999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

2015-05-03 02:45:32,
湘潭大學自然科學學報 2015年3期

,

(1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)

?

A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

HUANGLin1*,LIUQiong2

(1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)

In this paper, by means of weight function and the technique of real analysis, and introducing multi-parameters and some special functions to jointly characterize the constant factor, a Hilbert-type integral inequality with the inhomogeneous kernel and multi-parameters and it’s equivalent form are given. Their constant factors are proved be the best possible, and its application is discussed.

Hilbert-type integral inequality; weight function; the best constant factor; inhomogeneous kernel; multi-parameters

1 Introduction

For convenience, Ifθ(x)(>0)ismeasurablefunction,ρ≥1,thefunctionspacesaresetas:

and

Iff,g∈L2(0,),‖f‖2,‖g‖2>0,thenwehavethefollowingHilbert’sintegralinequality[1]:

(1.1)

(1.2)

(1.3)

(1.4)

Inthispaper,bymeansofweightfunctionandthetechniqueofrealanalysis,aHilbert-typeintegralinequalitywiththeinhomogeneouskernelandMulti-parametersisgivenasfollows:

(1.5)

2 Some Lemmas

We need the following definitions[11]:

(2.1)

(2.2)

Lemma 2.1 Letmbe a positive integer, then we have the summation formulas[11]:

(2.3)

Lemma 2.2 Leta>-1,Re(s)>0,thentheLaplaceintegraltransformofthepowerfunctionxaasfollows[12]:

(2.4)

Lemma 2.3 Ifx>1,wehave

(2.5)

Proof Because

therefore

(2.6)

by(2.6),wefind

thenwehave

(2.7)

where

(2.8)

Particularly,whenη=2m(m=1,2,…),Γ(η)=Γ(2m)=(2m-1)!,by(2.3),wefind

(2.9)

wheretheBm′saretheBernoullinumbers.

Proof Settingαxλ1yλ2=u,thenby(2.4)and(2.6),wehave:

thenwehave:

(2.10)

(2.11)

Proof We easily get:

SinceF(u)=uη+1(1-tanhu)iscontinuousin(0,),(u)=0,(u)=0,thereexistsM>0,satisfyingF(u)≤M,byFubini’stheorem[13],wehave:

3 Main results and applications

(3.1)

(3.2)

Ifinequality(3.2)keepstheformofanequality,thenaccordingto[14]thereexisttwoconstantsAandB, such that they are not all zero and:

(3.3)

Proof Setting a bounded measurable function as:

since0<‖f‖p,φ<,thereexistsn0∈N, such that 0<φ(x)<(n≥n0),setting:

whenn≥n0,by(3.1)wefind:

(3.4)

(3.5)

Itfollows0<‖f‖p,φ<.Forn→,by(3.1),both(3.4)and(3.5)stillkeeptheformofstrictinequalities,hence,wehaveinequality(3.3).

Theinequalityis(3.1),whichisequivalentto(3.3).

Bytakingthespecialparametervaluesin(3.1)and(3.3),somemeaningfulinequalitiesareobtained:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Comments:Veryunfortunately,wecannotgetaHilbert-typeintegralinequalitywiththekernelofthehyperbolictangentfunctionby(3.1).

[1] HARDY G H,LITTLEWOOD J E, PLYA G. Inequalities[M].Cambridge: Cambridge Univ Press, 1952.

[2] HARDY G H. Note on a theorem of Hilbert concerning seris of postive terms[J].Proc London Math Soc, 1925, 23(2):xlv-xlvi.

[3] MINTRINOVIC D S,PECARIC J E,KINK A M. Inequalities involving functions and their integrals and derivertives[M].Boston:Kluwer Academic Publishers,1991.

[4] BICHENG Y. A survey of the study of Hilbert-tpye inequalities with parameters[J].Advances in Mathematics, 2009, 38(3):257-258.

[5] BICHENG Y.On the norm of a Hilbert’s type linear operator and applications[J].J Math Anal Appl,2007,325: 529-541.

[6] JIMENG L, QING L. A generalization of the Hardy-Hilbert’s inequality and its application[J].Acta Mathematics Sinica, Chinese Series, 2009, 52(2): 237-244.

[7] QIONG L, BICHENG Y. A Hilbert-type integral inequality with the mixed kernel of some parameters and its application[J].Journal of Zhejiang University(Science Edition), 2012, 39(2):135-141.

[8] BICHENG Y. On a base Hilbert-type integral inequality and extensions[J].College Mathematics, 2008, 24(2):87-89.

