郭曉川,石 燕,陳 麗,施偉偉,韓雅琳,秦 銳,戴廣海
解放軍總醫院 腫瘤內二科,北京 100853
綜 述
缺氧誘導因子對腫瘤細胞上皮-間質轉化的誘導機制
郭曉川,石 燕,陳 麗,施偉偉,韓雅琳,秦 銳,戴廣海
解放軍總醫院 腫瘤內二科,北京 100853
實體瘤組織內普遍存在低氧現象,缺氧誘導因子(hypoxia inducible factor,HIF)是缺氧條件下傳遞缺氧信號、介導缺氧效應的關鍵轉錄因子;上皮-間質轉化(epithelial mesenchymal transitions,EMT)是一個多步驟有序可高度調節的過程,EMT的發生與多種蛋白分子、微環境及MicroRNA等有關,涉及多個信號轉導通路和復雜的分子機制,在腫瘤細胞的侵襲和轉移過程中扮演重要的角色。研究證實,低氧可通過轉化生長因子-β(transforming growth factor-β,TGF-β)信號通路、Notch信號通路、Wnt信號通路、刺猬信號通路(hedgehog signaling pathway,Hedgehog)、肝細胞生長因子/肝細胞生長因子(HGF/Met)信號通路及多種轉錄因子等途徑參與腫瘤EMT調控,目前通過抑制HIF來達到阻斷EMT過程的研究日益增多且初見成效,揭示低氧誘導的EMT途徑可能成為日后腫瘤治療的新靶點,對于預防和治療癌癥具有重要意義。
腫瘤;缺氧誘導因子;上皮-間質轉化
低氧是許多實體瘤組織內普遍存在的現象。研究證實,缺氧誘導因子1(hypoxia inducible factor 1,HIF1)是缺氧條件下傳遞缺氧信號、介導缺氧效應的關鍵轉錄因子,通過結合缺氧反應元件激活下游眾多靶基因從而參與腫瘤侵襲、轉移、血管生成、能量代謝以及放化療抵抗等多個環節[1]。許多研究證明,腫瘤內部低氧環境誘發的HIF-1/2是導致腫瘤浸潤、轉移及患者死亡的一個重要機制[2]。HIF1α是HIF-1的功能亞單位,通過參與多種靶基因的轉錄調控影響腫瘤細胞的能量代謝、增殖和凋亡,使細胞及組織產生一系列反應以適應缺氧環境,同時促進腫瘤血管形成,也增加腫瘤自身的侵襲性及對放化療的抵抗性,已成為腫瘤發生、發展及治療研究的熱點。上皮-間質轉化(epithelial mesenchymal transitions,EMT)在腫瘤細胞的侵襲和轉移過程中起到了關鍵作用,是具有極性的上皮細胞轉換成具有活動能力、能夠在細胞基質間自由移動的細胞的過程。在EMT過程中,上皮細胞特征性的蛋白表達減少,間質細胞特征性的蛋白表達水平提高[3]。目前,越來越多的證據表明,微環境中氧分水平的變化及HIF介導的低氧信號傳導途徑是誘發、調節EMT的重要機制,而EMT在低氧環境誘導的腫瘤發生、發展、侵襲、轉移過程中起到了關鍵性作用。本文對腫瘤中HIF依賴的EMT發生的多個信號傳導通路及分子機制進行綜述。
1.1 轉化生長因子β信號通路(transforming growth factor-β,TGF-β) 轉化生長因子β在細胞生長、分化、凋亡、侵襲和各種癌癥細胞的EMT過程中起關鍵作用。TGF-β誘導的EMT是癌細胞侵襲的重要一步,且TGF-β是第一個被證明在正常乳腺細胞中可誘發EMT的因子[4]。TGFβ可通過絲/蘇氨酸激酶受體(Sma and Mad homologue,SMAD)蛋白和非SMAD蛋白信號通路來誘發EMT[5]。SMAD信號通路:TGF-β與受體結合后,受體發生自體磷酸化,使絲氨酸/蘇氨酸激酶活性激活,特異性識別并磷酸化SMAD2和SMAD3,從而與SMAD4形成異聚體進入細胞核;在核內,SMAD3和SMAD4可結合于特定的SMAD結合元件,協同被激活的SNAIL,鋅指E-盒結合同源異形盒(zinc-finger E-box binding homeobox 1,ZEB1)及SMAD相互作用蛋白1(Smad interactingprotein 1,SIP1)等轉錄因子,如SMAD3和SMAD4與SNAIL形成復合物,靶向作用于嵌合抗原受體啟動子,調節TGFβ作用的靶基因,從而控制細胞的增殖、分化、凋亡、轉移及EMT過程。非SMAD信號通路:TGF-β通過參與MAPK信號通路,調節GTP酶介導的信號轉導途徑發揮作用,TGFβ作用靶點包括轉錄因子SNAI1、SNAI2、SIP1及同型半胱氨酸等[6]。另外,Wnt蛋白及β-鏈蛋白信號通路同時也參與了TGFβ-EMT過程,TGFβ-1還可通過激活血小板衍生因子、環氧化物酶2、PI3K/Akt信號通路來誘發EMT[7-8]。
