999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A New Jacobi Elliptic Function Expansion Method for Solving a Nonlinear PDE Describing Pulse Narrowing Nonlinear Transmission Lines

2015-03-30 08:47:36ZAYEDandALURRFI

ZAYED E.M.E.and ALURRFI K.A.E.

Department of Mathematics,Faculty of Science,Zagazig University,P.O.Box 44519, Zagazig,Egypt.

A New Jacobi Elliptic Function Expansion Method for Solving a Nonlinear PDE Describing Pulse Narrowing Nonlinear Transmission Lines

ZAYED E.M.E.?and ALURRFI K.A.E.

Department of Mathematics,Faculty of Science,Zagazig University,P.O.Box 44519, Zagazig,Egypt.

.In this article,we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations(PDEs)based on the homogeneous balance method,the Jacobi elliptic expansion method and the auxiliary equation method.New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program,e.g.Maple or Mathematica.Based on Kirchhoff’s current law and Kirchhoff’s voltage law,the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differentialequation(ODE)using a simple transformation.The given method in this article is straightforward and concise,and can be applied to other nonlinear PDEs in mathematical physics.Further results may be obtained.

New Jacobi elliptic function expansion method;pulse narrowing nonlinear transmission lines;exact solutions;Kirchhoff’s current law;Kirchhoff’s voltage law.

1 Introduction

The nonlinear PDEs in mathematical physics are major subjects in physical science[1]. Exactsolutionsfor these equations play an importantrole in many phenomena in physics, such as fluid mechanics,hydrodynamics,optics,plasma physics and so on.Recently, many methods for finding these solutions have been presented,for example,tanh-sechmethod[2-4],extended tanh-method[5-7],sine-cosine method[8-10],homogeneous balance method[11,12],Jacobi elliptic function method[13-16],F-expansion method[17-19], exp-function method[20,21],trigonometric function series method[22],expansion method[23-27],the modified simple equation method[28-33],the modified mapping method[34],the firstintegralmethod[35-38],the multiple exp-function algorithm method [39,40],the transformed rationalfunction method[41],the Frobeniusdecomposition technique[42],the local fractional variation iteration method[43],the local fractional series expansion method[44]and so on.

The objective of this article is to use a new Jacobi elliptic function expansion method [45]to find the exactsolutions ofthe following nonlinear PDE describing pulse narrowing nonlinear transmission lines[46]:

whereV(x,t)is the voltage of the pulse andC0,L,δandb1are constants.The physical details of the derivation of Eq.(1.1)is elaborated in[46]using the Kirchhoff’s current law and Kirchhoff’s voltage law,which are omitted here for simplicity.It is well-known[46] that Eq.(1.1)has the solution:

wherevis the propagation velocity of the pulse andprovided thatv>v0.

This paper is organized as follows:In Sec.2,the description of a new Jacobi elliptic function expansion method is given.In Sec.3,we use the given method described in Sec. 2,to find exact solutions of Eq.(1.1).In Sec.4,the physical explanations of some results are presented.In Sec.5,some conclusions are obtained.

2 Description of a new Jacobielliptic function expansion method

Consider a nonlinear PDE in the form

whereV=V(x,t)is an unknown function,Pis a polynomial inV(x,t)and its partial derivatives in which the highest order derivatives and nonlinear terms are involved.Let us now give the main steps of the Jacobi elliptic function expansion method[45]:

Step 1.We look for the voltageV(x,t)of the pulse in the traveling form:wherevis the propagation velocity of the pulse,to reduce Eq.(2.1)to the following nonlinear(ODE):

whereHis a polynomial ofV(ξ)and its total derivativesV′(ξ),V′′(ξ),...and′=d/dξ.

Step 2.We suppose that the solution of Eq.(2.3)has the form:

wherez(ξ)satisfies the Jacobi elliptic equation:

Step 3.We determine the positive integerNin(2.4)by balancing the highest-order derivatives and the nonlinear terms in Eq.(2.3).

Step 4.Substituting(2.4)along with Eq.(2.5)into Eq.(2.3)and collecting all the coefficients ofthen setting them to zero,yield a set of algebraic equations.

