溫 超,王紫夢,石星波*,鄧放明*
(湖南農業大學食品科技學院,食品科學與生物技術湖南省重點實驗室,湖南 長沙 4101 28)
食品中丙烯酰胺與5-羥甲基糠醛的研究進展
溫超,王紫夢,石星波*,鄧放明*
(湖南農業大學食品科技學院,食品科學與生物技術湖南省重點實驗室,湖南 長沙 4101 28)
食品熱加工過程生成的丙烯酰胺與5-羥甲基糠醛嚴重影響人們的身體健康。研究這兩種物質的毒性、形成機理以及抑制方法,有助于合理控制熱加工工藝,改善熱加工食品的安全性,開發新的抑制方法。本文評述了丙烯酰胺與5-羥甲基糠醛的毒性、形成機理、檢測及抑制方法,總結了目前抑制方法存在的問題,提出未來將朝著能同時抑制多種潛在毒性的美拉德反應產物的可能途徑發展。
丙烯酰胺;5-羥甲基糠醛;毒性;美拉德反應;抑制
自從2002年瑞典國家食品管理局(Swedish National Food Administration,SNFA)首次提出丙烯酰胺廣泛存在于熱加工食品中后[1-2],熱加工食品的安全性引起了世界范圍內科研工作者的高度重視,而食品的熱處理又是現代食品工藝中不可或缺的一道加工工序。食品在熱加工過程中常常伴隨著美拉德反應的發生,進而生成諸如丙烯酰胺(分子結構如圖1A)、5-羥甲基糠醛(5-hydroxymethylfurfural,HMF)(分子結構如圖1B)等[3]有毒有害的物質,其中丙烯酰胺被國際癌癥研究機構(International Agency for Research on Cancer,IARC)劃分為“2類致癌物”,同時HMF是一種能誘導細胞和基因突變的毒素,具有潛在的致癌性[4]。然而我們日常所膳食的食品,比如,面包[5-6]、干制品[7]、薯條等存在大量的丙烯酰胺和HMF,對消費者的身體健康帶來了一定的威脅。

圖1 丙烯酰胺(A)與5-羥甲基糠醛(B)分子結構式Fig.1 Molecular structures of acrylamide (A) and HMF (B)
近年來,科研工作者們展開不少有關食品熱加工中丙烯酰胺形成的抑制研究。雖然開發了一些控制食品中丙烯酰胺含量的有效方法,但是如何有效的控制HMF含量的報道甚少。只考慮抑制丙烯酰胺形成的方法顯然不能徹底的解決食品的安全隱患。與此同時,不少課題組綜述了丙烯酰胺的毒性、檢測方法、生成機理、抑制手段等[8-10],為開展抑制丙烯酰胺的工作提供了便捷的文獻資料。所以,同時綜述有關丙烯酰胺與HMF的工作,將有助于科研工作者開發同時抑制丙烯酰胺和HMF形成的方法。
本文就近年來國內外科研者對丙烯酰胺和HMF的毒性、生成機理、檢測方法及抑制手段等有關研究進行了綜述。旨在為同時抑制或控制食品熱加工中丙烯酰胺和HMF的形成提供一定的理論依據,促進更為科學合理的工藝和技術的開發,提高消費者的飲食健康。
丙烯酰胺和HMF主要存在于高溫油炸烘烤的食品中,其中,面包中丙烯酰胺平均含量136 μg/kg,HMF含量11.8~87.7 mg/kg;谷物早餐中丙烯酰胺平均含量156 μg/kg,HMF含量為6.9~240.5 mg/kg;另外咖啡中丙烯酰胺平均含量253 μg/kg,HMF含量為100~1 900 mg/kg[11]。然而,世界衛生組織(World Health Organization,WHO)推薦飲用水中丙烯酰胺最大限量不高于0.5 μg/L,比常見食品中丙烯酰胺含量低幾百倍[12],嚴重影響到消費者身體健康。綜述丙烯酰胺和HMF的毒性具有重要的意義。
1.1丙烯酰胺的毒性
1.1.1致癌性
自從開展丙烯酰胺的毒理學研究以來,丙烯酰胺對人體是否具有致癌作用一直是科研工作者們爭議的話題。科研工作者發現丙烯酰胺能誘導老鼠的肺、胃、乳腺、甲狀腺等多個器官長出惡性腫瘤,體現為丙烯酰胺具有致癌性[13-14]。但是,不少的課題組認為動物實驗難以直接證明食品中丙烯酰胺的攝入量在人體內能起到致癌作用[15-18]。2012年,Lipworth等[15]研究發現食品中丙烯酰胺攝入量未能增加患癌癥的風險,并提出從當前流行病學角度來看,丙烯酰胺與惡性腫瘤形成之間不存在直接聯系。
1.1.2遺傳毒性
丙烯酰胺的遺傳毒性在細菌、動物細胞、人體淋巴細胞等體系已得到評估[18-19],表現為能使染色體斷裂、減緩細胞分裂等特點[20-21]。研究發現丙烯酰胺主要由以下兩種方式來表達其遺傳毒性,一種方式是通過新陳代謝而轉變為能誘導基因中HPRT位點突變的環氧丙酰胺;另一種方式是作為Michael受體,與DNA中的硫醇、羥基、氨基結合形成復合物[22]。
1.1.3神經毒性
眾所周知,丙烯酰胺對人體具有神經毒性[23]。對長期暴露于丙烯酰胺環境的工作人員進行健康調查的報告顯示,丙烯酰胺能導致小腦功能障礙和神經系統混亂[24]。有文獻報道暴露于以平均每日30 μg/kg劑量(以體質量計)的丙烯酰胺中,可致人體周圍神經病變[25]。但是其神經毒性作用機理還缺乏令人信服的科學依據,還需要進一步的研究[26]。
1.1.4生殖毒性
在已報告的動物實驗中,丙烯酰胺主要通過干擾交配,誘發胚胎細胞核和雄性動物的精子異常等途徑影響生殖功能的正常運行,導致生育率下降[27]。Titenko-Holland等[28]發現雄性老鼠連續5 d攝入50 mg/kg劑量的丙烯酰胺,會導致精子數量銳減,形態明顯異常。然而目前還沒有得到作為丙烯酰胺給人體生殖功能帶來不良影響的證據[17,27]。
1.2HMF的毒性
