







摘要:采用消(耗)能元件的結構在遭受地震作用時,元件芯材首先屈服進入塑性階段,利用其滯回變形消耗地震輸入能量,保護主體結構,元件芯材本構關系的數值模擬是對采用消(耗)能元件結構進行抗震分析與設計的基礎。為更真實地模擬結構消(耗)能元件芯材在單調和循環荷載下的本構響應,更準確地對采用消(耗)能元件結構進行結構彈塑性地震響應分析,對常用作消(耗)能元件芯材的日本高延性鋼材SN490B的單調、循環加載本構及循環骨架曲線進行了數值模擬,包括:采用Esmaeily-Xiao二次流塑性模型模擬材料在單調荷載作用下彈性段、屈服段、強化段和二次流塑段4個階段;采用混合強化模型模擬材料循環荷載作用下的本構響應,運用大型通用有限元軟件ABAQUS結合數值模擬參數對16種不同循環加載制度下的循環加載試驗進行模擬,并與試驗結果進行對比;采用Ramberg-Osgood模型、無量綱化的Ramberg-Osgood模型及兩段式模型模擬循環骨架曲線。研究結果表明:所采用數學模型可以較好地模擬SN490B鋼材單調、循環加載本構響應及循環骨架曲線,數值模擬與試驗結果擬合較好。
關鍵詞:SN490B;本構模擬;循環加載;滯回性能;有限元分析
中圖分類號:TU511.38;TU502.6 文獻標志碼:A 文章編號:1674-4764(2015)06-0070-08
Abstract: When structure using energy dissipating device suffers from earthquake, its core materials will first go into the plastic yield stage and consume earthquake input energy by hysteretic deformation to protect the main structure. Therefore, the numerical simulation of core materials constitutive relation is the basis of seismic analysis and design with dissipation device. Theconstitutive relation of energy dissipation device under monotonic loading and cyclic loading elastic-plastic seismic response of the structure with energy dissipation device were investigated in the numerical simulation of monotonic constitutive relation, cyclic constitutive relation and skeleton curve of SN490B steel. The simulations include the four stages which are elastic stage, collapse stage, strain-hardening stage and secondary flow plastic stage of core material using Esmaeily-Xiao secondary flow plasticity model; the constitutive response of core materials under cyclic loading using combined hardening; the skeleton curve using the Ramberg-Osgood model, dimensionless Ramberg-Osgood skeleton curve model and double-linear model. Based on finite element software ABAQUS combined with numerical simulation parameters, numerical simulation of 16 different cyclic loading tests was conducted and compared with the test results. The results show that: mathematical model can be used to simulate the monotonic constitutive response, cyclic constitutive response and cyclic skeleton curve of SN490B steel accurately. Numerical simulation and experimental results fit well.
Key words:SN490B;constitutive relations;cyclic loading;hysteretic behavior;CAE
地震造成的災害首先是建筑物的破壞,耗能減震技術通過在結構中布置消(耗)能元件,當地震作用時,消(耗)能元件作為犧牲構件首先屈服進入塑性階段,通過滯回耗能,改變能量在結構中的分配,避免結構主體和主要受力構件吸收過多的地震能量而出現嚴重破壞,實現對結構的保護。消(耗)能元件性能主要取決于用于滯回耗能的元件芯材性能。通常用作元件芯材的鋼材主要有低屈服點鋼材及高延性鋼材,如日本SN系列鋼材、LY系列鋼材、中國的BLY系列鋼材及部分碳素結構鋼[1-4]。