Step 5.Solving the algebraic equations in Step 4,using the Maple or Mathematica to findg0,gi,fi,v,a,b,c.

Step 6.It is well-known[45]that Eq.(2.5)has many families of solutions as follows:

?

In this table,snξ=sn(ξ,m),cnξ=cn(ξ,m),dnξ=dn(ξ,m),nsξ=ns(ξ,m),csξ=cs(ξ,m),dsξ=ds(ξ,m),scξ=sc(ξ,m),sdξ=sd(ξ,m)are the Jacobi elliptic function with modulusm,where 0<m<1.These functions degenerate into hyperbolic functions whenm→1 as follows:

snξ→tanhξ,cnξ→sechξ,dnξ→sechξ,nsξ=cothξ,csξ=cschξ,dsξ=cschξ,scξ=sinhξ,sdξ=sinhξ,ncξ=coshξ,and into trigonometric functions whenm→0 as follows:

snξ→sinξ,cnξ→cosξ,dnξ→1,nsξ→cscξ,csξ→cotξ,dsξ→cscξ,scξ→tanξ,sdξ→sinξ,ncξ→secξ.

Also,these functions satisfy the following formulas:

and

sn′ξ=cnξdnξ,cn′ξ=?snξdnξ,dn′ξ=?m2snξcnξ,cd′ξ=?(1?m2)sdξndξ,ns′ξ=?csξdsξ,dc′ξ=(1?m2)ncξscξ,cn′ξ=scξdcξ,nd′ξ=m2cdξsdξ,sc′ξ=dcξncξ,cs′ξ=?nsξdsξ,ds′ξ=?csξnsξ,sd′ξ=ndξcdξ,where′=d/dξ.

Step 7.Substituting the solutions of Step 6,into(2.4)we have the exact solutions of Eq.(2.1).

3 Exact solutions of Eq.(1.1)using the given method in Sec.2

In this section,we apply the Jacobi elliptic function expansion method of Sec.2,to find the exact solutions of Eq.(1.1).To this end,we use the transformation(2.2)to reduce Eq. (1.1)to the following nonlinear ODE:

BalancingV′′withV2givesN=2.Therefore,(2.4)reduces to

whereg0,g1,f1,g2andf2are constants to be determined such that

Substituting(3.3)along with Eq.(2.5)into Eq.(3.1)and collecting all the coefficients ofzi(ξ),(i=0,1,...,8)and setting them to zero,we have the following algebraic equations:

On solving the above algebric equations(3.4)by Maple or Mathematica,we have the following results:

From(3.3)and(3.5),we get the exact solutions of Eq.(3.1)as follows:

whereb/=2c.

Sincea=c,we deduce from the table of Sec.2,the two cases:

Case 1.

Ifa=1/4,b=(1?2m2)/2,c=1/4 andz(ξ)=nsξ±csξorz(ξ)=snξ/(1±cnξ),then we get the Jacobi elliptic function solutions

respectively.

Ifm→1,thena=1/4,b=?1/2,c=1/4 andz(ξ)=coth(ξ)±csch(ξ)orz(ξ)=tanh(ξ)/ (1±sech(ξ))wherek1=?4.In this case,(3.7)and(3.8)reduce to the hyperbolic solutions

respectively.

Case 2.Ifa=(1?m2)/4,b=(1+m2)/2,c=(1?m2)/4 andz(ξ)=ncξ±scξorz(ξ)=cnξ/(1±snξ),then we get the Jacobi elliptic function solutions

respectively.

Ifm→1 thena=0,b=1,c=0 andz(ξ)=cosh(ξ)±sinh(ξ)orz(ξ)=sech(ξ)/(1±tanh(ξ)) wherek1=?4..In this case,(3.13)and(3.14)reduce to the hyperbolic solutions

respectively.

Remark 1.From Cases 1,2 we have shown that whenk1=?4,then we have the solution

With the aid of(3.2),we deduce that

which is equivalent to the well known(1.2)obtained in[46].

Remark 2.Eq.(3.1)can be solved using a direct method as follows:

Multiply Eq.(3.1)byV′(ξ)and integrate with zero constant of integration,we get

whereα=?k1,β=?2k2/3.

