朱仲玲 閻昭
·國家基金研究進展綜述·
靶向谷胱甘肽抗氧化系統逆轉腫瘤耐藥的研究進展*
朱仲玲 閻昭
谷胱甘肽(glutathione,GSH)是維持生物體內氧化還原平衡狀態最為重要的小分子活性寡肽,具有抗氧化和調節機體巰基平衡的作用,并通過參與谷胱甘肽化修飾調控眾多信號轉導分子及氧化還原敏感轉錄因子的活性。研究顯示,在多種腫瘤中GSH水平明顯增高,通過消除ROS、解毒藥物或參與DNA修復過程等機制促進腫瘤細胞耐藥。GSH系統代謝酶在耐藥腫瘤細胞中亦呈高表達,調控腫瘤細胞對藥物的治療反應。耗竭GSH或下調GSH系統代謝酶可有效逆轉腫瘤耐藥,使耐藥腫瘤細胞恢復化療敏感性,表明GSH抗氧化系統是促使腫瘤耐藥的關鍵性因素之一。近年來,GSH抗氧化系統作為潛在的抗腫瘤治療和耐藥逆轉靶點正備受關注。本文就GSH抗氧化系統參與腫瘤耐藥的作用及GSH抗氧化系統靶向藥物作一綜述。
谷胱甘肽 抗氧化 氧化還原 腫瘤 耐藥
谷胱甘肽(glutathione,GSH)及相關代謝酶構成機體內最為重要的抗氧化防御系統,保護細胞免受活性氧自由基(reactive oxygen species,ROS)的攻擊[1]。近年來研究發現,耐藥腫瘤細胞內GSH水平升高,相關代謝酶表達上調[2-3],表明GSH抗氧化系統作為細胞內主要的氧化還原狀態調控系統與腫瘤耐藥性密切相關。本文重點介紹GSH抗氧化系統參與腫瘤耐藥的作用及相關靶向藥物開發應用進展。
腫瘤細胞在代謝過程中產生一系列ROS,通過DNA損傷、遺傳不穩定性、激活癌基因和藥物抗性等方式促進腫瘤發生發展[4]。而高水平ROS則具有細胞毒性,導致包括DNA、蛋白質在內的大分子物質損傷及線粒體通透性增加,最終導致細胞色素C釋放和細胞凋亡。由于腫瘤細胞長期處于中低水平氧化應激狀態,較容易在藥物刺激下越過細胞耐受的臨界點導致細胞死亡[5-6]。臨床使用的諸多化療藥物和放療療法就是通過產生大量ROS而實現抗腫瘤效應[7]。然而,長期治療往往促使腫瘤細胞內抗氧化酶系統上調,最終導致腫瘤耐藥[8]。下調細胞內抗氧化酶水平或給予額外ROS處理可使耐藥腫瘤細胞恢復敏感性,表明腫瘤細胞內氧化還原平衡狀態與治療反應密切相關,抗氧化系統可通過調控細胞內氧化還原狀態和ROS水平誘導腫瘤耐藥[9]。
維持細胞內氧化還原平衡狀態的抗氧化系統主要分為三類:GSH/氧化型谷胱甘肽(oxidized glutathione,GSSG)系統、谷氧還蛋白(glutaredoxin,Grx)系統以及硫氧化蛋白(thioredoxin,Trx)/Trx還原酶系統[10]。除了Trx需要還原型輔酶Ⅱ(NADPH)提供還原當量,GSH/GSSG和Grx抗氧化系統則均需GSH提供電子供體,因此GSH成為維持生物體內氧化還原系統穩態最為重要的小分子活性物質[11]。參與GSH合成、降解、結合及氧化還原等過程的代謝酶共同組成GSH抗氧化系統,維系著細胞內GSH穩態。
谷胺酰半胱氨酸合成酶(glutamate cysteine li?gase,GCL)是GSH合成的限速酶,決定GSH合成的速率和量,其催化活性受產物GSH的反饋抑制;在轉錄和轉錄后水平上,則受Nrf1/2、AP-1、NF-κB等轉錄因子調控,促使細胞內GSH含量維持動態平衡[1]。γ-谷氨酰轉肽酶(glutamyl transferase,GGT)是惟一的GSH降解酶,可將GSH水解為谷氨酸和半胱酰甘氨酸,后者可再被二肽酶水解為半胱氨酸和甘氨酸,形成GSH合成利用循環。谷胱甘肽硫轉移酶(gluta?thione S-transferase,GST)是GSH結合反應的關鍵酶,可催化GSH與親電藥物(如烷化劑、蒽環類抗癌藥物等)結合,形成谷胱甘肽-S-共軛物(GS-X)復合物,通過細胞外排從而降低藥物毒性。GST亦是重要的抗氧化酶之一,可通過清除ROS而發揮抗氧化作用[12]。谷胱甘肽過氧化物酶(glutathione peroxi?dase,Gpx)和谷胱甘肽還原酶(glutathione reductase,GSR)是參與GSH氧化還原代謝循環的兩個關鍵酶。