祁文科, 張啟磊, 周 彧, 鄭賢鋒, 崔執鳳
(安徽師范大學原子與分子物理研究所, 蕪湖 241000)
混合水溶液中多金屬元素的激光誘導擊穿譜
祁文科, 張啟磊, 周 彧, 鄭賢鋒, 崔執鳳
(安徽師范大學原子與分子物理研究所, 蕪湖 241000)
使用自制的液相射流裝置測定了含有多種微量金屬元素混合水溶液的激光誘導擊穿光譜.研究了激光脈沖能量和ICCD門延時、門寬、增益等對LIBS譜線強度和信噪比的影響,以提高信噪比為標準對實驗參數進行了優化.在優化后的實驗參數下,確定了金屬元素Cr,Cd,Fe,Ca,Al,Mn和Pb的分析譜線,由實驗測定定標曲線得到了各元素的檢測限,其數值在0.018 ppm(Ca)到41.231 ppm(Cd)區域內.
激光誘導擊穿譜; 液體射流; 檢測限; 多金屬元素; 混合水溶液
隨著工業的迅速發展,工業廢水污染日趨嚴重,直接威脅到人類的健康和安全.監控工業廢水中重金屬元素的種類和含量是對其進行治理的重要前提,迫切需要一種可以快速而準確地檢測廢水中重金屬含量的分析技術.現有的分析方法主要有原子熒光光譜法[1]、原子吸收光譜法[2]、電感偶合等離子體-質譜法[3]、色譜法[4]、溶出伏安法[5]等,這些方法測量精度高,但都需要對樣品進行復雜的預處理、分析時間長,不具備快速、實時、在線以及多元素同時分析能力,難以滿足水污染在線監測的需要. 激光誘導擊穿光譜(Laser Induced Breakdown Spectroscopy,LIBS)是光譜分析領域中一種新的微量元素分析技術[6],他是利用高功率密度激光燒蝕樣品表面形成激光等離子體,通過測定等離子體中各元素的發射光譜,實現對樣品中各微量元素的定性定量分析.激光誘導擊穿光譜技術具有時間、空間分辨率高、可分析元素種類多且可同時分析、分析時間短、無需對樣品進行預處理等獨特優勢,有望實現LIBS技術應用于工業廢水中重金屬的快速、實時、在線監測,對進一步提高水質的在線檢測能力有促進作用.
相比于LIBS用于固相基質中痕量元素分析,由于激光燒蝕引起的液體濺射、液面波動的影響, LIBS技術應用于液相基質痕量元素分析,在檢測靈敏度和重復性上有待進一步提高.Cremers 和Rasziemski使用激光光束直接作用于液體,探測到了Li、Na、K、Rb、Cs、Be、Mg、Ca、B 和Al 元素的譜線,得到了各元素的檢測限[7].當前, LIBS技術應用于液相基質痕量分析需要解決的關鍵問題是提高檢測靈敏度,主要方法有選取合適的樣品取樣方式、激光與取樣樣品之間的作用方式、實驗參數優化,樣品取樣方式有靜態液面[8,9]、液相射流[10-12]、電子噴霧[13]和固體基質吸附[14-15]等,激光作用方式上有單脈沖LIBS[16,17]、雙脈沖LIBS和與其它輔助激發手段相結合的LIBS[18,19],激光種類有納秒激光[20]和飛秒激光[21].在實驗參數優化方面,研究較多的是激光脈沖能量、探測延時、環境條件等對LIBS信號強度和信背比(SBR)的影響,依據光譜分析原理和分析過程,SBR值對提高LIBS檢測靈敏度沒有直接影響,因為背景信號可以在數據處理過程中直接扣除,真正決定LIBS檢測靈敏度的是信號強度和信噪比(SNR),實驗參數的優化應以提高LIBS信號強度和SNR值為目標.
本工作采用液相射流取樣系統,運用單脈沖激光誘導擊穿光譜技術對混合水溶液中含有的Cr、Cd、Fe、Ca、Al、Mn、Pb等七種金屬元素同時進行定量分析.以提高LIBS信號強度和信噪比為目標,對激光脈沖能量、ICCD門延時、門寬和ICCD增益等實驗參數進行了優化,在最優實驗參數下,確定了各金屬元素的分析譜線,由實驗測定的定標曲線得到了各元素的檢測限.
實驗裝置主要由激光光源、射流取樣系統、光譜檢測和數據系統三部分組成.實驗方框圖如圖1所示.

