區(qū)罕遇地震作用下保持彈性工作狀態(tài)。限制位移量的選定對(duì)減震效果有一定影響,選擇合適的限制位移量可以有效減小墩底彎矩、橫系梁處橋墩彎矩,還可以減小橋墩底部與承臺(tái)限制措施之間的碰撞力,因此在進(jìn)行設(shè)計(jì)時(shí)可以綜合考量,既要考慮減震效果,又要考慮結(jié)構(gòu)在震后快速恢復(fù)運(yùn)輸能力的要求。
參考文獻(xiàn)(References)
[1] 周穎,呂西林.搖擺結(jié)構(gòu)及自復(fù)位結(jié)構(gòu)研究綜述[J].建筑結(jié)構(gòu)學(xué)報(bào),2011,32(9):1-10.
ZHOU Ying,LU Xi-lin.State-of-the-art on Rocking and Self-centering Structures[J].Journal of Building Structures,2011,32(9):1-10.(in Chinese)
[2] 盧皓,李建中.強(qiáng)震作用下高墩橋梁抗震性能特點(diǎn)分析[J].地震工程學(xué)報(bào),2013,35(4):858-865.
LU Hao,LI Jian-zhong.Analysis of Seismic Performance Characteristics of Bridge with High piers Under Strong Earthquake Motion[J].China Earthquake Engineering Journal,2013,35(4):858-865.(in Chinese)
[3] Housner G W.The Behavior of Inverted Pendulum Structures During Earthquakes[J].Bulletin of the Seismological Society of America,1963,53 (2):403-417.
[4] Mander J B,Cheng C T.Seismic Resistance of Bridge Piers Based on Damage Avoidance Based on Damage Avoidance Design[R].Technical Report Nceer,97-0014,Buffalo,NY:NCREE,1997.
[5] Cheng C T.New Paradigms for the Seismic Design and Retrofit of the Bridge Piers[D].Buffalo:State University of New Yorkk at Buffalo,1997.
[6] Hao H,Daube M.Numerical Study of Rocking Pier in Mitigating Bridge Responses to Earthquake Ground Motions[C]//Tweed Heads,Gold Coast:Australian Earthquake Engineering Society 2012 Conference.2012.
[7] Lee W K,Billington S L.Performance-based Earthquake Engineering Assessment of a Self-centering,Post-tensioned Concrete Bridge System[J].Earthquake Engng Struct Dyn,2011,40:887-902.
[8] Palermo A,Pampanin S,Calvi G M.Use of“Controlled Rocking”in the Seismic Design of Bridges[C]//Vancouver,B C, Canada:13th World Conference on Earthquake Engineering.2004.
[9] Solbrg,K M,Mashiko N,Mander J B,et al.Performance of a Damage Protected Highway Bridge Pier Subjected to Bidirectional Earthquake Attack[J].Journal of Structural Engineering,2009,135(5): 469-478.
[10] Marriott D,Palermo A,Pampanin S.Quasi-static and Pseudo-dynamic Testing of Damage Resistant Bridge Piers with Hybrid Connectionss[A]// Proceedings of First European Conference on Earthquake Engineering and Seismology.Geneva,Switzerland,2006.
[11] Palermo A,Pampanin S,Marriott D.Design,Modeling,and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections[J].Journal of Structural Engineering,2007,133(11):1648-1661.
[12] Jeong H I,Sakai J,Mahin S A.Shaking Table Tests and Numerical Investigation of Self-centering Reinforced Concrete Bridge Columns[R].Pacific Earthquake Engineering Research Center,2008.
[13] 郭佳. 基于性能的新型自復(fù)位橋墩抗震理論與試驗(yàn)研究[D].北京:清華大學(xué),2012.
GUO Jia.Performance Based Research on the Seismic Theory and Test of New Self-centering Pier[D].Beijing:Tsinghua University,2012.(in Chinese)
[14] 郭佳,辛克貴,何銘華, 等.自復(fù)位橋梁墩柱結(jié)構(gòu)抗震性能試驗(yàn)研究與分析[J].工程力學(xué),2012,29(增刊);29-34.
GUO Jia,XIN Ke-gui,HE Ming-hua,et al.Experimental Study and Analysis on the Seismic Performance of a Self-centering Bridge Pier[J].Engineering Mechanics,2012,29(S):29-34. (in Chinese)