Gpx1是Gpx家族中含量最為豐富的亞型,存在于真核細胞胞漿中,也見于線粒體,是體內重要的自由基捕獲酶之一。Gpx1可將GSH氧化成GSSG,同時將H2O2還原為H2O,導致超氧陰離子(O2-)通過中間體H2O2生成·OH的反應鏈被打斷。而GSR可利用NADPH將GSSG還原成GSH。GSH氧化還原代謝循環通過自由巰基/氧化巰基(-SH/-S-S-)及NADPH/ NADP+與細胞內的氧化還原平衡和能量代謝平衡相偶聯,對于維系細胞內氧化還原水平及能量平衡具有重要作用。
大量研究證實,在很多類型腫瘤中GSH水平明顯升高[2],相關代謝酶(如GCL、GGT、GST、GSR、Gpx等)在耐藥腫瘤細胞中高表達[3,13-16],相應的調控基因Nrf-2活性上調,保護細胞免受ROS、放療及化療的攻擊,并調控細胞對治療的反應[17]。耗竭GSH或下調GSH系統代謝酶能夠有效逆轉腫瘤耐藥,使耐藥腫瘤細胞恢復敏感。研究顯示,人卵巢癌細胞內GSH水平升高可誘導細胞對鉑類耐藥[18],降低人多發性骨髓瘤細胞內GSH水平則可增加腫瘤細胞對三氧化二砷(arsenic trioxide,As2O3)的敏感性[19],而降低人乳腺癌耐順鉑細胞內GSH水平亦也逆轉腫瘤細胞的耐藥性[20]。GCL或GST抑制劑可明顯增加腫瘤細胞對多種治療藥物的敏感性[2,21]。亦有文獻報道,放療耐受的膠質瘤細胞U251內GSR和Gpx高表達,導致細胞對順鉑和放療不敏感[22]。GSR抑制劑能夠下調GSH含量提高藥物敏感性[23]。而Gpx1可調控膠質母細胞瘤細胞對氧化刺激的敏感性[24],并介導B細胞淋巴瘤細胞對順鉑、依托泊苷及棚替佐米等化療藥物耐受[25]。由此可見,GSH抗氧化系統對于維持腫瘤細胞GSH含量、氧化還原穩態及調控藥物反應性發揮著重要作用。目前,GSH抗氧化系統作為潛在的抗腫瘤治療和耐藥逆轉靶點受到腫瘤學家們的高度關注。
4.1 GSH合成抑制劑
丁硫氨酸亞砜胺(L-buthionine-sulfoximine,BSO)是一種GSH合成限速酶GCL的強效抑制劑,能有效地阻斷GSH的合成,降低細胞內GSH水平而逆轉耐藥,增加腫瘤細胞對三氧化二砷、苯丙氨酸氮芥、順鉑及阿霉素等化療藥物的敏感性[10]。目前,BSO聯合苯丙氨酸氮芥治療耐藥或復發性神經母細胞瘤I期臨床試驗(臨床試驗注冊號NCT00005835)尚在進行中。
4.2 GSH降解抑制劑
谷氨酰胺類似物如阿西維辛(acivicin),重氮基正亮氨酸(diazonorleucine)和偶氮絲氨酸(L-azaser?ine)等化合物能夠強效抑制GSH降解酶GGT的活性,從而阻斷GSH合成利用循環,但是嚴重的不良反應使得這些化合物無緣臨床應用。近來有研究報道了兩類新的GGT抑制劑,一類是γ-膦酰基谷氨酰胺類似物,另一類是OU749衍生物,但在腫瘤治療上其臨床應用價值尚待進一步驗證[26]。
4.3 GST-π抑制劑
GST是由兩個同源或異源二聚體亞基組成的多家族蛋白酶,至今共發現5類,即μ、π、α、θ和微粒體型,其中GST-π占90%以上,與腫瘤耐藥關系最為密切[27]。抗利尿劑依他尼酸是首個進行臨床研究的GST抑制劑。I期臨床試驗表明,依他尼酸可部分逆轉B細胞淋巴瘤患者對苯丁酸氮芥的耐藥性,還可增加晚期惡性腫瘤患者對烷化劑塞替派的敏感性。但是,依他尼酸導致的利尿作用以及缺乏特異性限制了其作為GST抑制劑的臨床使用[28]。TLK199亦是GST-π特異性抑制劑,通過激活JNK激酶促進正常細胞生長分化和腫瘤細胞凋亡,其治療骨髓增生異常綜合征和重癥嗜中性白血球減少癥的Ⅰ/Ⅱ期臨床試驗已經獲得肯定結果[10]。
4.4 由GST-π激活的前藥