圖1 實驗裝置框圖Fig. 1 Experiment setup
Nd: YAG脈沖激光二倍頻532 nm激光(Spectra-Physics,LAB170-10)作為光源,脈寬和重復頻率分別為10 ns、10 Hz,單脈沖能量在300 mJ以下可調.實驗中采用液體射流進樣技術,混合水溶液經過一個直徑為0.5 mm的噴嘴形成穩定的液相射流,通過蠕動泵控制液體的流速,實驗結果表明液體流速為35 ml/min時射流最穩定.為了避免液體濺射對光學元件的污染,通入氮氣在射流周圍形成保護氣體幕布.脈沖激光經過焦距為30 cm的透鏡(L1)垂直聚焦于位于噴嘴下方6 mm處的射流前表面,對樣品進行燒蝕,產生的LIBS信號經焦距為5 cm的透鏡(L2)成像于光纖探測探頭,經焦距為750 mm、分辨率為 0.023 nm的單色儀(Princeton Instruments,ACTON SP 2300i)分光后,由增強型電荷耦合器件ICCD探測(Princeton,PIMAX1024),最后由計算機完成探測信號的采集與處理.
按表1所示數據配制混合水溶液400 ml作為基準樣品,分析時所需要的低濃度樣品溶液由基準樣品進一步稀釋得到,實驗中的樣品溶劑為二次蒸餾水.
4.1 實驗參數的優化
實驗測定了基準樣品在348 nm~411 nm區域內的LIBS光譜,如圖2所示.通過與 (NIST)[22]光譜數據庫的比對以及對譜線強度分布規律的分析,對實驗測定的光譜區域內的譜線進行了元素歸屬,同時根據歸屬譜線的特征情況(譜線強度、相鄰譜線干擾)確定了用于元素分析的分析譜線,結果如表2所示.
表1 基準樣品中各元素的濃度及所需的質量
Table 1 Amounts and concentrations of various elements in standard sample

Elementcompoundmolecularformulaamount(mg)concentration(ppm)CrchromicchlorideCrCl3·6H2O204.96100CdcadmiumchlorideCdCl2·2.5H2O24383000FeirontrichlorideFeCl3·6H2O1930.651000CacalciumchlorideCaCl22.7752.5AlaluminiumchlorideAlCl3148.1575MnManganoussulfateMnSO4·H2O245.76200PbleadnitratePb(NO3)2693.401000

圖2 基準樣品在348 nm-411 nm區域內的LIBS光譜Fig. 2 LIBS spectra of the standard sample in the region 348 nm-411 nm

