999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

質子碰撞氦原子單電離全微分截面的后碰撞作用和扭曲效應

2015-03-23 05:04:15段月花孫世艷賈祥福
原子與分子物理學報 2015年5期
關鍵詞:效應

段月花, 蘇 婷, 孫世艷, 賈祥福

(山西師范大學物理與信息工程學院, 臨汾 041004)

質子碰撞氦原子單電離全微分截面的后碰撞作用和扭曲效應

段月花, 蘇 婷, 孫世艷, 賈祥福

(山西師范大學物理與信息工程學院, 臨汾 041004)

用扭曲波方法,推廣了修正的庫侖波恩(MCB)近似計算到重離子碰撞He原子電離問題計算.檢查了對75 keV 質子碰撞氦原子單電離的全微分截面的應用情況.結果表明,現在的方法定性地產生了實驗的峰結構,尤其是在垂直平面.應用MCB方法研究這一碰撞體系中的后碰撞(PCI)效應,發現PCI效應對全微分截面的形狀在散射平面和垂直平面都有著強烈的影響.同時,分析了扭曲效應對全微分截面的貢獻.表明,隨著動量轉移的增加,扭曲效應的作用變得越來越重要.尤其是,扭曲效應定性解釋了負角區域的結構.

全微分截面; 后碰撞作用; 扭曲效應

1 Introduction

Ionization processes in the field of ion-atom collision have been studied for several decades[1-5]. Because this type research gives a way to understand few-body associated with the quantum dynamics, and the results can be vastly used in many fields[1-4].With the continuous development of the experiment technique known as COLTRIMS (cold-target recoil-ion momentum spectroscopy)[2,6], the usually tiny projectile's scattering angle can be indirectly obtained by measuring the ionized electron and recoil ion momenta. Consequently, fully differential cross sections (FDCS) for ion impact can be measured with high precision, and provide a very stringent test of the theory. In 2006, kinematically complete experiments have been performed by Schulzetal.[7]for single ionization of helium by 75 keV proton impact in the complete three-dimensional space. Interestingly, some unexpected structures are founded. Such studies have proven to be extremely powerful as they yield fully differential cross sections and therefore provide the most sensitive tests of theoretical models describing few-body dynamics in ionization processes. However, on the theoretical side, only a limited number of calculations have been carried out for the fully differential cross sections. For example, the continuum distorted wave-eikonal initial state (CDW-EIS) method[8]and the three-body distorted wave (3DW) method[2]have been extended to calculate the FDCS for single ionization of helium by proton impact in the scattering and perpendicular planes. But the GA method[9]and 6DW method[10]even have not been used to calculate the out-of-plane. Furthermore, although the calculations can qualitatively reproduce some structures, there are still substantial differences between theoretical predictions and experiment, especially for the perpendicular plane. Therefore, further theoretical analysis and calculations seem to be appropriate and necessary.

The generation of unexpected structures, which were found from the measurement data, have been reported due to the high-order effects[7]. For instance, the well-known two-peak structure at aboutθe=±30oand the interesting minimum atθe=0oin the perpendicular plane[11]was explained in terms of the interference between the projectile-ejected electron and the projectile-target core (PI) interactions in P+He. Many theories have been used to explain the role of PCI and PI for ion impact. The results showed that the PCI and PI effects are considerable important. Therefore, we will apply the extended modified Coulomb-Born approximation theory[12]to analyze the FDCS for the single ionization of helium by proton impact at the incident energy of 75 keV in both the scattering plane and the perpendicular plane. At the same time, we employ the present method to examine that the angular distribution of the ejected electron can be significantly influenced by the postcollision interaction.

We also detailedly assess how the distorted effects contribute to the structure of the emission pattern in both the scattering plane and the perpendicular plane. It is showed that the major contribution to the cross-section around the binary peak in the scattering plane and structures in the perpendicular plane comes from the initial channel perturbation potential. But with the increasing transverse momentum transfersqt(the transverse component of momentum transfersq), the contribution of the distorted effects becomes more and more important to the FDCS in both scattering and perpendicular planes. Atomic units are used throughout unless otherwise noted.

2 Theoretical method

Let us consider the following reaction produced by the impact of a bare ion of nuclear chargeZpon a He atom of nuclear chargeZT

Zp+(ZT,2e-)→Zp+(ZT,e-)+e.