TGF-β信號通路是EMT發生的經典通路之一,有研究表明,在低氧狀態下,腫瘤細胞中TGFβ的表達量明顯增高,低氧可通過直接提高SMAD3 mRNA水平影響轉化生長因子-β信號通路;相反,TGF-β通過SMAD信號通路特異性減少脯氨酰羥化酶的mRNA及蛋白表達水平,從而間接增強HIF-1α蛋白的穩定性[6,9]。可見,HIF與TGF-β信號通路在不同的調節水平上相互影響。HIF和TGF-β還可共同調節某些基因產物如人結締組織生長因子的表達來誘發EMT。人結締組織生長因子,CCN蛋白家族之一,也是轉化生長因子-β家族纖維化形成的調節因子,能夠調節一系列的生物學行為,如:細胞粘連及轉移、細胞外基質產生、血管生成、腫瘤生長及傷口痊愈等[10]。在腎小管上皮細胞中,轉化生長因子-β可通過SMAD途徑迅速誘導結締組織生長因子的表達[11]。而有研究表明,將結締組織生長因子加入人表皮細胞中或過表達時可誘發EMT[12]。
1.2 Notch信號通路 Notch信號通路由Notch受體、Notch配體(DSL蛋白)及細胞內效應器分子(CSL-DNA結合蛋白) 3部分組成。此信號通路是相鄰細胞之間通訊進而調控細胞發育的重要通路,控制著細胞的增殖、分化及存活。通過相鄰細胞的Notch配體與受體相互作用,Notch蛋白經過3次剪切,由胞內段釋放入胞質,并進入細胞核與轉錄因子結合,形成轉錄激活復合體,從而激活堿性-螺旋-環-螺旋(basichelix-loop-helix,bHLH)轉錄抑制因子家族的靶基因,發揮作用。在腫瘤的發生、發展過程中,Notch家族成員被激活后不足以誘發EMT過程,必須與其他信號通路協同才能發揮作用。1)可通過誘發轉錄因子Snail1促進EMT形成:①Notch可通過募集胞質區ICN到轉錄因子Snail1啟動子,直接上調轉錄因子Snail1的表達;②通過募集HIF-1α到胺氧化酶LOX啟動子上,促進LOX的過表達,從而穩定Snail蛋白,誘發EMT;2)參與TGF-β1/SMAD誘發的EMT過程;3)TGF-β可通過SMAD3上調Notch受體的配體、HCY1的表達,抑制E-鈣黏附素的表達;4)Wnt1轉化細胞可提高Notch配體的表達[13-16]。另外Notch還可通過成纖維細胞生長因子、血小板衍生因子等信號通路參與EMT過程[17]。
HIF可從不同的水平參與調控Notch信號通路依賴的EMT過程。腫瘤低氧微環境中,HIF-1α與Notch信號通路細胞內結構域功能性結合,增強轉錄活性,提高轉錄因子Snai1表達水平,從而引發EMT[18]。有研究表明,在黑色素瘤細胞中,HIF-1可通過提高Notch1mRNA的水平來增強Notch信號通路的信號傳遞[19]。
1.3 Wnt信號通路 Wnt/β-鏈蛋白是經典的Wnt信號傳導途徑[20]。當Wnt配體與受體卷曲蛋白(Frizzleds,Frz)結合時,Frz可作用于蓬亂蛋白(dishevelled,Dsh),Dsh能阻斷β-鏈蛋白的降解,從而β-鏈蛋白在細胞質中積累并進入細胞核,與T細胞因子(TCF/LEF)相互作用,調節靶基因的表達。β-鏈蛋白與E-鈣黏附素胞內區域相互作用來維持細胞間的黏附作用,并進入細胞核啟動經典的Wnt信號通路促進腫瘤細胞的生存及增殖[21]。研究發現,細胞內軸蛋白抑制蛋白2表達增加及糖原合成激酶3β、功能阻斷可誘發EMT過程[22]。有研究報道,在人原發性肝癌組織中發現異常激活的β-鏈蛋白及其過度表達的靶基因;大量證據表明,Wnt/β-鏈蛋白信號通路可通過參與EMT過程促進肝癌的發生及發展[23-24]。另外,Wnt蛋白可參與RTK-PI3KAkt信號通路,Wnt配體激活表皮生長因子受體1信號,繼而激活β-鈣黏附素,從而誘發EMT,在腫瘤細胞的增殖發生過程中起重要作用[25]。