通常認為,HMF是一種弱致癌性的細胞毒素,在高濃度下,可傷害眼睛、呼吸道、皮膚和黏膜[11]。事實上,從多個HMF毒理學的動物實驗中得出的結論互相矛盾,一些研究表明HMF不具有遺傳毒性和致癌性[29],而Anese等[4]研究發現HMF能在老鼠體內誘發基因突變,導致老鼠患結腸癌和肝癌。其實,5-HMF本身沒有毒性,主要是因為其能在體內和體外分別形成磺酸氧甲基糠醛(sulfoxymethylfurfural,SMF)和5-氯甲基糠醛(5-chloromethylfurfural,5-CMF),而這些物質具有較強致癌性和基因毒性[28,30]。
2.1丙烯酰胺的形成機理
2.1.1天冬酰胺途徑
天冬酰胺途徑是指由天冬酰胺與含羰基化合物(還原糖)通過美拉德反應而形成丙烯酰胺,是食品中丙烯酰胺形成的最重要途徑[1,31]。天冬酰胺途徑發生在美拉德反應初期階段,由天冬酰胺與含羥基化合物(還原糖)通過脫水縮合形成極不穩定的席夫堿后,再分別以兩種不同的方式形成丙烯酰胺。一種方式是通過分子的內環化形成唑烷酮,接著脫羧為偶氮甲堿葉拉德內翁鹽,再經過質子轉移生成中性胺去羥基Amadori化合物,進而生成丙烯酰胺[32-33]。另一種方式是席夫堿在分子重排后形成Amadori化合物,Amadori化合物在高溫條件下直接分解生成丙烯酰胺或者通過形 成3-氨基丙烯胺,再脫氨生成丙烯酰胺[34]。在此途徑中,單獨加熱的天冬酰胺可以直接脫羧基和脫氨基形成丙烯酰胺,但是丙烯酰胺形成量極低,而在羰基化合物存在的條件下才能形成大量的丙烯酰胺[1,31]。并且Zyzak[35]和Stadler[2]等通過標記同位素實驗證明天冬酰胺是丙烯酰胺形成的主要來源,為丙烯酰胺的形成提供了結構框架。對于此途徑的研究,科研工作者通常借用天冬酰胺和葡萄糖的反應作為研究模型。2012年,G?kmen等[3]發現加熱天冬酰胺與HMF反應模型也能形成大量的丙烯酰胺。
2.1.2非天冬酰胺途徑
在食品加工中天冬酰胺途徑并不是形成丙烯酰胺的唯一途徑,一些研究表明在缺乏天冬酰胺的條件下也能生成大量的丙烯酰胺,這些途徑統稱為非天冬酰胺途徑[36-38]。研究發現,丙烯醛和丙烯酸是非天冬酰胺途徑能順利進行的重要物質,它們的化學結構與丙烯酰胺的極其相似,被公認為是形成丙烯酰胺的關鍵中間產物[38]。Ehling等[39]研究發現油脂類物質在高溫條件下通過水解、氧化等反應生成三碳化合物丙烯酸,丙烯酸再與氨基化合物作用形成丙烯酰胺。Vattem等[40]指出單糖在加熱過程中能分解生成許多小分子物質(如甲醛、乙醛),這些物質在適合條件下可以重新形成丙烯酸,進而形成丙烯酰胺。
2.2HMF的形成機理
通常認為,HMF由碳水化合物經加熱分解形成,其實氨基酸、氨基酸-糖類混合物、維生素、多不飽和脂肪酸和類胡蘿卜素在加熱的過程中也能形成少量的HMF[27,41]。鑒于碳水化合物是形成HMF的主要反應物,科研工作者常以果糖、葡萄糖、蔗糖等碳水化合物作為反應物來研究HMF 形成的機理,并發現在低pH值條件下,葡萄糖或者果糖在高溫中經過烯醇化和脫水作用形成了3-脫氧己糖酮,3-脫氧己糖酮進一步脫水、分子環化生成HMF[42-44]。而加熱有金屬離子存在的碳水化合物會使HMF的形成途徑發生改變,金屬離子能與碳水化合物結合形成高活性的果糖陽離子,并且這種陽離子比3-脫氧己糖酮更能有效地分解形成HMF[45-46]。
在富含天冬酰胺和葡萄糖的食品中,葡萄糖能與天冬酰胺反應形成丙烯酰胺,也能通過加熱分解而形成HMF,是形成丙烯酰胺及HMF的共同反應物。同時,美拉德反應所形成的HMF作為反應物與天冬酰胺反應也能生成丙烯酰胺。所以,在食品體系中,有必要同時考慮這兩種物質的形成機理及相互影響機制。
3.1抗氧化劑
一般認為,抗氧化劑能有效地避免食品原料中的還原糖被氧化,進而起到抑制丙烯酰胺的作用。然而,研究發現由于抗氧化劑在結構和特性上具有多樣性,不同的抗氧化劑在美拉德反應過程中參與不同的反應途徑,進而造成了抗氧化劑對丙烯酰胺的形成具有不一致的影響效果,有的甚至能起到促進作用。比如,Kotsiou等[47]研究發現沒食子酸和阿魏酸能使丙烯酰胺的含量分別減少70%和50%。而Biedermann等[48]發現在馬鈴薯模型中添加抗壞血酸及其衍生物對丙烯酰胺的形成幾乎沒有影響。類似的結果在餅干、土豆模型中同樣被發現[49-50]。但是,添加綠原酸于高溫條件下的葡萄糖-天冬酰胺模型中,發現丙烯酰胺的含量明顯增加了[51]。其實,相同類型的抗氧化劑對丙烯酰胺形成的影響效果也不一致。有研究發現隸屬于酚酸化合物的咖啡酸和沒食子酸在兩個不同模型的實驗中的結果完全相反,這2 種酚酸化合物在乳液模型中對丙烯酰胺形成表現為抑制作用,而在天冬酰胺-葡萄糖模型中表現為促進作用[47,52]。
3.2植物提取物
植物提取物一般會存在大量的酚類、生物黃酮、無機鹽等化合物,對丙烯酰胺的形成具有潛在的抑制作用。Oral等[53]發現植物提取物(橄欖、橘子、石榴皮)在甘氨酸-葡萄糖模型中對丙烯酰胺形成的抑制率達到30%~85%,而在餅干中能使丙烯酰胺的含量減少10%~19%。Cheng Kawing等[54]研究發現蘋果提取物能夠非常有效的抑制丙烯酰胺的形成,藍莓、山竹果、龍眼提取物抑制丙烯酰胺的效果并不明顯,而紅龍果提取物能顯著地增加丙烯酰胺的含量。而Acar等[55]發現葡萄籽提取物的添加對面包中丙烯酰胺形成沒有任何影響。起不到抑制效果的植物提取物有可能是因為其提取物當中含有相當一部分還原糖所致。
3.3含硫化合物