(1)

H=Hi+Vi,

(2)

whereHirepresents the Hamiltonian in the entrance channel, andViis the corresponding perturbation potential. In the initial channel, one may write

,

(3)

(4)

(5)

Here

Vi′ =Vi+Vid,

(6)

.

(7)

(8)

The Schr?dinger equation defining in the entrance channel is given by (Hi-E)φi=0. The unperturbed stateφireads as

(9)

Fortheinitialstateofhelium,wehavechosentheanalyticalfittotheHartree-FockwavefunctiongivenbyByronandJoachain[13]

φ(x1,x2)=U(x1)U(x2),

(10)

whereU(x)=(4π)-1/2(2.60505e-1.41x+2.08144e-2.61x).

With the help of (2), we can rewrite Eq. (7) in the equivalent form

〉.

(11)

Inserting (8) into Eq. (11) and resorting to the usual mass limit μ?1, one readily identifies the additional distorting potentialVidas

(12)

(13)

withtheasymptoticchargeZ∞=1. For the eigenfunction ofHwe assume the form

(14)

whereψ-is the solution of the three-body Schrodinger equation

(15)

An approximate expression for the wavefunction reads[15,16]

χe(αTe,p,x1)χ(αPe,K,s1).

(16)

χ(α,k,r)=e-πα/2Γ(1-iα)1F1

(17)

ThesymbolsΓand1F1representthegammafunctionandtheconfluenthypergeometricfunction,respectively.TheSommerfeldparametershavetheform

(18)

Thewavefunctionψ-(calledCDW)representsinteractionsbetweentwobodysubsystemssincethedistortioneffectsofeachtwo-bodyCoulombpotentialhavebeentreatedexactly.AnuncertainpointofthismodelrepresentstheuseoftheasymptoticchargeZ∞=1.ItisshowedthattheCDWwavefunction(16)isasymptoticallycorrectinallasymptoticdomainsofcoordinatespace,asdetailedinRefs.[17-19].Thismeansthattheabovewavefunctionistheleadingtermoftheexactscatteringwavefunctionifanytwoparticlesarefarapart.ThiscompletesthederivationnecessaryfortheformulationofthepresentmodelcalledhereafterthemodifiedCoulomb-Born(MCB)approximation[12].TostudythePCIeffectwehavemadecalculationsneglectingthePCI(αPe=0)toshowhowimportantistoadequatelymodelthisinteractioninasingleionizationprocess.TheMCBhasbeenusedforthetotalcrosssectioninasemiclassicalway.ThisisthefirsttimefortheMCBtocalculatetheFDCSinaquantum-mechanicalway.AndthePIinteractionistakenintoaccountintheinitialandfinalstatewavesinaCoulombdistortedwave.

Thefullydifferentialcrosssectionsfortheprocess(1)maybewrittenas

(19)

whereNeisthenumberofelectronsintheatomicshell, dEerepresentstheenergyintervaloftheejectedelectron,andthesolidanglesdΩPanddΩedenotethedirectionofscatteringoftheprojectileandtheejectedelectron,respectively.

Combining(5)and(6)wecansplitthetransitionamplitudeequation(5)asthesumoftwoscatteringamplitude

(20)

3 Results and discussion

Inthissection,wewillchecktheaccuracyoftheMCBmodelusingtheequation(19),andbrieflyanalyzehowthehigh-ordereffectsPCIinfluencetheFDCS.Furthermore,wewillevaluatehowthedistortedeffectsinfluencethestructureoftheemissionpatterninboththescatteringplaneandtheperpendicularplane.

InFig. 1,wepresenttheresultsfortheMCBandMCB-noPCIandtheircomparisonstotheexperimentaldataextractedfromRef. [7].Thetheoreticalcalculationsandexperimentaldatacorrespondto75keVprotonsingleionizationofhelium,forelectronsejectedinthescatteringplanewithanenergyof5.4eV,anddifferenttransversemomentumtransfersqtof0.13a.u., 0.41a.u., 0.73a.u., 1.38a.u..Forcomparisonconvenientlywithotherdata,thepresentcalculationsaremultipliedbyaproperfactorwhichisshowninthefigurecaptionstopreservetheinformationontherelativemagnitudeofthedifferenttheoreticalpredictions.