腫瘤低氧環境中,HIF-1α通過N端區域將β-鏈蛋白從T細胞因子4移除,結合N-乙酰基轉移酶基因hARD1使β-鏈蛋白失活;雖然HIF-1α可抑制β-鏈蛋白的轉錄活性,但低氧環境對β-鏈蛋白誘發的EMT是必要的[26],HIF-1α在低氧誘導的伴隨Wnt3a升高的EMT過程中起關鍵作用,而β-鏈蛋白可增強HIF-1α依賴的EMT誘導過程[26-28]。
1.4 肝細胞生長因子/肝細胞生長因子受體信號通路(HGF/ Met) 肝細胞生長因子(hepatocyte growthfactor,HGF)是肝細胞生長因子受體(Met)原癌基因跨膜酪氨酸激酶受體的配體,可通過多種方式促進細胞增殖、存活、轉移[29]。在過度表達Met的卵巢癌細胞中,HGF可增加細胞的遷移力、趨化力及有絲分裂的發生,加速EMT過程。將卵巢癌腹水中HGF加入到卵巢癌細胞的培養系中,可刺激細胞發生EMT,而HGF的中和抗體可以消除促轉移作用[30]。在肝癌細胞中,HGF可通過細胞間黏附拆卸、基底膜降解及改變整合蛋白與基質成分之間的相互作用來增強細胞能動性,可能對EMT起到了直接誘導作用[31]。研究發現,腫瘤細胞低氧區域中,HIF通過直接提高Met mRNA水平及激活Met啟動子等途徑提高Met酪氨酸激酶受體的表達,從而增強HGF信號通路,而此信號通路可通過誘發EMT促進腫瘤進展[32]。
1.5 刺猬信號通路(hedgehog signaling pathway,Hedgehog)
Hedgehog信號傳遞受靶細胞膜上兩種受體Patched (Ptc)和Smoothened(Smo)的控制,Smo是Hh信號傳遞所必需的受體,正常情況下,Ptc抑制Smo蛋白活性,但當Ptc和Hh結合以后,解除對Smo的抑制作用,促使鋅指蛋白Gli形成大分子復合物,進入核內激活下游靶基因轉錄[33]。Hedgehog信號通路可通過誘導E-鈣黏附素抑制物-Snail1的表達調節EMT過程。有報道稱SHH-Gli1信號通路通過介導包括TGFβ、RAS蛋白、Wnt蛋白、生長因子、PI3K/AKT信號通路、整合素、四跨膜蛋白超家族(TM4SF)和鈣結合蛋白A4(S100A4)的一個復雜信號網絡促進了胰腺腫瘤細胞的上皮間質轉化,且Smo拮抗劑可阻斷EMT及遠處轉移[34-35]。2013年的一項研究發現,胰腺癌細胞系中,低氧可通過低氧誘導因子-1促進SHH的表達,從而激活Hedgehog信號通路,誘導EMT發生,而HIF-1α抑制劑可阻斷該信號通路中Gli蛋白的激活,更加說明HIF-1α抑制劑對某些依賴低氧、Hedgehog配體的腫瘤,如胰腺、前列腺癌患者可能獲益,為日后腫瘤轉移治療提供了新思路[36]。
EMT發生過程中,除了上述所列舉的重要的信號通路外,同時多種轉錄因子可誘發并在不同分子水平調節EMT,包括轉錄因子Snail家族(Snail1、Snail2、Snail3),調控因子Twist1、Twist2,ZEB家族(ZEB1、ZEB2)及胺氧化酶LOX等[37-38]。這些因子能夠識別E-鈣黏附素E-box啟動子的DNA序列,吸引各種輔因子及組蛋白脫乙酰酶,從而抑制E-鈣黏附素的表達[39]。而在轉錄因子發揮作用的同時,HIF也起到了一定的調節作用。文獻報道HIF-1α是這些因子的上游調控因子。另外,研究發現,在鼠乳腺癌模型中,HIF-1α通過促進LOX過表達增強癌細胞浸潤、轉移,且與雌激素受體陰性患者的不良預后密切相關[40]。