It is easy to get the solution

With the aid of(3.2),we deduce that

which is equivalent to the well known(1.2)obtained in[46].

3.1Physical explanations of some results

In this section,we have presented some graphs of the exact solutions(3.9),(3.12),(3.15) and(3.17)constructed by taking suitable values of involved unknown parameters to visualize the mechanism of the original Eq.(1.1).These solutions are kink,singular kinkshaped soliton solution,bell-shaped soliton solutions,singular bell-shaped soliton solutions and hyperbolic solutions.For more convenience the graphical representations of these solutions are shown in the following figures:

3.2Conclusions

In this article,we have solved the nonlinear PDE describing the pulse narrowing nonlinear transmission lines(1.1)using a new Jacobi elliptic function expansion method described in Sec.2.Families of exact solutions including Jacobi elliptic solutions,thedegenerated hyperbolic function solutions(whenm→1)of Eq.(1.1)have been found. Comparing our results obtained in this paper with the well-known results obtained in [46],we deduce that our results(3.20)and(3.23)are equivalent to the well known(1.2) obtained in[46]and the other solutions obtained in article are new and not found elsewhere.Using the Maple,we have shown that all solutions obtained in this article satisfy the original Eq.(1.1).A new Jacobi elliptic function expansion method used in this paper is effective in getting solutions and can be applied to explore the exact solutions of other nonlinear evolution equations in mathematical physics,which will be done in forthcoming papers.

[1]Ablowitz M.J.,Segur H.,Solitions and Inverse Scattering Transform,SIAM,Philadel-phia 1981.

[2]Malfliet W.,Solitary wave solutions of nonlinear wave equation.Am.J.Phys.60(1992),650-654.

[3]MalflietW.,Hereman W.,The tanh method:Exactsolutions of nonlinear evolution and wave equations.Phys.Scr.54(1996),563-568.

[4]Wazwaz A.M.,The tanh method for travelling wave solutions of nonlinear equations.Appl. Math.Comput.154(2004),714-723.

[5]EL-Wakil S.A.,Abdou M.A.,New exact travelling wave solutions using modified extented tanh-function method.Chaos Solitons Fractals31(2007),840-852.

[6]Fan E.,Extended tanh-function method and its applications to nonlinear equations.Phys. Lett.A277(2000),212-218.

[7]Wazwaz A.M.,The extended tanh method for abundantsolitary wave solutions ofnonlinear wave equations.Appl.Math.Comput.187(2007),1131-1142.

[8]Wazwaz A.M.,Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE.method.Comput.Math.Appl.50(2005),1685-1696.

[9]Wazwaz A.M.,A sine-cosine method for handling nonlinear wave equations.Math.Comput. Modelling40(2004),499-508.

[10]Yan C.,A simple transformation for nonlinear waves.Phys.Lett.A224(1996)77-84.

[11]Fan E.,Zhang H.,A note on the homogeneous balance method.Phys.Lett.A246(1998), 403-406.

[12]Wang M.L.,Exct solutions for a compound KdV-Burgers equation.Phys.Lett.A213(1996), 279-287.

[13]Dai C.Q.,Zhang J.F.,Jacobian elliptic function method for nonlinear differential difference equations.Chaos Solutions Fractals27(2006),1042-1049.

[14]Fan E.,Zhang J.,Applications of the Jacobielliptic function method to special-type nonlinear equations.Phys.Lett.A305(2002),383-392.

[15]Liu S.,Fu Z.,Liu S.and Zhao Q.,Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations.Phys.Lett.A289(2001),69-74.

[16]Zhao X.Q.,Zhi H.Y.,Zhang H.Q.,Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system.Chaos Solitons Fractals28(2006),112-126.

[17]Abdou M.A.,The extended F-expansion method and its application for a class of nonlinear evolution equations.Chaos Solitons Fractals31(2007),95-104.

[18]Ren Y.J.,Zhang H.Q.,A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the(2+1)-dimensionalNizhnik-Novikov-Veselov equation.Chaos Solitons Fractals27(2006),959-979.