由于含巰基官能團的氨基酸和硫醇在加熱條件下能與丙烯酰胺直接反應形成復合物或者通過消除巰基官能團形成脫氫丙氨酸后,再與丙烯酰胺發生加成反應,從而起到抑制丙烯酰胺形成的效果[56]。比如,在丙烯酰胺溶液中分別添加谷胱甘肽、半胱氨酸、N-乙酰-半胱氨酸、芐硫醇,加熱一段時間后發現大量的丙烯酰胺消失了,而且發現谷胱甘肽的消除率最高[57-58]。將牛磺酸添加到土豆片和天冬酰胺-葡萄糖模型中,研究結果表明牛磺酸在兩種反應模型中都能大量地降低丙烯酰胺的含量,并發現在天冬酰胺-葡萄糖模型中丙烯酰胺的抑制率隨牛磺酸濃度的增加而增大,而在油炸土豆片中沒有得到體現[59]。然而含巰基化合物的添加對產品的風味造成一定副作用,所以不宜大量的使用。
3.4天冬酰胺酶
天冬酰胺酶是將食品原料中形成丙烯酰胺的前體物天冬酰胺水解為天冬氨酸,因此能起到抑制丙烯酰胺形成的作用。Pedreschi等[60-61]分別把土豆條和土豆片浸泡在天冬酰胺酶溶液中,在相同的油炸條件加工后發現在薯條中丙烯酰胺的含量下降了30%,而薯片中只減少了15%。同時,原料的結構和成分也會影響到天冬酰胺酶抑制丙烯酰胺形成的效率。有研究發現天冬酰胺酶在美拉德反應模型中能使丙烯酰胺的含量減少85%~90%[62-63],在食物中丙烯酰胺的抑制率為27%~70%[64]。另外,2011年,Anese等[65]發現對于烘焙產品而言,水分含量較高的原料能增強天冬酰胺酶對丙烯酰胺形成的抑制作用,而脂肪的存在降低了天冬酰胺酶的活性,相對于無脂肪存在的實驗,表現為促進了丙烯酰胺的形成,并指出丙烯酰胺的減少量隨著脂肪濃度的增加而逐漸變小。
3.5氨基酸
一些實驗已證明丙氨酸、賴氨酸、甘氨酸、谷氨酸、半胱氨酸都能有效的抑制丙烯酰胺的形成[66-67]。除了以上氨基酸以外,Lopez-Lopez等[68]從研究一系列氨基酸在橄欖汁加工過程中對丙烯酰胺形成的影響中,發現脯氨酸、肌氨酸、鳥氨酸和γ-氨基丁酸也能抑制丙烯酰胺的形成,并且抑制率達50%~75%。這可能是因為這些游離氨基酸在美拉德反應中與天冬酰胺形成了一定的競爭作用或者與丙烯酰胺發生共價結合反應,從而降低了產品中丙烯酰胺的含量[26]。
3.6金屬離子
同種金屬離子在不同的反應模型或者食品中對丙烯酰胺的抑制效果不一。Yuan Yuan等[69]研究了NaCl在天冬酰胺-葡萄糖模型和天冬酰胺-果糖模型中對丙烯酰胺的影響,發現NaCl在天冬酰胺-葡萄糖模型中對丙烯酰胺的抑制率為14.78%,而在天冬酰胺-果糖模型中抑制率達到24.58%。2013年,Kalita等[70]發現硫酸釩在油炸馬鈴薯薯條和葡萄糖-天冬酰胺模型中都具有抑制丙烯酰胺形成的作用,并且浸泡于0.1 mmol/L釩離子溶液的薯條中丙烯酰胺抑制率為92.5%,而在模型中釩離子濃度為6 mmol/L時抑制率最大,達到97.6%。
不同價態金屬離子在同種反應模型或者食品中對丙烯酰胺的抑制效果也不一樣。G?kmen等[71]向葡萄糖-天冬酰胺模型添加NaCl、CaCl2、MgCl2、FeCl3,發現這些物質都能大量的降低丙烯酰胺含量,并且指出一價金屬離子抑制效果比二價金屬離子抑制效果差。
與金屬離子結合的陰根離子不同,同樣會對丙烯酰胺的形成造成不一樣的影響效果。Kukurova等[72]在谷物模型中研究了無機鹽對丙烯酰胺形成的影響,比如,酸性焦磷酸鈉、磷酸二氫鈉抑制率為75%,碳酸氫鈉和碳酸氫鉀抑制率為30%。NaCl和氯化鉀的抑制率為40%~45%。A?ar等[73]研究了氯化鈣和乳酸鈣對丙烯酰胺形成的影響,結果發現在質量分數為1%的時候抑制率最大,分別為81%和53%。而向面團餅干中添加質量分數0.2%丙酸鈣后,促進90%的丙烯酰胺形成。
研究還發現金屬離子對丙烯酰胺形成的影響,既有抑制作用,又有促進作用,還有隨離子濃度增加先抑制后促進的效應。Casado等[74]發現在堿性橄欖油模型中添加50 mmol/L的氯化鈣后,丙烯酰胺含量增加了24%。而在天冬酰胺-葡萄糖模型中氯化鈣表現為抑制作用。2013年,Tan等[75]在生產棕櫚糖中的研究發現Ca2+對丙烯酰胺的形成具有抑制作用,但是,在Ca2+質量濃度為0~20 mg/L時丙烯酰胺含量隨著Ca2+質量濃度的升高而減少,而在質量濃度為20~80 mg/L時丙烯酰胺含量隨著Ca2+質量濃度的升高而增加。
3.7微生物發酵
有些微生物能發酵天冬酰胺和碳水化合物,進而降低了食品原料中天冬酰胺和碳水化合物的含量,并且能形成一些可以抑制丙烯酰胺的化合物,因此能降低產品中丙烯酰胺的含量。Baardseth等[76]發現用乳酸菌分別發酵未熱燙和已熱燙的馬鈴薯條,在油炸后,發酵前未熱燙處理的馬鈴薯條中丙烯酰胺含量減少了48%~71%,而發酵前已熱燙的馬鈴薯條中丙烯酰胺含量降低了79%~94%,并指出可能是原料的糖類被乳酸菌發酵轉變為乳酸,從而既減少了原料中反應物的含量,同時又降低了pH值的緣故。也有科研工作者[77]發現酵母菌發酵能顯著降低產品中丙烯酰胺的含量,而且在面包中發酵時間越長丙烯酰胺的含量越少,但是這樣會促進一種有毒物質:3-氯甘油(3-monochloropropanediol,3-MCPD)的形成。所以,利用微生物發酵策略來抑制丙烯酰胺形成的同時需要考慮是否會形成新的有毒有害物質。