TLK286(canfosfamide)是目前研究最多的由腫瘤細胞內GST-π激活的前藥,生成GSH類似物和活性藥物氮芥類烷化劑[29]。TLK286在體外與卡鉑、紫杉醇及蒽環類藥物具有協同作用,無交叉耐藥性。一項TLK286聯合卡鉑和紫杉醇一線治療局部晚期或轉移性NSCLC患者的Ⅰ~Ⅱa期臨床試驗中,129例患者給予為期3周的治療方案,每周期第1天靜注TLK286 400~1 000 mg·m-2合并紫杉醇200 mg·m-2和卡鉑(AUC=6),最多使用6個周期。臨床試驗結果顯示,客觀緩解率為34%,中位無進展生存期為4.3個月,中位生存期為9.9個月,生存期達1年的患者占43.1%。該研究接受TLK286維持治療患者的平均生存期長達16.8個月,而未接受TLK286維持治療患者的平均生存期僅為8.8個月(風險比率為0.38,P<0.001)[30]。此結果表明,TLK286聯合卡鉑和紫杉醇效果明顯,患者耐受良好。TLK286維持治療有助于進一步改進患者預后。另外,TLK286聯合脂質體阿霉素對照脂質體阿霉素單藥治療鉑類耐藥卵巢癌的隨機對照Ⅲ期臨床試驗結果表明,TLK286聯合脂質體阿霉素組和脂質體阿霉素單藥組中位無進展生存期分別為5.6個月和3.7個月(風險比率為0.92,P=0.724 3)[31]。然而,針對75例鉑類復發或鉑類原發耐藥的卵巢癌患者亞組分析表明,聯合組和單藥組中位無進展生存期分別為5.6個月和2.9個月(風險比率為0.55,P=0.042 5)。不良反應評價結果表明,兩組非血液學毒性發生率接近,而聯合組掌足紅腫和口腔炎發生率低于單藥組。
4.5 GSSG衍生物
NOV-002是一種氧化型GSH的小分子衍生物,藥物的活性成分即是GSSG[32]。NOV-002可增加細胞內GSSG水平,改變GSH/GSGG比例,從而影響細胞內氧化還原平衡狀態。NOV-002還可誘導蛋白質分子S-谷胱甘肽化而調控激酶/磷酸酶信號轉導通路[33]。作為氧化還原調節劑、化療增敏劑和免疫調節劑,NOV-002治療乳腺癌、NSCLC及化療耐受卵巢癌的Ⅱ期試驗均取得了陽性結果,已在俄羅斯獲準與化療藥合用治療難治性卵巢癌和NSCLC。然而,2010年ASCO報道了一項NOV-002聯合紫杉醇/卡鉑對比紫杉醇/卡鉑治療NSCLC的隨機、開放的Ⅲ期臨床試驗結果,聯合組和單純化療組的總體中位生存期分別為10.2個月和10.8個月(P=0.375),中位無進展生存期分別為5.3個月和5.6個月,客觀有效率分別為26.6%和26.0%,不良事件導致的死亡分別為5.6%和3.1%。結果表明,在卡鉑/紫杉醇方案中加入NOV-002雖未能提高晚期NSCLC患者整體生存率,但也未增加化療的總體毒性[34]。
4.6 GSH耗竭劑
Imexon是具有氮丙啶結構的促氧化化合物,可通過耗竭細胞內GSH,誘導氧化應激所致的凋亡。Imexon聯合化療治療晚期乳腺癌、NSCLC、前列腺癌及胰腺癌的I期試驗均獲得陽性結果。最近一項Ⅱ期臨床試驗顯示,Imexon能有效治療復發或難治性B細胞非霍奇金淋巴瘤,整體反應率為30%[35]。As2O3亦是降低GSH濃度的凋亡誘導劑,并可抑制Gpx和線粒體呼吸鏈。FDA已于2000年批準As2O3治療復發或難治性急性早幼粒細胞性白血病。研究發現,As2O3敏感性取決于腫瘤細胞中GSH水平,聯用BSO可增強As2O3導致的細胞凋亡[2]。
4.7 GSH氧化還原代謝酶抑制劑
GST在腫瘤耐藥中研究較多,目前已有多個靶向GST的新藥正處于臨床試驗階段。然而,GSH氧化還原代謝循環對腫瘤耐藥的作用卻鮮有關注。GSR是維持細胞內GSH/GSSG比例、穩定氧化還原狀態的關鍵抗氧化酶之一。據文獻報道,GSR抑制劑具有抗腫瘤和抗瘧疾作用,特別有助于逆轉耐藥[36]。臨床應用的抗腫瘤藥物卡莫司汀為亞硝脲類烷化劑,亦是GSR的非可逆抑制劑,能夠影響GSH系統巰基平衡,誘導ROS產生。然而,卡莫司汀導致的非特異性毒性反應及抑制DNA合成的作用使得該藥無法作為GSR抑制劑開發應用[37]。2-AAPA是新合成的一種非可逆GSR抑制劑,具有特異性好、活性強等特點,能夠明顯降低GSH/GSSG比例,目前作為工具藥用于巰基氧化還原狀態的研究,其在抗腫瘤和抗瘧疾上的臨床應用尚待進一步探討[37]。