ElementMeasuredspectralines(nm)Analysisline(nm)Cr357.86 359.35 360.53357.86Cd361.05361.05Fe356.54 357.01 358.12 361.88363.15 364.78 371.99 373.48374.55 374.94 375.82 376.37381.58 382.04 382.58 383.42384.10 385.63 385.99 387.85388.62 404.58 406.36371.99Ca393.36 396.84393.36Al394.40 396.15396.15Mn403.08 403.30 403.44403.08Pb363.95 368.34 405.78405.78
為了提高LIBS信號的信噪比(SNR),首先將基準樣品稀釋到1/10濃度,對脈沖激光能量、ICCD探測延時、門寬和ICCD增益等實驗參數進行優化,得到了七種元素分析譜線LIBS信號強度和信噪比與相應實驗參數的依賴關系,其中LIBS信號強度是10個相同條件下所測定信號強度的平均值,其絕對標準偏差均在100~200之間,結果如圖3所示.
由圖3(a)可以看出當ICCD探測延時在3600 ns~4400 ns這個區間內變化時,信噪比有一個先上升后下降的趨勢,在探測延時取4200 ns時, LIBS信號的SNR值最大.由圖3(b)可知,在1500~5000 ns范圍內,隨著ICCD門寬的增加,LIBS信號強度逐漸增加,當門寬大于3000 ns時,信號強度增加的幅度非常小而信噪比有顯著的減小,SNR值最大時的最佳ICCD門寬為3000 ns.
由圖3(c)可以看出隨著激光脈沖能量的增大,激光功率密度增大,激光與樣品之間的相互作用增強,樣品中處在激發態的原子數目增多,LIBS信號持續增強.SNR值在能量為30 mJ時達到最大值,但如果能量繼續增大,導致保護氣體擊穿和樣品的光散射效應增強,導致SNR值直線下降.ICCD增益的功能是將采集到LIBS信號強度值按一定比例增強.由圖3(d)可知,隨著ICCD增益增大,信號強度逐漸增大,信號的SNR值先增大后減小,在170附近達到最大值.最后經過綜合考慮七種元素的LIBS信號強度與SNR值,確定了最佳實驗參數為:脈沖激光能量30 mJ、ICCD探測延時4200 ns、門寬3000 ns、ICCD增益170.
4.2 LIBS定標曲線
分別配置濃度為基準樣品濃度的1/10、1/5、3/10、2/5、1/2等5種分析樣品,在最佳實驗參數下,測定了分析樣品中Cr、Cd、Fe、Ca、Al、Mn、Pb等七種元素的LIBS信號強度,如圖4所示.
由實驗測定的不同濃度下各元素分析線相對應的LIBS信號強度,得到了這些元素的LIBS定標曲線,如圖5所示.
根據檢測限的計算公式:
其中σ是背景信號的標準偏差,S是定標曲線的斜率,根據實驗測定的σ值和由各元素定標曲線所確定的曲線斜率S,得到這些元素的LIBS檢測限,結果如表3所示.
本工作利用單脈沖激光誘導擊穿光譜技術對混合水溶液中多種金屬元素進行了定量分析.以提高LIBS信號的信噪比為標準,對各實驗參數進行了優化,得到的最佳實驗參數為:ICCD探測延時4200 ns、ICCD增益170、ICCD門寬3000 ns、激光能量30 mJ,由此得到的七種元素的LIBS檢測限遠低于文獻報道過的含單一金屬元素溶液中該元素的LIBS檢測限, 為LIBS技術應用于工業廢水的檢測提供理論依據和實驗參數.

a(1) a(2)Gate width: 1700 ns ICCD gain: 100 Pulse energy: 40 mJ

b(1) b(2)Gate delay: 4200 ns ICCD gain: 100 Pulse energy: 40 mJ

c(1) c(2)Gate delay: 4200 ns ICCD gain: 100 Gate width: 3000 ns

d(1) d(2)Gate delay: 4200 ns Pulse energy: 30mJ Gate width: 3000 ns圖3 實驗參數對LIBS信噪比與信號強度的影響, (a)ICCD門延時(b)ICCD門寬(c)激光能量(d)ICCD增益Fig. 3 The influence of experiment parameters on the LIBS SNR and signal intensity, (a) gate delay(b)gate width(c)laser pulse energy(d)ICCD gain

ElementCrCdFeCaAlMnPbAnalysisline(nm)357.86361.55371.99393.36396.15403.08405.78LOD(ppm)0.42741.2314.1550.0180.5300.6826.056

圖4 不同濃度下混合水溶液七種元素的LIBS譜Fig. 4 LIBS spectra of the seven elements in the mixed aqueous solution with different concentrations

(Fe)和(Pb) (Cr)

(Cd) (Ca)