眾所周知,HMF的含量隨著溫度和加熱時間的增加而增加[71]。因此,選用不同的加熱方式,進而選擇適當的溫度和時間就能有效減少HMF的形成[78]。Akkarachaneeyakorn等[79]在麥芽中發現相對于傳統的加工方式,采取微波加熱的方式明顯降低了HMF的形成,而且不影響產品的顏色。Felke等[80]運用了射頻加熱方式的巴氏消毒后,發現番茄醬中HMF的含量特別低,同時提高了其營養品質。在生產果汁過程中,用超高壓均質的方式代替常規巴氏滅菌法同樣能顯著地減少HMF的含量,并且能導致微生物數量的減少[81]。另外,在模型和面包產品中,用非還原糖和多元醇代替葡萄糖、果糖等還原糖后能顯著減少產品中HMF[82-83]。在葡萄糖-蘋果酸的溶液中添加較高濃度(10 mmol/L)的天冬酰胺能明顯抑制蘋果醋中HMF的形成[84]。真空處理的方式也是減少HMF含量的有效方法,但是利用真空處理除去HMF的同時也減少了所需的風味物質,并且極大地依賴于食品原料中的成分和含水量[85]。
由于美拉德反應所形成的丙烯酰胺和HMF來自不同反應途徑,并且HMF是生成丙烯酰胺的可能前體物,因此,添加抑制劑能抑制丙烯酰胺或者HMF形成,但有可能會促進HMF或者丙烯酰胺的生成。以添加金屬離子為例,Fiore等[45]發現雖然NaCl能有效地抑制丙烯酰胺,但是也能非常顯著地促進HMF的生成,其促進率達75%。寄希望于同時抑制丙烯酰胺和HMF的形成的方法還需要進一步的研究。
目前,檢測丙烯酰胺和HMF的常規方法主要有高效液相色譜法、氣相色譜法、氣相色譜-質譜聯用法、液相色譜-質譜聯用法[86]。但是其檢測成本高、設備要求精密、操作較為復雜,并且常規方法難以對痕跡含量的樣品進行快速準確檢測[8]。Sun Qing等[87]以親水性印跡膜作為仿生抗體,利用此仿生抗體對丙烯酰胺的高結合力和特異性,開發出檢測丙烯酰胺的仿生酶聯免疫吸附測定法,此法的最低檢測質量濃度達到(85.0±4.2) μg/L,提高了檢測的準確性。同時,Rizelio[88]和Zhou Xun[89]等分別發現膠束電動毛細管色譜法也能快速檢測低含量HMF和丙烯酰胺。除了以上檢測方法以外,微乳液電動色譜法[90]、基體分散固相萃取法[91]、固相微萃取-氣相質譜法[92]、毛細管電泳質譜法[93]、電化學生物傳感器法[94]等新方法也被用來檢測丙烯酰胺含量。近年來,生化檢測分析領域已廣泛引用量子點技術,為開發檢測丙烯酰胺的新方法提供了新思路。2014年,Hu Qinqin等[95]用N-丙烯酰氧基琥珀酰亞胺修飾量子點,以不同濃度丙烯酰胺來調節量子點間的距離,從而避免量子點的自淬滅。根據量子點發射不同熒光強度來考量丙烯酰胺的濃度,開發了一種新穎的丙烯酰胺檢測方法,且在質量濃度為3.5×10-5~3.5 g/L范圍內線性關系良好。
綜上所述,本文對丙烯酰胺與HMF的毒性、形成機理、檢測及抑制方法進行了全面綜述。丙烯酰胺和HMF的形成機理已基本得到公認,快速準確的檢測方法也已成熟,但是丙烯酰胺和HMF對人體的毒性劑量還未明確。同時,雖然有大量的研究報道了分別抑制丙烯酰胺和HMF的方法,并為食品的熱處理工藝提供了一定的理論基礎。然而,同時抑制丙烯酰胺與HMF的方法甚少,還需要進一步研究開發。
最近,Akillioglu等[96]用酵母發酵來抑制速溶咖啡中的丙烯酰胺和HMF的形成,結果表明混合了面包酵母和蔗糖的速溶咖啡在30 ℃發酵48 h后,HMF和丙烯酰胺含量以不同的速率呈指數下降,因為在發酵過程中HMF能轉換為酒精,而丙烯酰胺被酵母菌所降解。NaCl微膠囊同時抑制這兩種物質的方法也被報道,Fiore等[45]研究膠囊NaCl對HMF的影響,發現NaCl溶液質量濃度在0~0.65 g/100 mL之間,HMF增加了75%,而膠囊NaCl能降低HMF 18%~61%,這是因為膠囊NaCl提高了蔗糖水解的溫度,抑制了蔗糖的水解和果糖離子的形成。這些方法的開發為同時抑制丙烯酰胺與HMF的形成提供了思路,期待科研工作者在這兩個方面做出更好的工作。除此之外,美拉德反應生成的其他有毒有害的物質將陸續被發現,這需要科研工作者們及時開發能抑制多種有毒有害物質的方法。
[1] MOTTRAM D S, WEDZICHA B L, DODSON A T. Acrylamide is formed in the Maillard reaction[J]. Nature, 2002, 419: 448-449.
[2] STADLER R H, BLANK I, VARGA N, et al. Acrylamide from maillard reaction products[J]. Nature, 2002, 419: 449-450.
[3] G?KMEN V, KOCADAGLI T, GONCUOGLU N, et al. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine[J]. Food Chemistry, 2012, 132(1):168-174.
[4] ANESE M, SUMAN M. Mitigation strategies of furan and 5-hydroxymethylfurfural in food[J]. Food Research International,2013, 51(1): 257-264.
[5] CLAUS A, MONGILI M, WEISZ G, et al. Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls[J]. Journal of Cereal Science, 2008, 47(3): 546-554.