許多臨床治療藥物通過促進細胞內產生大量ROS發揮抗腫瘤作用,然而長期用藥往往誘導腫瘤細胞發生適應性反應,通過上調抗氧化系統對抗藥物作用,最終導致腫瘤耐藥。GSH系統作為細胞內最為重要的抗氧化系統之一,與治療藥物敏感性密切相關。GSH抗氧化系統靶點藥物在逆轉腫瘤耐藥性和提高抗腫瘤藥物的治療指數方面均具有重要作用,各類抑制劑和前藥的臨床開發正備受關注。近年來臨床試驗結果顯示,GSH抗氧化系統靶向藥物(如NOV-002、TLK286、BSO等)雖單藥效果不佳,但是聯合化療對于難治性腫瘤的治療效果已經初見端倪,具有較好的臨床應用價值。然而,由于缺乏特異性而導致的非預期不良作用,以及半衰期短等藥動學問題不容忽視。在今后的研究中,一方面應深入闡明GSH抗氧化系統關鍵分子的生物學特性及功能,明確GSH系統驅動的信號通路,為設計特異性強、高效低毒的新一代GSH靶向藥物開拓新思路。另一方面,應積極開展隨機對照臨床研究,探索此類藥物與其他治療方案如化療、放療等的聯合治療策略、推進臨床開發進程。
[1]Lushchak VI.Glutathione homeostasis and functions:potential targets for medical interventions[J].J Amino Acids,2012,2012: 736837.
[2]Traverso N,Ricciarelli R,Nitti M,et al.Role of glutathione in cancer progression and chemoresistance[J].Oxid Med Cell Lon?gev,2013,2013:972913.
[3]Ye CG,Yeung JH,Huang GL,et al.Increased glutathione and mitogen-activated protein kinase phosphorylation are involved in the induction of doxorubicin resistance in hepatocellular carci?noma cells[J].Hepatol Res,2013,43(3):289-299.
[4]Manda G,Isvoranu G,Comanescu MV,et al.The redox biology network in cancer pathophysiology and therapeutics[J].Redox Biol, 2015,5:347-357.
[5]Ibanez IL,Notcovich C,Catalano PN,et al.The redox-active nanomaterial toolbox for cancer therapy[J].Cancer Lett,2015,359 (1):9-19.
[6]Gorrini C,Harris IS,Mak TW.Modulation of oxidative stress as an anticancer strategy[J].Nat Rev Drug Discov,2013,12(12):931-947.
[7]Ivanova D,Bakalova R,Lazarova D,et al.The impact of reactive oxygen species on anticancer therapeutic strategies[J].Adv Clin Exp Med,2013,22(6):899-908.
[8]Glasauer A,Chandel NS.Targeting antioxidants for cancer thera?py[J].Biochem Pharmacol,2014,92(1):90-101.