眾多研究已證實轉錄因子Snail是EMT的最主要誘導因子之一,在肝癌細胞中誘發EMT起到了重要作用[41]。Snaill是一種含有鋅指結構的DNA結合蛋白,可通過同SIP1競爭性結合E-鈣黏附素啟動子部位的E-box連接基序,抑制E-鈣黏附素基因的表達以及波形蛋白表達水平的上升,引起上皮細胞向間質細胞表型的轉變,同時伴有E-鈣黏附素的下調,從而引發EMT,而此過程與腫瘤低氧環境密切相關。已有研究證明,HIF-1α通過上調Snail減少E-鈣黏附素表達[42]。之前的研究發現在EMT過程中,缺氧能誘發Snail表達[43]。Luo等[44]的研究發現,在鼠模型中,HIF可直接調節Snail的表達。在原發腫瘤低氧微環境中,脯氨酸羥化酶所需的氧分缺失,HIF-1α從而逃脫了蛋白水解作用,進入細胞核,與HIF-1β聚和形成轉錄激活復合物,結合Snail1啟動子的配合體從而促進Snail1表達。當腫瘤細胞重新獲得氧分,突破細胞外基質,進入靶器官或組織實質后,脯氨酸羥化酶迅速將脯氨酸殘基的HIF-1α氧化,這個羥基化過程促使腫瘤抑制蛋白與HIF-1α結合,HIF-1α多泛素化,隨即在蛋白酶體中降解,然后間質腫瘤細胞開始發生MET。在缺氧誘導的EMT過程中,HIF-1α起到了最主要的作用,而HIF-1α-Snail-EMT可能是關鍵的信號通路之一[45]。
Snail、Twist轉錄因子能夠誘導ZEB1因子的表達,TGFβ/Smad信號通路、Wnt信號通路、Notch信號通路及HIF-1α也可直接促進ZEB因子的表達。ZEB家族廣泛參與調控腫瘤細胞的細胞周期、細胞凋亡、侵襲轉移以及新生血管生成等多個過程,并且也是誘導EMT過程的重要轉錄因子。ZEB1能夠與上皮標記物E-鈣黏附素編碼基因的啟動子上E2盒結合,抑制E-鈣黏附素的轉錄,誘導腫瘤細胞發生EMT,增強細胞的侵襲、轉移能力[46]。調控因子Twist家族是胚胎發育中一類高度保守的堿性螺旋-環-螺旋(bHLH)轉錄因子,研究發現,Twist1-E12二聚體可募集核小體重塑和去乙酰化酶蛋白復合物到上皮-鈣黏連素的啟動子上,共同抑制E-鈣黏附素的表達[47]。
EMT是胚胎發育過程中必需的生理機制,同時在上皮性腫瘤的演進中發揮了關鍵的作用。對于EMT的發生機制及其調節因素,在腫瘤生長、逃逸、轉移中的作用,我們需要進一步的探討。本文對HIF參與的EMT多種誘導途徑進行了闡述分析,揭示了HIF在EMT發生、發展過程中扮演了重要的角色,但HIF-EMT的機制研究尚未完善。目前,關于HIF抑制劑的研究逐漸興起且初顯成效。如2014年的一項研究顯示,在卵巢癌及前列腺癌細胞系中,PI3K/ mTOR抑制劑NVP-BEZ235可干擾HIF-1α的轉錄及表達過程,抑制Smad2/3、Akt/糖原合成酶激酶-3磷酸化,減少轉錄因子SNAIL表達,解除E-鈣黏附素的抑制作用或直接提高E-鈣黏附素mRNA水平,從而抑制甚至逆轉EMT過程;顯然,通過抑制HIF阻斷EMT分子生物學機制的發生,從而抑制腫瘤細胞的惡性進展,為尋找治療腫瘤轉移的方法提供了新的思路[48]。但目前關于HIF-EMT抑制劑的研究尚處于臨床試驗階段,期待日后能廣泛應用于臨床實踐。
1 Cao S, Yang S, Wu C, et al. Protein expression of hypoxia-inducible factor-1 alpha and hepatocellular carcinoma: A systematic review with meta-analysis[J/OL]. http://www.sciencedirect.com/science/ article/pii/S2210740114000977
2 Sendoel A, Kohler I, Fellmann C, et al. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase[J]. Nature, 2010, 465(7298): U69-U577.