[6] RAMIREZ-JIMENEZ A, GUERRA-HERNANDEZ E, GARCIAVILLANOVA B. Browning indicators in bread[J]. Journal of Agricultural and Food Chemistry, 2000, 48(9): 4176-4181.
[7] QUARTA B, ANESE M. The effect of salts on acrylamide and 5-hydroxymethylfurfural formation in glucose-asparagine model solutions and biscuits[J]. Journ al of Food and Nutrition Research,2010, 49(2): 69-77.
[8] ELBASHIR A A, OMAR M M A, IBRAHIM W A W, et al. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods[J]. Critical Reviews in Analytical Chemistry, 2014, 44(2): 107-141.
[9] ARVANITOYANNIS I S, DIONISOPOULOU N. Acrylamide:formation, occurrence in food products, detection methods, and legislation[J]. Critical Reviews in Food Science and Nutrition, 2014,54(6): 708-733.
[10] VINCI R M, MESTDAGH F, de MEULENAER B. Acrylamide formation in fried potato products: present and future, a critical review on mitigation strategies[J]. Food Chemistry, 2012, 133(4): 1138-1154.
[11] CAPUANO E, FOGLIANO V. Acrylamide and 5-hydroxymethylfurfural(HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies[J]. LWT-Food Science and Technology, 2011,44(4): 793-810.
[12] World Health Organization. Acrylamide in drinking-water[R]. Switzerland: WHO, 2011.
[13] RICE J M. The carcinogenicity of acrylamide[J]. Mutation Research,2005, 580(1/2): 3-20.
[14] FRIEDMAN M A, DULAK L H, STEDHAM M A. A lifetime oncogenicity study in rats with acrylamide[J]. Fundamental and Applied Toxicology: Official Journal of the Society of Toxicology,1995, 27(1): 95-105.
[15] LIPWORTH L, SONDERMAN J S, TARONE R E, et al. Review of epidemiologic studies of dietary acrylamide intake and the risk of cancer[J]. European Journal Cancer Prevention, 2012, 21(4): 375-386.
[16] WILSON K M, MUCCI L A, ROSNER B A, et al. A prospective study on dietary acrylamide intake and the risk for breast, endometrial,and ovarian cancers[J]. Cancer Epidemiology Biomarkers Prevention,2010, 19(10): 2503-2515.
[17] HOGERVORST J G F, BAARS B J, SCHOUTEN L J, et al. The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research[J]. Critical Reviews of Toxicology, 2010, 40(6): 485-512.
[18] BESARATINIA A, PFEIFER G P. Genotoxicity of acrylamide and glycidamide[J]. Journal of the National Cancer Institute, 2004, 96(13):1023-1029.
[19] KOYAMA N, SAKAMOTO H, SAKURABA M, et al. Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells[J]. Mutation Research, 2006, 603(2): 151-158.
