鄧麗 激揚
摘要研究復合二項對偶模型的最優分紅問題, 通過分析HJB方程得到了最優分紅策略和相應的最優值函數之間的關系以及最優值函數的簡單計算方法. 通過討論最優紅利策略的一些性質得到了最優值函數的可無限逼近的上界和下界.
關鍵詞對偶模型;HJB方程;壓縮映射;最優分紅策略
中圖分類號O211.6 文獻標識碼A
AbstractThis paper discussed the problem of optimal dividendpayment in compound binomial dual model. The relationship between the optimal dividend strategy and the corresponding optimal value function was found by analysing the HJB equation, and a simple algorithm was obtained for calculating the optimal value function. From the properties of the optimal dividend strategy, an upper bound and a lower bound of the optimal value function were derived.
Key wordsdual model; HJB equation; contraction mapping; optimal dividend strategy
1引言
分紅問題的提出可以追溯到De Finetti1在紐約第15屆國際精算師大會上發表的一篇文章,他認為在風險模型中考慮分紅更切實際. 目前研究得最多的分紅策略有:Barrier策略2-4和Threshold策略5-9. 隨著金融管理、公司業務和保險業務的發展,經典風險模型的對偶模型越來越受到重視10-14, 討論相對較多的是連續時間經典風險模型的最優分紅問題,例如:Avanzi等10運用拉普拉斯變換方法討論了復合Poisson對偶模型的最優紅利Barrier的確定方法;Gerber等11討論了復合Poisson對偶模型的最優紅利Barrier的一些近似方法. 然而離散時間的最優分紅問題顯然還沒有得到足夠的重視,盡管De Finetti11最開始討論紅利問題就是在一個離散模型中. 對偶模型可描述為:
本文研究復合二項對偶模型的最優分紅問題,發現最優值函數滿足一個離散的哈密頓-雅可比 -貝爾曼(HJB)方程,并運用壓縮映射原理證明最優值函數是這個方程的唯一解,從而得到了最優分紅策略的計算方法. 通過討論最優紅利策略的一些性質本文構造出了最優值函數的可無限逼近的一個上界和一個下界,以便能運用遞歸算法在Matlab中進行數值計算.
2基本模型假設
參考文獻
1.B DE FINETTI. Su un'impostazione alternativa della teoria collettiva delrischioJ.. Transactions of the XVth International Congress of Actuaries,1957(2):433-443.
2.X S LIN, G E WILLMO, S DREKIC. The classical risk model with a constant dividend barrier: Analysis of the GerberShiu discounted penalty functionJ.. Insurance: Mathematics and Economic, 2003,33(3): 551-566.
3.S LI, J GARRIDO. On a class of renewal risk models with a constant dividend barrierJ.. Insurance: Mathematics and Economics,2004,35(3):691-701.
4.K C YUEN, G WANG, W K LI. The GerberShiu expected discounted penalty function for risk processes with interest and a constant dividend barrierJ.. Insurance: Mathematics and Economics, 2007,40(1):104-112.
5.何慶國,何傳江. 閾值分紅策略下帶常利率的對偶風險模型J..經濟數學,2012, 29(4): 67-70.
6.X S LIN, K P PAVLOVA. The compound Poisson risk model with a threshold dividend strategy J.. Insurance:Mathematics and Economics,2006,38(1):57-80.
7.H U GERBER, E S W SHIU. On Optimal dividend strategies in the compound Poisson modelJ.. North American Actuarial Journal,2006,10(2):76-93.
8.N WAN. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusionJ.. Insurance:Mathematics and Economics,2007, 40(3):509-523.
9.S GAO, Z M LIU. The perturbed compound Poisson risk model with constant interest and a threshold dividend strategyJ.. Journal of Computational and Applied Mathematics,2010,233(9):2181-2188.
10.B AVANZI, H U GERBER, E S W SHIU. Optimal dividends in the dual modelJ., Insurance: Mathematics and Economics,2007,41(1):111-123.
11.H U GERBER, S NATHANIE. Optimal dividends with incomplete information in the dual modelJ.. Insurance:Mathematics and Economics,2008,43(2):227-233.
12.C Y N ANDREW. On a dual model with a dividend thresholdJ.. Insurance:Mathematics and Economics, 2009,44(2):315-324.
13.B LI, R WU. The dividend function in the jumpdiffusion dual model with barrier dividend strategyJ.. Appl Math Mech(English Edition),2008,29(9):1239-1279.
14.B AVANZI, E C K CHEUNG, B WONG, JK WOO. On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvencyJ.. Insurance: Mathematics and Economics, 2013,52(1): 98-113.