[9]Polimeni M,Gazzano E.Is redox signaling a feasible target for overcoming multidrug resistance in cancer chemotherapy[J]?Front Pharmacol,2014,5:286.
[10]Montero AJ,Jassem J.Cellular redox pathways as a therapeutic target in the treatment of cancer[J].Drugs,2011,71(11):1385-1396.
[11]Aquilano K,Baldelli S,Ciriolo MR.Glutathione:new roles in redox signaling for an old antioxidant[J].Front Pharmacol,2014,5:196.
[12]Ye ZW,Zhang J,Townsend DM,et al.Oxidative stress,redox regulation and diseases of cellular differentiation[J].Biochim Bio?phys Acta,2015,1850(8):1607-1621.
[13]Filippova M,Filippov V,Williams VM,et al.Cellular levels of oxidative stress affect the response of cervical cancer cells to che? motherapeutic agents[J].Biomed Res Int,2014,2014:574659.
[14]Irwin ME,Rivera-Del Valle N,Chandra J.Redox control of leu?kemia:from molecular mechanisms to therapeutic opportunities [J].Antioxid Redox Signal,2013,18(11):1349-1383.
[15]Tong L,Chuang CC,Wu S,et al.Reactive oxygen species in re?dox cancer therapy[J].Cancer Lett,2015,367(1):18-25.
[16]Lash LH,Putt DA,Jankovich AD.Glutathione Levels and Sus?ceptibility to Chemically Induced Injury in Two Human Prostate Cancer Cell Lines[J].Molecules,2015,20(6):10399-10414.
[17]Saeidnia S,Abdollahi M.Antioxidants:friends or foe in preven?tion or treatment of cancer:the debate of the century[J].Toxicol Appl Pharmacol,2013,271(1):49-63.
[18]Belotte J,Fletcher NM,Awonuga AO,et al.The Role of Oxidative Stress in the Development of Cisplatin Resistance in Epithelial Ovarian Cancer[J].Reproductive Sciences,2014,21(4):503-508.
[19]Srivastava R,Sengupta A,Mukherjee S,et al.In vivo effect of ar?senic trioxide on keap1-p62-Nrf2 signaling pathway in mouse liver:expression of antioxidant responsive element-driven genes related to glutathione metabolism[J].ISRN Hepatology,2013, 2013:1-13.
[20]Jia Y,Zhang C,Zhou L,et al.Micheliolide overcomes KLF4-me?diated cisplatin resistance in breast cancer cells by downregulat?ing glutathione[J].Onco Targets Ther,2015,8:2319-2327.
[21]Zhang Y,Zhou T,Duan J,et al.Inhibition of P-glycoprotein and glutathione S-transferase-pi mediated resistance by fluoxetine in MCF-7/ADM cells[J].Biomed Pharmacother,2013,67(8):757-762.
[22]Lee HC,Kim DW,Jung KY,et al.Increased expression of antiox?idant enzymes in radioresistant variant from U251 human glio?blastoma cell line[J].Int J Mol Med,2004,13(6):883-887.
[23]?akmak R,Durdagi S,Ekinci D,et al.Design,synthesis and bio?logical evaluation of novel nitroaromatic compounds as potent glutathione reductase inhibitors[J].Bioorg Medi Chem Lett,2011, 21(18):5398-5402.
[24]Dokic I,Hartmann C,Herold-Mende C,et al.Glutathione per?oxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress[J].Glia,2012,60(11):1785-1800.
[25]Schulz R,Emmrich T,Lemmerhirt H,et al.Identification of a glu?tathione peroxidase inhibitor that reverses resistance to antican?cer drugs in human B-cell lymphoma cell lines[J].Bioorg Med Chem Lett,2012,22(21):6712-6715.
[26]Hanigan MH.Gamma-glutamyl transpeptidase:redox regula?tion and drug resistance[J].Adv Cancer Res,2014,122:103-141.
[27]Backos DS,Franklin CC,Reigan P.The role of glutathione in brain tumor drug resistance[J].Biochem Pharmacol,2012,83(8): 1005-1012.
[28]Townsend DM,Tew KD.The role of glutathione-S-transferase in anti-cancer drug resistance[J].Oncogene,2003,22(47):7369-7375.
[29]Dourado DF,Fernandes PA,Ramos MJ,et al.Mechanism of glu?tathione transferase P1-1-catalyzed activation of the prodrug canfosfamide(TLK286,TELCYTA)[J].Biochemistry,2013,52 (45):8069-8078.
