999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

4 Asymptotic of N-soliton solutions in long time:proof of Theorem 1.1

2015-03-30 08:47:52

4 Asymptotic of N-soliton solutions in long time:proof of Theorem 1.1

We present in this section the proof of Theorem 1.1,which,in view of Proposition 1.2, focuses on the analysis of solutions constructed in Section 2.Keeping the notations introduced in Section 2,we already proved that(I+T)F=Cand that

Hence,we have

Consequently,we have

Before discussing the general case ofN-solitons,we discuss the two simple cases whereN=1 andN=2.ForN=1,a simple calculation proves that

Then the 1-soliton solution corresponding to data{λ,μ(0)}is

The 2?soliton solution,u2,corresponding to choicesis

Taking into account the frame(in translation)with speed 2λ2defined by the variablewe have

i.e.the solutionu2behaves(asymptotically whent→±∞)as a progressive wave of speed 2λ2.

Now let us come back to the general case(N∈N),for which we can not establish an explicit formula for the solutionu(t,x).To this end,we rewrite

Hence,we need to study the behavior of the sumTo this end rewrite the system (4.1)as follows

where

The system(4.4)can be rewritten as follows

which implies

Letk0∈{1,...,N}.We define the frame(in translation)with speed 2λk0by the variable

We will analyze the asymptotic in long time.Note that

The system(4.5)can be transformed into

We take the limit whent→?∞for fixedη.This leads,denotingto

We introduce the matrices

where theKlkrefer to the cofactors ofK.Fork=k0,we also have

Summing the last equation onk,we obtain

Thus,we finally get

Proposition 4.1.There existsuch that

where U is the function defined in(4.2)which corresponds toμk0(0)and λk0.

Proof.Recall first that

In what concerns(i),remark thatand the fact thatfollows from the following lemma,since

Lemma 4.1.Let M∈MN(C)and JNthe matrix whose coefficients are ones.Denote K=M+XJ. Then

where the Kijrefer to the cofactors of K.

Proof.LetU,V∈CNbe two column vectors.Then

where〈,〉is the usual scalar product in CN.In fact,it suffices to expand the operatorT=I+U.Vtin the basis composed ofVand the basis of the orthogonal toV.Assume now that the matrixK=M+U.Vtis invertible.Then we can write

whereCof(K)is the cofactor matrix ofK.The conclusion therefore follows by takingU=(1,1,...,1)tandV=(X,X,...,X)t.Finally,the caseKnon-invertible is obtained by continuity.

For equation(ii),it suffices to prove that

Subtracting columnk0from columnjin the matrixwe get

which implies??We have used the identitythat

A similar argument proves that

Combining(4.9)and(4.10)we complete the proof of(ii).

We focus now on assertion(iii).Subtracting the linek0from each of the previous lines, we find thatand using(ii),we obtain

Finally,we get

A parallel argument allows,for the limitt→+∞,to obtain

This completes the proof of Theorem 1.1.

[1]Coste C.,Nonlinear Schr¨odinger equation and superuid hydrodynamics.Eur.Phys.J.B Condens.Matter Phys.1(2)(1998),245-253.

[2]Jones C.A.,Roberts P.H.,Motions in a bose condensate v.stability of solitary wave solutions of non-linear Schr¨odinger equations in two and three dimentions.J.Phys.A,Math.Gen.19(15)(1986),2991-3011.

[3]Kevrekidis P.G.,Malomed B.A.,Cuevas J.,Frantzeskakis D.J.,Solitons in quasionedimentional Bose-Einstein condensates with competing dipolar and local interactions.Phys.Rev.A,79(5)(2009),1-11.

[4]Shabat A.B.,Zakharov V.E.,Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media.Sov.Phys.JETP34(1972),62-69.

[5]Shabat A.B.,Zakharov V.E.,Interaction between solitons in a stable medium.Sov.Phys. JETP37(1973),823-828.

[6]Kruskal M.,Miura R.,Gardner C.and Greene J.,Korteweg-de-Vries equation and generalization.Comm.Pure Appl.Math.27(1974),97-133.

[7]G′erard P.,Zhang Z.,Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation.Math.Pures Appl.91(2)(2009),178-210.

[8]Eckhaus W.,Harten A.V.,The Inverse Scattering Transformation and the Theory of Solitons,50North-Holland publishing company,Amsterdam,1981.

主站蜘蛛池模板: 在线无码私拍| 国产成人永久免费视频| 欧美v在线| 国产成人欧美| www欧美在线观看| 99在线观看视频免费| 免费中文字幕一级毛片| 波多野结衣在线se| 精品伊人久久久久7777人| 国产精品青青| 992tv国产人成在线观看| 欧美在线伊人| 亚洲精品色AV无码看| 国产极品美女在线播放| 免费看av在线网站网址| …亚洲 欧洲 另类 春色| 国产成人精品高清在线| 99热免费在线| 制服丝袜在线视频香蕉| 成人午夜久久| 国产欧美日韩综合在线第一| 88av在线| 欧美色综合网站| 亚洲AV无码一二区三区在线播放| 欧美日韩精品一区二区在线线| 中文字幕资源站| 亚洲三级影院| 日韩av手机在线| 不卡无码h在线观看| 欧美在线导航| 国产区人妖精品人妖精品视频| 蝌蚪国产精品视频第一页| 一本大道无码日韩精品影视| 亚洲 欧美 偷自乱 图片| 成人看片欧美一区二区| 99热国产在线精品99| 国产成人91精品| 国产精品制服| 精品久久国产综合精麻豆| 米奇精品一区二区三区| 亚洲欧美综合在线观看| 一级毛片免费观看久| 中文字幕乱码中文乱码51精品| 乱系列中文字幕在线视频| 亚洲AV无码乱码在线观看代蜜桃 | 国产成人亚洲日韩欧美电影| 亚洲日韩久久综合中文字幕| 凹凸国产熟女精品视频| 被公侵犯人妻少妇一区二区三区| 国产乱肥老妇精品视频| 好吊妞欧美视频免费| 亚洲性网站| 日韩小视频网站hq| 99久久精品免费看国产电影| 亚洲日韩欧美在线观看| 日韩欧美中文在线| 亚洲精品少妇熟女| 色综合天天综合| 黄色三级毛片网站| 国产精品九九视频| 精品国产乱码久久久久久一区二区| 亚洲精品va| 91亚洲免费视频| 国内精品九九久久久精品| 狠狠久久综合伊人不卡| 爱色欧美亚洲综合图区| 一级爱做片免费观看久久| 欧洲欧美人成免费全部视频| 欧美国产日本高清不卡| 国产一区二区精品高清在线观看| 一区二区午夜| 91精品视频在线播放| 黄色免费在线网址| 天天做天天爱天天爽综合区| 日韩成人在线一区二区| 中文字幕调教一区二区视频| 欧美人人干| 特级毛片8级毛片免费观看| 五月天在线网站| 国产va在线观看免费| 欧美三級片黃色三級片黃色1| 99热精品久久|