針對用作消(耗)能元件芯材鋼材的研究主要集中于鋼材的制造工藝參數[5-8]、拉伸性能[6、9-12]、滯回性能及低周疲勞性能[12-16],對本構關系的數值模擬研究較少。因此,筆者采用不同的數學模型對常用作消(耗)能元件芯材的日本高延性鋼材SN490B的單調、循環加載本構響應及循環骨架曲線進行了數值模擬,并運用大型通用有限元軟件ABAQUS結合數值模擬參數模擬16種不同循環加載制度下的循環加載試驗,與試驗結果進行對比,為采用消(耗)能元件的實際工程抗震分析與設計提供借鑒。
1 單調加載本構關系數值模擬
鋼材單調加載應力應變曲線的模擬采用簡化后的二次塑流模型,該模型由Esmaeily等[17]提出,分為4個階段:彈性段、屈服段、強化段和二次塑流段,采用二次曲線模擬強化段及二次塑流段,如圖1所示。
采用上述方法對王元清等[4]對SN490B鋼材材性試驗加載制度為H7、H8的試驗數據進行處理,并運用Origin8.5自定義曲線功能進行擬合,校對和調整后得ABAQUS中cycle hardening中的材料參數如表2所示,運用表2中參數定義材料屬性,對試驗進行數值模擬,數值曲線與試驗數據曲線對比如圖7(e)、(f)所示,擬合效果較好。
2.2 有限元模擬
王元清等[4]針對SN490B鋼材的循環加載試驗試件尺寸如圖5所示,試件由固定段、過渡段和試驗段3部分構成。在ABAQUS中建立試驗段模型即15 mm×15 mm×20 mm的長方體,單元類型采用8節點六面體線性減縮積分單元C3D8R,指定參考點RP(20,7.5,7.5),并將參考點與實體相關聯。
采用表2中的參數分別定義ABAQUS材料屬性模塊中 Elastic、Plastic和cyclic hardening部分的材料屬性參數。在Load功能模塊定義邊界條件和位移加載過程:將試驗段的一端視為固定端Set-1-fixed,另一端進行位移加載Set-2-RP,在Tools-Amplitude-manager中根據圖7所示試驗實際加載情況定義加載制度。在Job功能模塊中提交分析。
2.3 有限元模擬結果
將分析結果繪成應力應變曲線,并與圖6所示16種循環加載制度下實際試驗數據繪成的應力應變曲線進行比較,比較結果如圖7所示。
由有限元模擬試驗結果與實際試驗結果應力應變曲線的對比可知:有限元軟件中模擬的循環加載結果與實際試驗循環加載結果擬合程度較高,由試驗所得循環強化參數適用于實際工程。
2.4 循環加載骨架曲線數值模擬
循環荷載作用下,單調加載下的屈服平臺效應不再明顯,當鋼材單調加載過屈服點,卸載后再次加載過屈服點后,應力應變關系沿骨架曲線前進[2]。連接各次滯回曲線峰點所形成的骨架曲線給出了材料發生塑性變形后的應力路徑,能夠直觀反映單調和循環荷載下鋼材響應的不同。
當后續編程開發SN490B材料在單調和循環荷載作用下的滯回規則以形成完整的本構模型用于地震作用結構反應計算、提高計算效率時,材料首次加載按照已經驗證過的簡化后的二次塑流模型,卸載按彈性直線卸載,再次加載,應力應變關系過屈服點后,沿骨架曲線前進,本文采用式(8)所示變形形式
3 結 論
通過對常用作消(耗)能元件芯材的日本高延性鋼材SN490B的單調、循環加載本構響應及循環骨架曲線的數值模擬及運用有限元軟件ABAQUS對16種不同循環加載制度下的循環加載試驗的模擬可得以下結論:
1)簡化后的二次塑流模型Esmaeily-Xiao模型可以較好的模擬材料在單調荷載作用下的4個階段:彈性段、屈服段、強化段和二次塑流段。
2)采用隨動強化模型模擬材料在循環荷載作用下的響應所得擬合參數,運用大型通用有限元軟件ABAQUS對16種不同循環加載制度下的循環加載試驗的模擬效果較好,適用于工程實際。
3)無量綱化前后的Ramberg-Osgood方程可以較好地擬合循環骨架曲線,兩段式模型擬合后的骨架曲線分為彈性階段和循環強化階段,并包含屈服點,便于后續編程及滯回準則的實現。
參考文獻:
[1]柳曉晨,王元清,戴國欣,等.用于結構消(耗)能的高延性鋼材性能研究進展[C]//天津:第十三屆全國現代結構工程學術研討會會議論文集,2013:129-137.
Liu X C,Wang Y Q,Dai G X,et al.A review of property of high ductility steel used in energy dissipation structures [C]//Tianjin:Proceedings of the 13th National Conference on Modern Structural Engineering,2013:129-137. (in Chinese)
[2]石永久,王萌,王元清.結構鋼材循環荷載下的本構模型研究[J].工程力學,2012,29(9):92-105.
Shi Y J,Wang M,Wang Y Q.Study on constitutive model of structural steel under cyclic loading [J].Engineering Mechanics,2012,29(9):92-105. (in Chinese)
[3]Shi Y J,Wang M,Wang Y Q.Experimental and constitutive model study of structural steel under cyclic loading [J].Journal of Constructional Steel Research,2011,67(8):1185-1197.