[20] LINEBACK D R, COUGHLIN J R, STADLER R H. Acrylamide in foods: a review of the science and future considerations[J]. Annual Review of Food Science and Technology, 2012, 3(3): 15-35.
[21] MARTINS C, OLIVEIRA N G, PINGARILHO M, et al. Cytogenetic damage induced by acrylamide and glycidamide in mammalian cells:correlation with specific glycidamide-DNA adducts[J]. Toxicological Sciences, 2007, 95(2): 383-390.
[22] BESARATINIA A, PFEIFER G P. A review of mechanisms of acrylamide carcinogenicity[J]. Carcinogenesis, 2007, 28(3): 519-528.
[23] RIBOLDI B P, VINHAS A M, MOREIRA J D. Risks of dietary acrylamide exposure: a systematic review[J]. Food Chemistry, 2014,157: 310-322.
[24] HAGMAR L, TORNQVIST M, NORDANDER C, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose[J]. Scandinavian Journal of Work, Environment & Health, 2001, 27(4): 219-226.
[25] PENNISI M, MALAGUARNERA G, PUGLISI V, et al. Neurotoxicity of acrylamide in exposed workers[J]. International Journal of Environmental Research and Public Health, 2013, 10(9): 3843-3854.
[26] XU Yi, CUI Bo, RAN Ran, et al. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects[J]. Food and Chemical Toxicology, 2014, 69: 1-12.
[27] SHIPP A, LAWRENCE G, GENTRY R, et al. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects[J]. Critical Reviews Toxicology, 2006, 36(6/7): 481-608.
[28] TITENKO-HOLLAND N, AHLBORN T, LOWE X, et al. Micronuclei and developmental abnormalities in 4-day mouse embryos after paternal treatment with acrylamide[J]. Environmental and Molecular Mutagenesis, 1998, 31(3): 206-217.
[29] GLATT H, SCHNEIDER H, LIU Yungang. V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals[J]. Mutation Research, 2005, 580(1/2): 41-52.
[30] ABRAHAM K, GUERTLER R, BERG K, et al. Toxicology and risk assessment of 5-hydroxymethylfurfural in food[J]. Molecular Nutrition & Food Research, 2011, 55(5): 667-678.
[31] YAYLAYAN V A, WNOROWSKI A, PEREZ LOCAS C. Why asparagine needs carbohydrates to generate acrylamide[J]. Journal of Agricultural and Food Chemistry, 2003, 51(6): 1753-1757.
[32] STADLER R H, ROBERT F, RIEDIKER S, et al. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction[J]. Journal of Agricultural and Food Chemistry, 2004, 52(17): 5550-5558.
[33] PEREZLOCAS C, YAYLAYAN V A. Further insight into thermally and pH-induced generation of acrylamide from glucose/asparagine model systems[J]. Journal of Agricultural and Food Chemistry, 2008,56(15): 6069-6074.
[34] GRANVOGL M, SCHIEBERLE P. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide[J]. Journal of Agricultural and Food Chemistry, 2006,54(16): 5933-5938.
[35] ZYZAK D V, SANDERS R A, STOJANOVIC M, et al. Acrylamide formation mechanism in heated foods[J]. Journal of Agricultural and Food Chemistry, 2003, 51(16): 4782-4787.
[36] ZHANG Yu, ZHANG Genyi, ZHANG Ying. Occurrence and analytical methods of acrylamide in heat-treated foods: review and recent developments[J]. Journal of Chromatography, 2005, 1075(1/2):1-21.
[37] YAYLAYAN V A, LOCAS C P, WNOROWSKI A, et al. The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat[J]. Journal of Agricultural and Food Chemistry, 2004,52(17): 5559-5565.
[38] ZHANG Yu, REN Yiping, ZHANG Ying. New research developments on acrylamide: analyt ical chemistry, formation mechanism, and mitigation recipes[J]. Chemical Reviews, 2009, 109(9): 4375-4397.
[39] EHLING S, HENGEL M, SHIBAMOTO T. Formation of acrylamide from lipids[J]. Advances in Experimental Medicine and Biology, 2005,561: 223-233.
[40] VATTEM D A, SHETTY K. Acrylamide in food: a model for mechanism of formation and its reduction[J]. Innovative Food Science & Emerging Technologies, 2003, 4(3): 331-338.
[41] YAYLAYAN V A. Precursors, formation and determination of furan in food[J]. Journal of Consumer Protection and Food Safety, 2006,1(1): 5-9.
[42] TEONG S P, YI Guangshun, ZHANG Yugen. Hydroxymethylfurfural production from bioresources: past, present and future[J]. Green Chemistry, 2014, 16(4): 2015-2026.
[43] KOWALSKI S, LUKASIEWICZ M, DUDA-CHODAK A, et al. 5-hydroxymethyl-2-furfural (HMF) heat-Induced formation,occurrence in food and biotransformation : a review[J]. Polish Journal of Food Nutrition Sciences, 2013, 63(4): 207-225.
[44] AMEUR L A, MATHIEU O, LALANNE V, et al. Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures[J]. Food Chemistry, 2007,101(4): 1407-1416.
[45] FIORE A, TROISE A D, MOGOL B A, et al. Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies[J]. Journal of Agricultural and Food Chemistry, 2012, 60(43): 10808-10814.
[46] PEREZ LOCAS C, YAYLAYAN V A. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS[J]. Journal of Agricultural and Food Chemistry,2008, 56(15): 6717-6723.
[47] KOTSIOU K, TASIOULA-MARGARI M, CAPUANO E, et al. Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system[J]. Food Chemistry,2011, 124(1): 242-247.