Fig. 1 Fully differential cross-sections for electrons with an energy 5.4 eV ejected into the scattering plane in 75 keV p+He collisions. θe corresponds to the ejected electron angle. The transverse momentum transfers are qt of 0.13 a.u., 0.41 a.u., 0.73 a.u., 1.38 a.u. (from bottom to top). The dotted vertical lines indicate the angles θq and -θq,n.. Dotted lines: MCB-noPCI calculations. Solid lines: MCB calculations. Solid circles: experimental data[7]

Anothervisiblestructurenearθe= -35o,unrelatedtoboththebinaryandrecoilpeaks,atthelargestqtisproperlyreproducedbytheMCBresults.WhenthePCIisignored,thereisaprofoundimpactonthemagnitudeandpositionofthestructurenearθe=-35°.Recently,the3Cmodel[11]reproducestheshapeofthisstructureduetoaninterferenceatthelargestqtwhichcanbejustanextensionoftheexplanationbasedonthePIinteraction.Therefore,high-ordereffectsisveryimportantinreproducingthestructurenearθe=-35°.

Fig. 2 Same as in Fig. 1 except that this plane is the perpendicular plane

ToexplorethephysicaloriginofthepeakstructureintheFDCS,weexaminethecontributionoftheadditionaldistortionpotentialtotheFDCSinthescatteringandperpendicularplanes.ThecrosssectioniscalculatedasacoherentsumofcontributionsofperturbationpotentialscatteringamplitudeTivanddistortionpotentialscatteringamplitudeTid.InFigs. (3)and(4)theseparate(incoherent)contributionsofTivandTidscatteringamplitudesaredisplayed.

FromFig.3,themajorcontributiontothecross-sectionaroundthebinarypeakcomesfromtheperturbationpotential(seeeq. (4))inthescatteringplane.Interestingly,thepartialcross-sectionsarisingfromthedistortedpotential(seeeq. (12))qualitativelyreproducethestructuresatnegativeanglesatallqtintheexperimentaldata.Itisseenthatthedistortedpotentialmakesasignificanteffectontheresultsforsmallqt(seeFig. 3(a), (b)and(c)),andmakesitbetteratthelargestqtwheretheshapeofthepeaknearθe=-35°isnotreproducedbytheMCBtheorywithoutthedistortedpotential.AdestructiveinterferenceofTidandTivleadstoacross-sectionsmallerthantheindividualincoherentamplitudeTivatsmallqt(seeFig. 3(a)and(b)).ButitisalmostthesamewiththemeasurementwhethertheTidisswitchedonoroffatqt=0.73a.u..WhenatthelargestqttheconstructiveinterferenceofTidandTivmakesthecross-sectionslargerthantheindividualincoherentamplitudeTiv,whilesmallerthantheindividualincoherentamplitudeTivatlargeanglesregionsothatthecross-sectionsbecomeclosertothemeasurement.Obviously,withtheincreasingqttheroleoftheindividualincoherentamplitudeTidbecomesmoreandmoreimportanttotheFDCS.

Fig. 3 Same as in Fig.1 except that the incoherent contributions to the FDCS of the perturbation potential scattering amplitude Tiv (dash lines) and distortion potential scattering amplitude Tid (dotted lines)

ThereareseveralimportantobservationstobemadefromtheresultspresentedinFig. 4.Theperturbationpotentialisstillthemaincontributiontothecross-sectiontoreproduceallstructuresintheperpendicularplane.AdestructiveinterferenceofTidandTivleadstoacross-sectionsmallerthantheindividualincoherentamplitudeTivforallcases.Meanwhile,withtheincreasingqt,similartothescatteringplane,thecontributionoftheindividualincoherentamplitudeTidbecomesmoreandmoreimportanttotheFDCS.Therefore,itisseenthatthereisalittledifferencebetweenthecrosssectionsarisingfromtheindividualincoherentamplitudeTivandfromthetwointerferenceamplitudesatsmallqt(seeFig. 4(a), (b)and(c)),insteadofthesecases,theindividualincoherentamplitudeTidmakestheresultsreducedbyanorderofmagnitudeatthelargestqt.Furthermore,bothexperimentandtheoryhavethesamecharacteristicshapeatlargeanglesrangewherehasnoanypeakatthelargestqt,andwhiletheamplitudeTidisswitchoff,anobviouslowvalleyisobserved.However,theagreementisworsefortheminimumatthelargestqt.ItisinterestingthatattheminimumaslightpeakemergingintheindividualincoherentamplitudeTivbecomesmoreapparentduetotheindividualincoherentamplitudeTidtakingpartin.ThefailureoftheMCBmodelpredictingthefeatureinthisgeometrymaybetracedbacktoanimmaturedescriptionoftheamplitudeTiv.