(Al) (Mn)圖5 單脈沖下七種元素的LIBS定標曲線Fig. 5 LIBS calibration curves of the seven elements
[1] Song X, Ye M, Tang X,etal. Ionic liquids dispersive liquid-liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters[J].JournalofSeparationScience, 2013, 36(2): 414.
[2] Conti M E. The content of heavy metals in food packaging paper boards: an atomic absorption spectroscopy investigation[J].FoodResearchInternational, 1997, 30(5): 343.
[3] Curdová E, Vavru?ková L, Suchánek M,etal. ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi[J].Talanta, 2004, 62(3): 483.
[4] Bauer H, Ottenlinger D, Yan D. Trace analysis of heavy metal ions by ion chromatography[J].Chromatographia, 1989, 28(5-6): 315.
[5] Filipe O, Brett C. Cathodic stripping voltammetry of trace Mn (II) at carbon film electrodes[J].Talanta, 2003, 61(5): 643.
[6] Brech F, Cross L. Optical microemission stimulated by a ruby maser [J].Appl.Spectrosc., 1962, 16(2): 59.
[7] Cremers D A, Radziemski L J, Loree T R. Spectrochemical analysis of liquids using the laser spark [J].Appl.Spectrosc., 1984, 38(5): 721.
[8] Aragon C, Aguilera J A, Campos J. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy [J].Appl.Spectrosc., 1993, 47(5): 606.
[9] Charfi B, Harith M A. Panoramic laser-induced breakdown spectrometry of water [J].SpectrochimicaActaPartB:AtomicSpectroscopy, 2002, 57(7): 1141.
[10] Barreda F A, Trichard F, Barbier S,etal. Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].AnalyticalandBioanalyticalChemistry, 2012, 403(9): 2601.
[11] Yueh F Y, Sharma R C, Singh J P,etal. Evaluation of the potential of laser-induced breakdown spectroscopy for detection of trace element in liquid [J].JournaloftheAir&WasteManagementAssociation, 2002, 52(11): 1307.
[12] Rai V N, Zhang H, Yueh F Y,etal. Effect of steady magnetic field on laser-induced breakdown spectroscopy [J].AppliedOptics, 2003, 42(18): 3662.
[13] Huang J S, Ke C B, Huang L S,etal. The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets [J].SpectrochimicaActaPartB:AtomicSpectroscopy, 2002, 57(1): 35.
[14] Chen Z, Li H, Liu M,etal. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates [J].SpectrochimicaActaPartB:AtomicSpectroscopy, 2008, 63(1): 64.
[15] Sarkar A, Aggarwal S K, Sasibhusan K,etal. Determination of sub—ppm levels of boron in ground water samples by laser induced breakdown spectroscopy [J].MicrochimicaActa, 2010, 168(1-2): 65.
[16] Cheung N H, Yeung E S. Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown [J].Appl.Spectrosc., 1993, 47(7): 882.
[17] De Giacomo A, Dell’Aglio M, De Pascale O. Single pulse-laser induced breakdown spectroscopy in aqueous solution [J].Appl.Phys. A, 2004, 79(4-6): 1035.
[18] Rifai K, Laville S, Vidal F,etal. Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy[J].J.AnalyticalAtomicSpectrometry, 2012, 27(2): 276.
[19] Yaroshchyk P, Morrison R J S, Body D,etal. Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single-and double-pulse LIBS[J].SpectrochimicaActaPartB:AtomicSpectroscopy, 2005, 60(11): 1482.
[20] De Giacomo A, Dell'Aglio M, De Pascale O,etal. From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples[J].SpectrochimicaActaPartB:AtomicSpectroscopy, 2007, 62(8): 721.
[21] Dikmelik Y, McEnnis C, Spicer J B. Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene[J].OpticsExpress, 2008, 16(8): 5332.
[22] National institute of standards and technology. National institute of standards and technology atomic spectroscopy[DB/OL]. http://physics.nist.gov/PhysRefData/ASD/lines_form.html
Laser induced breakdown spectroscopy of multi-metal elements in mixed aqueous solution
QI Wen-Ke, ZHANG Qi-Lei, ZHOU Yu, ZHENG Xian-Feng, CUI Zhi-Feng
(Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu 241000, China)
Laser-induced breakdown spectroscopy (LIBS) of trace multi-metal elements in mixed aqueous solution were measured by a homemade liquid jet device. The influence of laser pulse energy, ICCD gate delay and width, ICCD gain on signal intensities and signal to noise ratio(SNR) of LIBS were investigated. The experiment parameters were optimized in order to enhance the SNR value. The analysis lines of Cr, Cd, Fe, Ca, Al, Mn, and Pb metal elements were confirmed under the optimum experiment condition. The limits of detection(LOD) of LIBS for these elements were obtained by the measured calibration curves. The measured LOD values range from 0.018 ppm(Ca) to 41.231 ppm(Cd).
Laser induced breakdown spectroscopy; Liquid jet; Limit of detection; Multi-metal elemental; Mixed aqueous solution
103969/j.issn.1000-0364.2015.12.017
2014-02-27
國家自然科學基金(11074003)
祁文科(1988—),男,湖北黃岡人,碩士研究生,主要研究領域為激光光譜技術.
崔執鳳. E-mail: zfcui@mail.ahnu.edu.cn
O562.3
A
1000-0364(2015)06-1013-05