[48] BIEDERMANN M, NOTI A, BIEDERMANN-BREM S, et al. Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes[J]. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 2002, 93(6): 668-687.
[49] LEVINE R A, SMITH R E. Sources of variability of acrylamide levels in a cracker model[J]. Journal of Agricultural a nd Food Chemistry,2005, 53(11): 4410-4416.
[50] RYDBERG P, ERIKSSON S, TAREKE E, et al. Investigations of factors that influence the acrylamide content of heated foodstuffs[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24): 7012-7018.
[51] CAI Yun, ZHANG Zhenghua, JIANG Shanshan, et al. C hlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination[J]. Journal of Hazardous Materials, 2014, 268: 1-5.
[52] BASSAMA J, BRAT P, BOHUON P, et al. Study of acrylamide mitigation in model system: effect of pure phenolic compounds[J]. Food Chemistry, 2010, 123(2): 558-562.
[53] ORAL R A, DOGAN M, SARIOGLU K. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, an d total furans during storage[J]. Food Chemistry, 2014, 142:423-429.
[54] CHENG Kawing, SHI Jianjun, OU Shiyi, et al. Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1):309-312.
[55] ACAR O C, GOKMEN V. Investigation of acrylamide formation on bakery products using a crust-like model[J]. Molecular Nutrition & Food Research, 2009, 53(12): 1521-1525.
[56] FRIEDMAN M, LEVIN C E. Review of methods for the reduction of dietary content and toxicity of acrylamide[J]. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6113-6140.
[57] HIDALGO F J, DELGADO R M, ZAMORA R. Positive interaction between amino and sulfhydryl groups for acrylamide removal[J]. Food Research International, 2011, 44 (4): 1083-1087.
[58] HIDALGO F J, DELGADO R M, ZAMORA R. Role of mercaptans on acrylamide elimination[J]. Food Chemistry, 2010, 122(3): 596-601.
[59] SHIN D C, KIM C T, LEE Y C, et al. Reduction of acrylamide by taurine in aqueous and potato chip model systems[J]. Food Research International, 2010, 43(5): 1356-1360.
[60] PEDRESCHI F, MARIOTTI S, GRANBY K, et al. Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching[J]. LWT-Food Science And Technology, 2011, 44(6): 1473-1476.
[61] PEDRESCHI F, KAACK K, GRANBY K. The effect of asparaginase on acrylamide formation in French fries[J]. Food Chemistry, 2008,109(2): 386-392.
[62] KUKUROVA K, MORALES F J, BEDNARIKOVA A, et al. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model[J]. Molecular Nutrition & Food Research, 2009, 53(12): 1532-1539.
[63] CIESAROVA Z, KISS E, BOEGL P. Impact of L-asparaginase on acrylamide content in potato products[J]. Journal of Food and Nutrition Research, 2006, 45: 141-146.
[64] HENDRIKSEN H V, KORNBRUST B A, OSTERGAARD P R, et al. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae[J]. Journal of Agricultural and Food Chemistry, 2009, 57(10): 4168-4176.
[65] ANESE M, QUARTA B, PELOUX L, et al. Effect of formulation on the capacity of L-asparaginase to minimize acrylamide formation in short dough biscuits[J]. Food Research International, 2011, 44(9):2837-2842.
[66] LIU Jie, CHEN Fang, MAN Yong, et al. The pathways for the removal of acrylamide in model systems using glycine based on the identification of reaction products[J]. Food Chemistry, 2011, 128(2):442-449.
[67] MESTDAGH F, MAERTENS J, CUCU T, et al. Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms[J]. Food Chemistry, 2008, 107(1):26-31.
[68] LOPEZ-LOPEZ A, MANUEL BEATO V, HIGINIO SANCHEZ A,et al. Effects of selected amino acids and water-soluble vitamins on acrylamide formation in a ripe olive model system[J]. Journal of Food Engineering, 2014, 120: 9-16.
[69] YUAN Yuan, SHU Chang, ZHOU Bing, et al. Impact of selected additives on acrylamide formation in asparagine/sugar Maillard model systems[J]. Food Research International, 2011, 44(1): 449-455.
[70] KALITA D, JAYANTY S S. Reduction of acrylamide formation by vanadium salt in potato French fries and chips[J]. Food Chemistry,2013, 138(1): 644-649.
[71] G?KMEN V, SENYUVA H Z. Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system[J]. European Food Research and Technology, 2007, 225(5/6):815-820.
[72] KUKUROVA K, CIESAROVA Z, BEDNARIKOVA A, et al. Effect of inorganic salts on acrylamide formation in cereal matrices[J]. Czech Journal of Food Sciences, 2009, 27: 425-428.
[73] A?AR O C, POLLIO M, DI MONACO R, et al. Effect of calcium on acrylamide level and sensory properties of cookies[J]. Food and Bioprocess Technology, 2012, 5(2): 519-526.
[74] CASADO F J, HIGINIO SANCHEZ A, MONTANO A. Reduction of acrylamide content of ripe olives by selected additives[J]. Food Chemistry, 2010, 119(1): 161-166.
[75] TAN P Y, TAN C P, ABAS F, et al. Reduction of saltiness and acrylamide levels in palm sugar-like flavouring through buffer modification and the addition of calcium chloride[J]. Molecules, 2013,18(6): 6792-6803.
[76] BAARDSETH P, BLOM H, SKREDE G. Lactic acid fermentation reduces acrylamide formation and other maillard reactions in French fries[J]. Journal of Food Science, 2006, 71(1): 28-33.
[77] HUANG Weining, YU Shengdi, ZOU Qibo, et al. Effects of frying conditions and yeast fermentation on the acrylamide content in youtiao, a traditional Chinese, fried, twisted dough-roll[J]. Food Research International, 2008, 41(9): 918-923.