Fig. 4 Same as in Fig. 2 except that the incoherent contributions to the FDCS of the perturbation potential scattering amplitude Tiv (dash lines) and distortion potential scattering amplitude Tid (dotted lines)

4 Conclusions

WepresenttheMCBcalculationsoftheFDCSforsingleionizationofheliumby75keVprotonimpactinboththescatteringplaneandtheperpendicularplane.ItisfoundthatsomesignificantimprovementswiththedataareachievedwiththefullMCBresults,especiallyforthetwo-peakstructureatthelargestqtintheperpendicularplane.Both3DW[7]andCDW-EIS[11]calculationsdonotqualitativelyreproducethetwo-peakstructureintheperpendicularplane,butMCBcalculationsdo.However,someobviousdiscrepanciesstillremain.Theagreementbetweenexperimentandtheoryisbetterinthescatteringplanethanitisintheperpendicularplane.SothedescriptionofthesephenomenaintheMCBapproachisevidentlypremature.Furtherimprovementshouldbeproposedtoaccountforthis.Inaddition,weassessthepostcollisioninteractionbycomparingtheresultsoftheMCBandMCB-noPCI,itisshowedthatthePCIhasaprofoundimpactontheshapeofthefullydifferentialcrosssectioninboththescatteringplaneandtheperpendicularplane.ThusthePCIisimportantenoughsothatitshouldnotbeneglected.

WehavealsodiscussedthecontributionsofthedistortedpotentialandtheperturbationpotentialtotheFDCSinthepresentmodel.Itisfoundthattheinterferenceeffectisveryintenseinboththescatteringplaneandtheperpendicularplane.Wecanseethattheshapeofthebinarypeakinthescatteringplaneandthetwo-peakstructureintheperpendicularplaneatthelargestqtmainlydependontheperturbationpotentialscatteringamplitudeTiv.However,withtheincreasingqtthecontributionoftheindividualincoherentamplitudeTidbecomesmoreandmoreimportanttotheFDCS.Noticeably,inthescatteringplane,thepartialcross-sectionsarisingfromthedistortedpotentialqualitativelyreproducethestructuresatnegativeanglesregionatallqtintheexperimentaldata.Furthermore,thepeaknearθe=-35°isqualitativelyreproducedduetothedistortedeffectsatthelargestqt.Therefore,theshapeandpositionofthepeakareprimarilydeterminedbytheamplitudeTivandthenmodifiedbytheamplitudeTid.However,theinterpretationofthesefeaturesmighthavebeenratherincomplete.Soamoredefinitiveexplanationneedstobefurtherstudied.

[1] Rescigno T N, Baertschy M, Isscas W A,etal. Collisional breakup in a quantum system of rhree charged particles [J].Science, 1999, 286: 2474.

[2] Schulz M, Moshammer R, Fischer D,etal. Three-dimensional imaging of atomic four-body processes [J].Nature(London), 2003, 422: 48.

[3] Ehrhardt H, Jung K, Knoth G,etal. Differential cross sections of direct single electron impact ionization [J].Z.Phys. D, 1986, I: 3.

[4] Schulz M, Madison D H. Studies of the few-body problem in atomic break-up processes [J].Int.J.Mod.Phys. A, 2006, 21: 3649.

[5] Ullrich J, Moshammer R, Dorn A,etal. Recoil-ion and electron momentum spectroscopy: reaction-microscopes [J].Rep.Prog.Phys. A, 2003, 66: 1463.

[6] Moshammer R, Ullrich J, Unverzagt M,etal. Low-energy electrons and their dynamical correlation with recoil ions for single ionization of helium by fast, heavy-ion impact [J].Phys.Rev.Lett., 1994, 73: 3371.

[7] Schulz M, Hasan A, Maydanyuk N V,etal. Kinematically complete experiment on single ionization in 75-keV P+He collisions [J].Phys.Rev. A, 2006, 73: 062704.