3 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?[J]. Nat Rev Cancer, 2007, 7(6): 415-428.
4 Miettinen PJ, Ebner R, Lopez AR, et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors[J]. J Cell Biol, 1994, 127(6 Pt 2):2021-2036.
5 Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease[J]. J Clin Invest, 2009, 119(6): 1438-1449.
6 Zavadil J, B?ttinger EP. TGF-beta and epithelial-to-mesenchymal transitions[J]. Oncogene, 2005, 24(37):5764-5774.
7 Kim K, Lu ZF, Hay ED. Direct evidence for a. role of beta-catenin/ LEF-1 signaling pathway in induction of EMT[J]. Cell Biol Int,2002, 26(5): 463-476.
8 Van Zijl F, Mair M, Csiszar A, et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge[J]. Oncogene, 2009, 28(45): 4022-4033.
9 McMahon S, Charbonneau M, Grandmont S, et al. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression[J]. J Biol Chem,2006, 281(34):24171-24181.
10 Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis[J]. Cytokine Growth Factor Rev, 2008, 19(2):133-144.
11 Higgins DF, Biju MP, Akai Y, et al. Hypoxic induction of Ctgf is directly mediated by Hif-1[J]. Am J Physiol Renal Physiol, 2004,287(6): F1223-F1232.
12 Zhang C, Meng X, Zhu Z, et al. Connective tissue growth factor regulates the key events in tubular epithelial to myofibroblast transition in vitro[J]. Cell Biol Int, 2004, 28(12):863-873.
13 Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes Dev, 2004, 18(1): 99-115.
14 Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis[J]. Chin J Cancer, 2011, 30(9):603-611.
15 Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-beta/ Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition[J]. EMBO J, 2004, 23(5):1155-1165.
16 Garg M. Epithelial-mesenchymal transition-activating transcription factors - multifunctional regulators in cancer[J]. World J Stem Cells, 2013, 5(4):188-195.
17 Wang Z, Li Y, Kong D, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Curr Drug Targets, 2010, 11(6):745-751.
18 Sahlgren C, Gustafsson MV, Jin S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion[J]. Proc Natl Acad Sci U S A, 2008, 105(17):6392-6397.
19 Bedogni B, Warneke JA, Nickoloff BJ, et al. Notch1 is an effector of Akt and hypoxia in melanoma development[J]. J Clin Invest,2008, 118(11):3660-3670.
20 申玉超,于曉玲,張秀梅.阿托伐他汀對氯化鋰誘導人臍靜脈內皮細胞Wnt信號通路相關因子表達的影響[J].解放軍醫學院學報,2013(3):276-278.
21 Macdonald BT, Tamai K, He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1):9-26.
22 Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors[J]. J Biol Chem,2006, 281(32): 22429-22433.
23 Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/β-catenin signalling in liver cancer[J]. World J Clin Oncol, 2011, 2(8):311-325.
24 Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer[J]. Mol Cancer, 2010, 9:236.
25 Trevisani F, Cantarini MC, Wands JR, et al. Recent advances in the natural history of hepatocellular carcinoma[J]. Carcinogenesis,2008, 29(7): 1299-1305.
26 Kaidi A, Williams AC, Paraskeva C. Interaction between betacatenin and HIF-1 promotes cellular adaptation to hypoxia[J]. Nat Cell Biol, 2007, 9(2):210-217.
27 Lim JH, Chun YS, Park JW. Hypoxia-inducible factor-1 alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin[J]. Cancer Res, 2008, 68(13):5177-5184.
28 Zhang Q, Bai X, Chen W, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling[J]. Carcinogenesis,2013, 34(5):962-973.
29 Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma[J]. Oncogene, 2010, 29(36): 4989-5005.
30 Ueoka Y, Kato K, Kuriaki Y, et al. Hepatocyte growth factor modulates motility and invasiveness of ovarian carcinomas via Rasmediated pathway[J]. Br J Cancer, 2000, 82(4): 891-899.