[78] PEREIRA V, ALBUQUERQUE F M, FERREIRA A C, et al. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions[J]. Food Research International, 2011, 44(1): 71-76.
[79] AKKARACHANEEYAKORN S, LAGUERRE J C, TATTIYAKUL J. Optimization of combined microwave-hot air roasting of malt based on energy consumption and neo-formed contaminants content[J]. Journal of Food Science, 2010, 74(4): 201-207.
[80] FELKE K, PFEIFFER T, EISNER P, et al. Ra dio-frequency heating A new method for improved nutritional quality of tomato puree[J]. Agro Food Industry Hi-Tech, 2011, 22(3): 29-32.
[81] SALDO J, SUAREZ-JACOBO A, GERVILLA R, et al. Use of ultrahigh-pressure homogenization to preserve apple juice without heat damage[J]. High Pressure Research, 2009, 29(1): 52-56.
[82] ZHANG Yuyu, SONG Yi, HU Xiaosong, et al. Effects of sugars in batter formula and baking conditions on 5-hydroxymethylfurfural and furfural formation in sponge cake models[J]. Food Research International, 2012, 49(1): 439-445.
[83] SHINODA Y, KOMURA H, HOMMA S, et al. Browning of model orange juice solution: factors affecting the formation of decomposition products[J]. Bioscience, Biotechnology, and Biochemistry, 2005,69(11): 2129-2137.
[84] GENTRY T S, ROBERTS J S. Fo rmation kinetics and application of 5-hydroxymethylfurfural as a time-temperature indicator of lethality for continuous pasteurization of apple cider[J]. Innovative Food Science & Emerging Technologies, 2004, 5(3): 327-333.
[85] QUARTA B, ANESE M. Furfurals removal from roasted coffee powder by vacuum treatment[J]. Food Chemistry, 2012, 130(3): 610-614.
[86] TEKKELI S E K, ONAL C, ONAL A. A review of current methods for the determination of acrylamide in food products[J]. Food Analytical Methods, 2012, 5(1): 29-39.
[87] SUN Qing, XU Longhua, MA Yue, et al. Study on a biomimetic enzyme-linked immunosorbent assay method for rapid determination of trace acrylamide in French fries and cracker samples[J]. Journal of the Science of Food and Agriculture, 2014, 94(1): 102-108.
[88] RIZELIO V M, GONZAGA L V, BORGES G S C, et al. Development of a fast MECK method for determination of 5-HMF in honey samples[J]. Food Chemistry, 2012, 133(4): 1640-1645.
[89] ZHOU Xun, FAN Liuyin, ZHANG Wei, et al. Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography[J]. Talanta, 2007, 71(4): 1541-1545.
[90] BERMUDO E, RUIZ-CALERO V, PUIGNOU L, et al. Microemulsion electrokinetic chromatography for the analysis of acrylamide in food[J]. Electrophoresis, 2004, 25(18/19): 3257-3262.
[91] SOARES C M D, FERNANDES J O. MS PD method to determine acrylamide in food[J]. Food Analytical Methods, 2009, 2(3): 197-203.
[92] CHEN Lianbi, LIU Haizhu, YU Ping, et al. Determination of acrylamide in foods by solid phase microextraction-gas chromatography[J]. Food Science and Biotechnology, 2009, 18(4):895-899.
[93] BERMUDO E, NUNEZ O, PUIGNOU L, et al. Analysis of acrylamide in food samples by capillary zone electrophoresis[J]. Journal of Chromatography A, 2006, 1120(1/2): 199-204.
[94] BATRA B, LATA S, SHARMA M, et al. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film[J]. Analytical Biochemistry, 2013, 433(2): 210-217.
[95] HU Qinqin, XU Xiahong, LI Zhanming, et al. De tection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots[J]. Biosensors & Bioelectronics, 2014, 54: 64-71.
[96] AKILLIOGLU H G, GOKMEN V. Mi tigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation[J]. Food Research International, 2014, 61(Suppl 1): 252-256.
A Review of Acrylamide and 5-Hydroxymethylfurfural in Foods
WEN Chao, WANG Zimeng, SHI Xingbo*, DENG Fangming*
(Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology,Hunan Agricultural University, Changsha 410128, China)
Acrylamide and 5-hydroxymethylfurfural formed in thermal treatment of foods have serious harmful impacts on consumers' health. Thorough research on their toxicity a nd formation mechanism, and approaches to detecting and inhibiting them can contribute to rational utilizati on of heat treatment processes, improving the safety of thermally processed foods,and exploiting new methods for inhibiting their formation. In this review, the toxicity, formation mechanisms, and inhibitory methods of acrylamide and 5-hydroxymethylfurfural are documented. The existing problems involved in the inhibition methods are summarized. In the future, the development of inhibition methods should be focused on simultaneously inhibiting multiple Maillard reaction products with potential toxicity.
acrylamide; 5-hydroxymethylfurfural; toxicity; Maillard reaction; inhibition
TS201.6
A
1002-6630(2015)13-0257-08
10.7506/spkx1002-6630-201513048
2015-01-21
國家自然科學基金青年科學基金項目(31301484);湖南省自然科學基金青年項目(2015JJ3082);湖南農業大學青年科學基金項目(12YJ09;14QN11)
溫超(1989—),男,碩士研究生,研究方向為食品加工過程中有毒有害物質的分析。E-mail:270631806@qq.com
石星波(1984—),男,講師,博士,研究方向為食品加工過程中有毒有害物質的分析。E-mail:shixingbo123@aliyun.com鄧放明(1962—),男,教授,博士,研究方向為果蔬食品加工及淡水魚加工與綜合利用。E-mail:fmdenghnau@sina.com