[19]Zhang J.L.,Wang M.L.,Wang Y.M.and Fang Z.D.,The improved F-expansion method and its applications.Phys.Lett.A350(2006),103-109.

[20]He J.H.,Wu X.H.,Exp-function method for nonlinear wave equations.Chaos Solitons Fractals30(2006),700-708.

[21]Aminikhad H.,Moosaei H.,Hajipour M.,Exact solutions for nonlinear partial differential equations via Exp-function method.Numer.Methods Partial Differ.Equations26(2009),1427-1433.

[22]Zhang Z.Y.,New exact traveling wave solutions for the nonlinear Klein-Gordon equation.Turk.J.Phys.32(2008),235-240.

[23]Wang M.L.,Zhang J.L.and Li X.Z.,The(G′/G)-expansion method and travelling wave solutions ofnonlinear evolutions equations in mathematicalphysics.Phys.Lett.A372(2008), 417-423.

[24]Zhang S.,Tong J.L.and Wang W.,A generalized(G′/G)-expansion method for the mKdv equation with variable coefficients.Phys.Lett.A372(2008),2254-2257.

[25]Zayed E.M.E.,Gepreel K.A.,The(G′/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics.J.Math.Phys.50(2009),013502-013513.

[26]Zayed E.M.E.,The(G′/G)-expansion method and its applications to some nonlinear evolution equations in mathematical physics.J.Appl.Math.Computing30(2009),89-103.

[27]Hayek M.,Constructing of exact solutions to the KdV and Burgers equations with power law nonlinearity by the extended(G′/G)-expansion method.Appl.Math.Comput.217(2010), 212-221.

[28]Jawad A.J.M.,Petkovic M.D.and Biswas A.,Modified simple equation method for nonlinear evolution equations.Appl.Math.Comput.217(2010),869-877.

[29]Zayed E.M.E.,A note on the modified simple equation method applied to Sharam-Tasso-Olver equation.Appl.Math.Comput.218(2011),3962-3964.

[30]Zayed E.M.E.,Ibrahim S.A.Hoda,Exactsolutions of nonlinear evolution equation in mathematical physics using the modified simple equation method.Chin.Phys.Lett.29(2012), 060201–4.

[31]Zayed E.M.E.,Arnous A.H.,Exact solutions of the nonlinear ZK-MEW and the potential YTSF equations using the modified simple equation method.AIP Conf.Proc.1479(2012), 2044-2048.

[32]Zayed E.M.E.,Ibrahim S.A.Hoda,Modified simple equation method and its applications for some nonlinear evolution equations in mathematical physics.Int.J.Computer Appl.67(2013),39-44.

[33]Zayed E.M.E.,Ibrahim S.A.Hoda,Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method.Acta Math.Appl.SinicaEnglish series,30(2014),749-754.

[34]Zhang Z.Y.,Liu Z.H.,Miao X.J.and Chen Y.Z.,New exact solutions to the perturbed nonlinear Schr¨odinger equation with Kerr law nonlinearity.Appl.Math.Comput.216(2010), 3064-3072.

[35]Moosaei H.,Mirzazadeh M.and Yildirim A.,Exact solutions to the perturbed nonlinear Scrodinger equation with Kerr law nonlinearity by using the first integral method.Nonlinear Analysis:Modelling and Control16(2011),332-339.

[36]Bekir A.,Unsal O.,Analytic treatment of nonlinear evolution equations using the first integral method.Pramana J.Phys.79(2012),3-17.

[37]Lu B.,Zhang H.Q.and Xie F.D.,Traveling wave solutions of nonlinear parial differential equations by using the first integral method.Appl.Math.Comput.216(2010),1329-1336.

[38]Feng Z.S.,The first integral method to study the Burgers-KdV equation.J.Phys.A:Math. Gen.35(2002),343–349.

[39]Ma W.X.,Zhu Z.,Solving the(3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm.Appl.Math.Comput.218(2012),11871-11879.

[40]Ma W.X.,Huang T.and Zhang Y.,A multiple exp-function method for nonlinear differential equations and its application.Phys.Script.82(2010),065003.