[4]王元清,柳曉晨,戴國欣,等.循環荷載下SN490B鋼材本構關系試驗研究[J].建筑結構學報,2014,35(4):142-148.
Wang Y Q,Liu X C,Dai G X,et al.Experimental study on constitutive relation of steel SN490B under cyclic loading [J].Journal of Building Structures,2014,35(4):142-148. (in Chinese)
[5]Yamaguchi T,Okada T,Hasegawa H,et al.Development and commercialization of steels for construction use[J].Nippon Steel Technical Report,1995,66:17.
[6]王威,呂西林,徐崇恩.低屈服點鋼在結構振動與控制中的應用研究[J].結構工程師,2007,23(6):83-93.
Wang W,Lyu X L,Xu C E.Engineering applications of low yield point steel in structural vibration control[J].Structural Engineers,2007,23(6):83-93. (in Chinese)
[7]宋鳳明,溫東輝,李自剛,等.低屈服點鋼的發展及應用[J].熱加工工藝,2008,37(6):85-88.
Song F M,Wen D H,Li Z G,et al.Application and development of low yield point steel [J].Material and Heat Treatment,2008,37(6):85-88. (in Chinese)
[8]屈朝霞,許磊,溫東輝.寶鋼低屈服點鋼BLY225的焊接性能[J].建筑鋼結構進展,2009,11(5):20-24.
Qu Z X,Xu L,Wen D H.Welding properties of BLY225 low yield strength steel development bu baosteel [J].Progress in Steel Building Structures,2009,11(5):20-24. (in Chinese)
[9]Nakashima M,Iwai S,Iwata M,et al.Energy dissipation behaviour of shear panels made of low yield steel [J].Earthquake Engineering Structural Dynamics,1994,23(12):1299-1313.
[10]Tanemi Y,Toru T,Toshimichi N.Seismic control devices using low-yield-point steel [J].Nippon Steel Technical Report,1998,78:65-72.
[11]Chou C C,Tsai K C.Plasticity‐fibre model for steel triangular plate energy dissipating devices [J].Earthquake Engineering Structural Dynamics,2002,31(9):1643-1655.
[12]宋鳳明,溫東輝,李陳,等.極低屈服點鋼低周疲勞特性[J].鋼鐵研究學報,2010,22(5):37-40.
Song F M,Wen D H,Li C,et al.Low cycle fatigue characteristic of ultra-low yield point steel [J].Journal of Iron and Steel Research,2010,22(5):37-40. (in Chinese)
[13]Saeki E,Sugisawa M,Yamaguchi T,et al.Mechanical properties of low yield point steels [J].Journal of Materials in Civil Engineering,1998,10(3):143-152.
[14]溫東輝,宋鳳明.低屈服點鋼在建筑抗震設計中的應用[J].寶鋼技術,2007(2):9-12.
Wen D H,Song F M.Application of low yield point steel in design of earthquale resitant buildings [J].Bao Steel Technology,2007,(2):9-12. (in Chinese)
[15]賈明明,張素梅,呂大剛,等.鋼材屈服強度對抑制屈曲支撐耗能減振作用的影響[C]//全國結構工程學術會議,武漢,2008:580-586.
Jia M M,Zhang S M,Lyu D G.Influence of steel yielding stength on enegy dissipation and vibration control performence of buckling-restrained braces [C]//Proceedings of the 17th Structural Engineering Academic Conference,Wuhan, 2008:580-586. (in Chinese)
[16]孫濤.低屈服點鋼的動態本構關系及其抗爆吸能性能研究[D].哈爾濱:哈爾濱工業大學,2011.
Sun T.Study of low yield point steel's dynamic constitutive relationship and its performance on explosion enegy absorption[D].Harbin:Harbin Institute of Technology,2011. (in Chinese)
[17]Esmaeily A,Xiao Y.Behavior of reinforced concrete columns under variable axial loads:analysis [J].ACI Structural Journal,2005,102(5):736-744.
[18]ABAQUS.Analysis user's manual I_V [M].Version 6.9, USA:ABAQUS,Inc., Dassault Systèmes, 2009.
[19]Ramberg W,Osgood W R.Description of stress-strain curves by three parameters [R].Washington:National Advisory Committee for Aeronautics,1943:1-22.
(編輯 王秀玲)