[9] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic secant function[J].Journal of Zhejiang University(Science Edition), 2013, 40(3):255-259.

[10] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic cosecant function[J].Acta Mathematics Sinica, Chinese Series, 2013, 56(1):97-104.

[11] HUANG Z S,GUO D R. An Intruction to Special Function[M].Beijing:Beijing Press, 2000.

[12] SHU B P,CHEN D L. Complex-variable function and integral transform[M].Beijing:Higher Education Press, 2003.

[13] KUANG J C. Introduction to real analysis[M].Changsha:Hunan Edueation Press,1996.

[14] KUANG J C. Applied inequalities[M].3rd ed.Jinan:Shandong Science and Technology Press,2004.

[15] YANG B C. The norm of operator and Hilbert-type inequalities[M].Beijing:Science press, 2009.

責任編輯:龍順潮

2015-02-18

國家自然科學基金項目(11171280);湖南省教育廳科學研究項目(10C1186)

黃琳(1964— ),女,江西 上饒人,副教授.E-mail:13787312290@163.com

一個多參數(shù)非齊次核Hilbert型積分不等式

黃 琳1*, 劉 瓊2

(1.長沙師范學院 初等教育預科部,湖南 長沙 410100;2.邵陽學院 理學與信息科學系,湖南 邵陽 422000)

利用權正數(shù)方法和實分析技巧,引入多參數(shù)和一些特殊函數(shù)聯(lián)合刻畫常數(shù)因子,得到一個多參數(shù)非齊次核Hilbert型積分不等式和它的等價式,證明了它們的常數(shù)因子是最佳的,并討論了其應用.

Hilbert型積分不等式;權函數(shù);最佳常數(shù)因子;非齊次核;多參數(shù)

O178

A

1000-5900(2015)03-0001-08


登錄APP查看全文

主站蜘蛛池模板: 日韩av电影一区二区三区四区| 日韩精品欧美国产在线| 国产精品漂亮美女在线观看| 亚洲欧美日韩视频一区| 中文字幕在线一区二区在线| 婷婷亚洲视频| 欧美在线综合视频| 亚洲成人网在线观看| 中文国产成人久久精品小说| 国禁国产you女视频网站| 久久综合激情网| 欧美视频在线观看第一页| 大陆国产精品视频| 国产白浆在线| 亚洲精品高清视频| 国产精品999在线| 日韩人妻无码制服丝袜视频| 国产全黄a一级毛片| 日韩精品亚洲精品第一页| 国产天天色| 一本大道香蕉中文日本不卡高清二区| 国内黄色精品| 亚洲成年人网| 性视频久久| 伊人成色综合网| 国产成熟女人性满足视频| 成年人国产视频| 中文字幕欧美日韩| 久青草免费在线视频| 国产成人精品男人的天堂| 新SSS无码手机在线观看| 高清免费毛片| 欧美一级片在线| 美女被操91视频| 国产超碰在线观看| 91区国产福利在线观看午夜| 国内精品一区二区在线观看| 波多野结衣一区二区三区四区视频 | 香蕉伊思人视频| 丝袜美女被出水视频一区| 国产在线拍偷自揄观看视频网站| 欧美激情二区三区| 夜夜爽免费视频| 99热这里只有精品国产99| 97色婷婷成人综合在线观看| 中文纯内无码H| 中文字幕免费视频| 亚洲国产日韩视频观看| 国产丝袜丝视频在线观看| 精品视频福利| 久久综合色天堂av| 欧美激情第一区| 欧美日韩动态图| 蜜桃视频一区| 中文字幕色在线| 婷婷色丁香综合激情| 日韩在线欧美在线| 日本午夜视频在线观看| 中文字幕久久精品波多野结| 日韩 欧美 小说 综合网 另类 | 国产成人综合久久精品下载| 亚洲乱码在线播放| 国产一区二区三区免费观看 | 久久精品丝袜高跟鞋| 国产亚洲精品无码专| 456亚洲人成高清在线| 伊人无码视屏| 久久综合干| 强奷白丝美女在线观看| 四虎永久在线视频| 国产视频你懂得| 亚洲天堂成人在线观看| 国产福利免费视频| 国产在线观看一区精品| 午夜三级在线| 在线视频亚洲色图| 欧美日韩一区二区三区在线视频| 亚洲h视频在线| 亚洲综合专区| 免费中文字幕一级毛片| 久草视频精品| 日韩精品高清自在线|