[8] Ciappina M F, Cravero W R, Schulz M. Post-collisional effects on single ionization in 75-keV P+He collisions [J].J.Phys. B, 2007, 40: 2577.

[9] Dey Ritu, Roy A C. Triply differential cross sections for single ionization of He by proton impact [J].Phys.Lett. A, 2006, 353: 341.

[10] Foster M, Peacher J L, Schulz M,etal. Precollision and postcollision electron-electron correlation effects for intermediate-energy proton-impact ionization of helium [J].Phys.Rev. A, 2005, 72: 062708.

[11] Ma X Y, Li X, Sun S Y,etal. Structures in fully differential cross-sections for proton impact ionization of helium [J].Europhys.Lett., 2012, 98: 53001.

[12] Belkic D. Single electron detachment from H-by proton impact [J].Nucl.Instrum.MethodsJ.Phys. B, 1997, 124: 365.

[13] Byron F W, Joachain C J. Correlation effects in atoms.I.helium [J].Phys.Rev., 1966, 146: 1.

[14] Berakdar J, Briggs J S, Klar H. Proton and antiproton impact ionization of atomic hydrogen and helium [J].Z.Phys. D, 1992, 24: 351.

[15] Garibotti C R, Miraglia J E. Ionization and electron capture to the continuum in the H+-hydrogen-atom collision [J].Phys.Rev. A, 1980, 21: 572.

[16] Brauner M, Briggs J S, Klar H. Triple-differential cross sections for ionisation of hydrogen atoms by electrons and positrons [J].J.Phys. B, 1989, 22: 2265.

[17] Kim Y E, Zubarev A L. Asymptotic continuum wave function for three charged particles [J].Phys.Rev. A, 1997, 56: 521.

[18] Alt E O, Mukhamedzhanov A M. Asymptotic solution of the Schr?dinger equation for three charged particles [J].Phys.Rev. A, 1993, 47: 2004.

[19] Mukhamedzhanov A M, Lieber M. Asymptotic wave function for three charged particles in the continuum [J].Phys.Rev. A, 1996, 54: 3078.

[20] Madison D H, Foster M, Moshammer R,etal. Probing scattering wave functions close to the nucleus [J].Phys.Rev.Lett., 2003, 91: 253201.

[21] Fischer D, Moshammer R, Schulz M,etal. Fully differential cross sections for the single ionization of helium by ion impact [J].J.Phys. B, 2003, 36: 3555.

[22] Schulz M, Najjari B, Voitkiv A B,etal. Postcollision effects in target ionization by ion impact at large momentum transfer [J].Phys.Rev. A, 2013, 88: 022704.

[23] Sharma S, Srivastava M K. Triple-differential cross sections for the electron- and positron-impact ionization of helium in an improved second Born approximation[J].Phys.Rev. A, 1988, 38: 1083.

[24] Jones S, Madison D H. Scaling behavior of the fully differential cross section for ionization of hydrogen atoms by the impact of fast elementary charged particles[J].Phys.Rev. A, 2002, 65: 052727.

[25] Fischer D, Voitkiv A B, Moshammer R,etal. Three-body momentum exchange in singly ionizing 2-MeV/u C6+-helium collisions [J].Phys.Rev. A, 2003, 68: 032709.

[26] Foster M, Madison D H, Peacher J L,etal. Fully differential cross sections for C6+single ionization of helium [J].J.Phys. B, 2004, 37: 1565.

[27] Voitkiv A B, Najjari B, Moshammer R,etal. Three-body quantum dynamics of helium single ionization by 1 GeV/u U92+impact [J].J.Phys. B, 2004, 37: L365.

Postcollision interaction and distorted effects on fully differential cross sections for single ionization of helium by proton impact

DUAN Yue-Hua, SU Ting, SUN Shi-Yan, JIA Xiang-Fu

(School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China)

The modified Coulomb-Born (MCB) approximation is applied to study single ionization of helium by 75 keV proton impact. Fully differential cross-sections (FDCS) are calculated using the MCB theory in both the scattering plane and the perpendicular plane for the first time. The results are compared with the experimental data and the MCB without postcollision interaction (MCB-noPCI) calculations. It is found that the present MCB calculations qualitatively reproduce the experimental peak structures, especially in the perpendicular plane. And the PCI has a profound impact on the shape of the fully differential cross section in both the scattering plane and the perpendicular plane. The contribution of the distorted effects to the FDCS is also analyzed in the scattering and perpendicular planes. It turns out that, with the increasing momentum transfers (difference between the initial and scattered projectile momentum), the role of the distorted effects becomes more and more important. In particular, the distorted effects qualitatively predict the structures at negative angles region at all momentum transfers in the scattering plane.