[41]Ma W.X.,Lee J.H.,A transformed rational function method and exact solutions to the(3+1) dimensional Jimbo-Miwa equation.Chaos,Solitons and Fractals42(2009)1356-1363.

[42]Ma W.X.,Wu H.Y.and He J.S.,Partial differential equations possessing Frobenius integrable decomposition technique.Phys.Lett.A364(2007),29-32.

[43]Yang Y.J.,Baleanu D.and Yang X.J.,A Local fractional variational iteration method for Laplace equation within local fractional operators.Abst.Appl.Analy.2013,Article ID 202650, 6 pages.

[44]Yang A.M.,Yang X.J.and Li Z.B.,Local fractional series expansion method for solving wave and diffusion equations on cantor sets.Abst.Appl.Analy.2013Article ID 351057,5 pages.

[45]MA H.C.,Zhang Z.P.and Deng A.P.,A new periodic solution to Jacobi elliptic functions of MKdVequation and BBMequation.Acta Math.Appl.SinicaEnglish series,28(2012),409-415.

[46]Afshari E.,Hajimiri A.,Nonlinear transmission lines for pulse shaping in Silicon.IEEE J. Solid state circuits40(2005),744-752.

Received 19 January 2015;Accepted 24 March 2015

?Corresponding author.Email addresses:e.m.e.zayed@hotmail.com(E.M.E.Zayed),alurrfi@yahoo.com (K.A.E.Alurrf i)

AMS Subject Classifications:35K99,35P05,35P99,35C05

Chinese Library Classifications:O175.2

主站蜘蛛池模板: 欧美人人干| 国产精品极品美女自在线网站| 欧美一道本| 国产屁屁影院| 色亚洲激情综合精品无码视频 | 91福利片| 五月天综合婷婷| 国产成熟女人性满足视频| 国产成人高清亚洲一区久久| 亚洲一区精品视频在线| 亚洲综合欧美在线一区在线播放| 四虎影视无码永久免费观看| 国产99视频精品免费视频7 | 园内精品自拍视频在线播放| 国产美女精品人人做人人爽| 午夜不卡视频| 欧美综合成人| 免费aa毛片| 91蝌蚪视频在线观看| 国产免费高清无需播放器| 国产高清不卡| 国产精品午夜福利麻豆| 99热这里只有免费国产精品| 国产美女精品在线| 亚洲欧美精品在线| 国产亚洲精品资源在线26u| 亚洲欧美一区二区三区图片| 日韩区欧美国产区在线观看| 亚洲成A人V欧美综合天堂| AV网站中文| 伊人精品成人久久综合| 午夜综合网| 国产成人乱码一区二区三区在线| 国产丝袜丝视频在线观看| 先锋资源久久| 亚洲另类第一页| 色爽网免费视频| 亚洲最大福利网站| 激情爆乳一区二区| 色网站在线免费观看| 免费一级毛片在线观看| 中文成人无码国产亚洲| 亚洲欧美综合另类图片小说区| 亚洲欧美日韩成人在线| 天堂中文在线资源| 国产拍在线| 国产成人超碰无码| 毛片三级在线观看| 韩日午夜在线资源一区二区| 久久免费精品琪琪| 精品综合久久久久久97| 少妇被粗大的猛烈进出免费视频| 日韩久久精品无码aV| 久久久精品久久久久三级| 美女内射视频WWW网站午夜 | 亚洲精品视频免费| 国产情侣一区| 久久精品无码中文字幕| 综合色婷婷| 免费一看一级毛片| 无码福利视频| 欧美色伊人| 成人午夜视频网站| 亚洲中文字幕无码爆乳| a级毛片免费网站| 婷婷亚洲视频| 国产白浆一区二区三区视频在线| 亚洲综合专区| 日韩天堂视频| 九九久久精品免费观看| 伦伦影院精品一区| 亚洲欧洲日韩久久狠狠爱 | Jizz国产色系免费| 国产精品嫩草影院av| 欧美亚洲香蕉| 国产成人精品优优av| 97久久精品人人| 亚洲一区二区约美女探花| www.youjizz.com久久| 日韩在线观看网站| 亚洲人成网线在线播放va| 97视频在线精品国自产拍|