31 Ding W, You HN, Dang H, et al. Epithelial-to-Mesenchymal transition of murine liver tumor cells promotes invasion[J]. Hepatology, 2010, 52(3): 945-953.
32 Samulitis BK, Landowski TH, Dorr RT. Inhibition of protein synthesis by imexon reduces HIF-1 alpha expression in normoxic and hypoxic pancreatic cancer cells[J]. Invest New Drugs, 2009, 27(1):89-98.
33 楊鐸,臧東鈺,李曉明.Shh蛋白及其下游轉錄因子Gli-1在非小細胞肺癌中的表達及意義[J].解放軍醫學院學報,2013,34(11):1182-1184.
34 Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res,2007, 67(5): 2187-2196.
35 Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion[J]. EMBO Mol Med, 2009, 1(6/7):338-351.
36 Spivak-Kroizman TR, Hostetter G, Posner RA, et al. Hypoxia triggers Hedgehog-Mediated Tumor-Stromal interactions in pancreatic cancer[J]. Cancer Res, 2013, 73(11): 3235-3247.
37 Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer[J]. Biochim Biophys Acta, 2007, 1775(1):21-62.
38 Muqbil I, Wu J, Aboukameel A, et al. Snail nuclear transport:The gateways regulating epithelial-to-mesenchymal transition?[J]. Semin Cancer Biol, 2014, 27C(期缺失): 39-45.
39 Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7): 927-939.
40 Wu Y, Mao F, Zuo X, et al. 15-LOX-1 suppression of hypoxiainduced metastatic phenotype and HIF-1α expression in human colon cancer cells[J]. Cancer Med, 2014, 3(3):472-484.
41 Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the Independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma[J]. Hepatology, 2009, 50(5): 1464-1474.
42 Evans AJ, Russell RC, Roche O, et al. VHL promotes E2 boxdependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail[J]. Mol Cell Biol, 2007, 27(1):157-169.
43 Copple BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factorbeta-dependent mechanisms[J]. Liver Int, 2010, 30(5):669-682.
44 Luo D, Wang J, Li J, et al. Mouse snail is a target gene for HIF[J]. Mol Cancer Res, 2011, 9(2):234-245.
45 Zhang L, Huang G, Li X, et al. Hypoxia induces epithelialmesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma[J]. BMC Cancer, 2013,13:108.
46 Fu JJ, Qin L, He T, et al. The TWIST/mi2/NuRD protein complex and its essential role in cancer metastasis[J]. Cell Res, 2011, 21(2):275-289.
47 Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease[J]. Cell Mol Life Sci, 2009, 66(5):773-787.
48 Lin G, Gai R, Chen Z, et al. The dual PI3K/mTOR inhibitor NVPBEZ235 prevents epithelial-mesenchymal transition induced by hypoxia and TGF-β1[J]. Eur J Pharmacol, 2014, 729:45-53.
Mechanism of HIF induced epithelial mesenchymal transition
GUO Xiaochuan, SHI Yan, CHEN Li, SHI Weiwei, HAN Yalin, QIN Rui, DAI Guanghai
No.2 Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
DAI Guanghai. Email: daigh60@sohu.com
Hypoxia is a common phenomenon in solid tumor, and hypoxia inducible factor (HIF) is a key transcription factor in the process of transmitting and mediating anoxic singals. Epithelial mesenchymal transitions (EMT) is a multi-step, ordered and highadjusted process, which palys an important role in tumor invasion and involves in various proteins, microenvironment, MicroRNA, signal pathway and molecular mechanism. Studies prove that hypoxia can regulate EMT through signal pathway of TGF-β, Notch, Wnt, Hedgehog and HGF/Met. Studies about blocking EMT through inhibition of HIF are effective, which indicates that HIF-induced EMT may be a new target of tumor therapy, and this means a lot to the prevention and therapy of cancer.
neoplasms; hypoxia-inducible factor; epithelial-mesenchymal transition
R 730
A
2095-5227(2015)01-0090-04
10.3969/j.issn.2095-5227.2015.01.028
時間:2014-09-05 10:29
http://www.cnki.net/kcms/detail/11.3275.R.20140905.1029.005.html
2014-06-03
國家自然科學基金項目(81372286)
Supported by the National Natural Science Foundation of China(81372286)
郭曉川,女,在讀博士,醫師。研究方向:消化道腫瘤的綜合治療。Email: chuanchuan216@126.com
戴廣海,男,博士,主任醫師,教授,博士生導師。Email: daigh60@sohu.com