Fully differential cross-sections; Postcollision interaction; The distorted effects

國家自然科學基金(11274215); 山西省自然科學基金(2010011009)

段月花(1989—),女,山西運城人,研究生,研究領域為原子與分子碰撞.

賈祥福.E-mail: jiaxf@dns.sxnu.edu.cn

103969/j.issn.1000-0364.2015.10.013

0561.5

A

1000-0364(2015)05-0796-09

投稿日期: 2014-07-05

猜你喜歡
效應
鈾對大型溞的急性毒性效應
懶馬效應
今日農業(2020年19期)2020-12-14 14:16:52
場景效應
雨一直下,“列車效應”在發威
科學大眾(2020年17期)2020-10-27 02:49:10
決不能讓傷害法官成破窗效應
紅土地(2018年11期)2018-12-19 05:10:56
死海效應
應變效應及其應用
福建醫改的示范效應
中國衛生(2016年4期)2016-11-12 13:24:14
福建醫改的示范效應
中國衛生(2014年4期)2014-12-06 05:57:14
偶像效應
主站蜘蛛池模板: 四虎成人免费毛片| 国产乱子伦一区二区=| 国产欧美视频综合二区| 久久精品国产亚洲AV忘忧草18| 国产男女免费完整版视频| 99人体免费视频| 欧美特黄一级大黄录像| 亚洲伊人电影| 大陆国产精品视频| 国产呦视频免费视频在线观看 | 91在线丝袜| 九九热视频精品在线| 91在线播放免费不卡无毒| 99久久人妻精品免费二区| 中文字幕va| 3D动漫精品啪啪一区二区下载| 97国产一区二区精品久久呦| 色噜噜狠狠狠综合曰曰曰| 自拍亚洲欧美精品| 伦精品一区二区三区视频| 欧美特级AAAAAA视频免费观看| 日韩高清欧美| 伊人蕉久影院| 日韩高清欧美| 中国黄色一级视频| 福利国产微拍广场一区视频在线| 青青操国产视频| 国产成人精品一区二区不卡| 在线国产欧美| 久久精品人人做人人爽| 亚洲欧美综合在线观看| 精品国产www| 中文国产成人久久精品小说| 91香蕉视频下载网站| 成人毛片免费观看| 日本人真淫视频一区二区三区| 真实国产乱子伦高清| 国内熟女少妇一线天| 91精品专区国产盗摄| 日韩精品高清自在线| 久久国产精品波多野结衣| 色悠久久综合| 国产精品无码AV片在线观看播放| 美女被操黄色视频网站| 亚洲成人一区在线| 人与鲁专区| 久久精品中文字幕免费| 少妇被粗大的猛烈进出免费视频| 免费看一级毛片波多结衣| 免费毛片网站在线观看| 欧美一区二区福利视频| 老司国产精品视频| 十八禁美女裸体网站| 国产99精品久久| 国产乱人伦偷精品视频AAA| 国产日韩欧美中文| 在线看免费无码av天堂的| 72种姿势欧美久久久大黄蕉| 日韩免费毛片视频| 久操线在视频在线观看| 久久一色本道亚洲| 国产成人艳妇AA视频在线| 国产91透明丝袜美腿在线| 日韩在线视频网站| 日韩国产亚洲一区二区在线观看| 久久国产成人精品国产成人亚洲| 天天综合网在线| 波多野衣结在线精品二区| a级毛片免费网站| 国产欧美精品午夜在线播放| 538国产在线| 国产呦精品一区二区三区下载| 毛片大全免费观看| 国产亚洲一区二区三区在线| 欧美伊人色综合久久天天| 天堂亚洲网| 久久99精品国产麻豆宅宅| 91精品国产综合久久香蕉922| 国产96在线 | 在线观看91精品国产剧情免费| 国产不卡一级毛片视频| 国产美女在线观看|