[30]Sequist LV,Fidias PM,Temel JS,et al.Phase 1-2a multicenter doseranging study of canfosfamide in combination with carboplatin and paclitaxel as first-line therapy for patients with advanced non-smallcell lung cancer[J].J Thorac Oncol,2009,4(11):1389-1396.
[31]Vergote I,Finkler NJ,Hall JB,et al.Randomized phaseⅢstudy of canfosfamide in combination with pegylated liposomal doxoru?bicin compared with pegylated liposomal doxorubicin alone in platinum-resistant ovarian cancer[J].Int J Gynecol Cancer,2010, 20(5):772-780.
[32]Gumireddy K,Li A,Cao L,et al.NOV-002,A Glutathione Di?sulfide Mimetic,Suppresses Tumor Cell Invasion and Metastasis [J].J Carcinog Mutagen,2013,2013:S7-002.
[33]Montero AJ,Diaz-Montero CM,Deutsch YE,et al.Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stageⅡ-Ⅲc breast can?cer[J].Breast Cancer Res Treat,2012,132(1):215-223.
[34]Fidias P,Ciuleanu TA,Gladkov O,et al.A randomized,open-la?bel,phaseⅢtrial of NOV-002 in combination with paclitaxel (P)and carboplatin(C)versus paclitaxel and carboplatin alone for the treatment of advanced non-small cell lung cancer (NSCLC)[J].J Clin Oncol,2010,28(18):3723-3731.
[35]Barr PM,Miller TP,Friedberg JW,et al.Phase 2 study of imex?on,a prooxidant molecule,in relapsed and refractory B-cell non-Hodgkin lymphoma[J].Blood,2014,124(8):1259-1265.
[36]Bauer H,Fritz-Wolf K,Winzer A,et al.A fluoro analogue of the menadione derivative 6-[2'-(3'-methyl)-1',4'-naphthoquinolyl] hexanoic acid is a suicide substrate of glutathione reductase.Crys?tal structure of the alkylated human enzyme[J].J Am Chem Soc, 2006,128(33):10784-10794.
[37]Seefeldt T,Zhao Y,Chen W,et al.Characterization of a novel di?thiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione[J].J Biol Chem,2009,284 (5):2729-2737.
(2015-10-20收稿)
(2015-12-01修回)
(編輯:鄭莉)
Research progress on therapeutic strategies targeting the glutathione antioxidant system in cancer cells to reverse drug resistance
Zhongling ZHU,Zhao YAN
Correspondence to:Zhao YAN;E-mail:yanzhaotj@126.com
Department of Clinical Pharmacology,Tianjin Medical University Cancer Institute and Hospital,National Clinical Research Center for Cancer,Tianjin Key Laboratory of Cancer Prevention and Therapy,Tianjin 300060,China.
This work was supported by the National Natural Science Foundation of China(No.81402481)and the Research Foundation of Tianjin Health Bureau(No.2014KZ085).
Glutathione(GSH)is the most important small-molecule,active oligopeptide in the maintenance of redox balance. GSH contributes to antioxidant and thiol equilibrium,as well as modulates the activities of many signaling molecules and redox-sensitive transcription factors by S-glutathionylation.Several studies have shown that the GSH level increased in various tumors.Additionally,increased GSH significantly contributes to drug resistance by eliminating ROS,detoxifying drugs,or participating in DNA repair. GSH-related metabolic enzymes are overexpressed in resistant cells,thereby regulating cellular response to chemotherapy drugs.Depletion of GSH or downregulation of GSH-related metabolic enzymes may effectively reverse drug resistance and promote resistant cells to restore sensitivity.This potential indicates that the GSH antioxidant system plays an important role in drug resistance.The GSH antioxidant system,as a potential target for antitumor therapy and reversal of drug resistance,has recently become an attractive focus in cancer research.This paper presents a review of the role of the GSH antioxidant system in drug resistance and discusses the therapeutic strategies targeting the GSH antioxidant system.
glutathione,antioxidant,redox,cancer,resistance
10.3969/j.issn.1000-8179.2015.23.146

朱仲玲 專業方向為腫瘤藥理學。
天津醫科大學腫瘤醫院臨床藥理室,國家腫瘤臨床醫學研究中心,天津市腫瘤防治重點實驗室(天津市300060)
*本文課題受國家自然科學基金項目(編號:81402481)和天津衛生局科技基金項目(編號:2014KZ085)資助
閻昭 yanzhaotj@126.com
E-mail:zzl0958@163.com