999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

INTERPOLATION OF LORENTZ-ORLICZ MARTINGALE SPACES?

2015-02-10 08:37:33張傳洲潘譽張學(xué)英

(張傳洲)(潘譽)(張學(xué)英)

College of Science,Wuhan University of Science and Technology,Wuhan 430065,China

E-mail:zczwust@163.com;80218430@qq.com;zhxying315@163.com

INTERPOLATION OF LORENTZ-ORLICZ MARTINGALE SPACES?

Chuanzhou ZHANG(張傳洲)Yu PAN(潘譽)Xueying ZHANG(張學(xué)英)

College of Science,Wuhan University of Science and Technology,Wuhan 430065,China

E-mail:zczwust@163.com;80218430@qq.com;zhxying315@163.com

In this paper,we apply function parameters to real interpolation of Lorentz-Orlicz martingale spaces.Some new interpolation theorems are formulated which generalize some known results in Lorentz spaces Λαintroduced by Sharpley.

martingale;Lorentz-Orlicz space;interpolation;function parameter

2010 MR Subject Classifcation60G46;47A30

1 Introduction

The real interpolation spaceˉAθ,qwas introduced in[1],and the theory of the spaceˉAθ,qhas been applied as a powerful tool to many branches of mathematics.These spaces are defned by using function norm:

For the further applications of interpolation space theory,the idea of replacing φθ,qby a more general function norm to obtain more general interpolation spaces appeared.The initial work on such spaces was due Kalugina[2].She used the function norm

to replace φθ,q,where f is a function parameter,which belongs to the function class Bk.Later on,the theory of interpolation with a function parameter has been developed in an astounding way.For example see[3-6].

Interpolation of martingale Hardy spaces is one of the main topics in martingale Hptheory, and its theory has been successfully applied to Fourier analysis.In classical martingale Hptheory,it was proved by Weisz[7]and Long[8]that the interpolation spaces of martingale Hardy-Lorentz space are martingale Hardy-Lorentz spaces.In[13]and[14],Ren studied the interpolation for Lorentz martingale spaces.In[15],Fan also studied Lorentz martingale spaces and its interpolation.

In this paper,we discuss the interpolation of generalized Lorentz martingale spaces named Lorentz-Orlicz martingale spaces generated by an orlicz function.Motivated by[13],some new interpolation theorems are formulated which generalize some known results in Lorentz martingale spaces.

2 Preliminaries and Notations

Defnition 2.1We shall say that f is a parameter of f∈Bkif it is a positive,increasing and continuous function on(0,∞)such that

For f∈Bkand an Orlicz function F we introduced the function norm

where u is a non-negative measurable function on(0,∞).

Defnition 2.2Let(Ω,μ)be a σ-fnite measure space.Suppose φ is a non-decreasing concave function on[0,∞)such that φ(0)=0 and F is an Orlicz function.The Lorentz-Orlicz space LφFis defned to be the space of allμ-measurable functions x on Ω such that the functional

is fnite,where x?is the non-increasing rearrangement of x with respect to the measureμ.It is usual to defne a norm‖x‖φFon LφFas follows:

If F(u)=u1/α,0<α≤1,then LφF=Λα(φ),where Λα(φ)are the Lorentz space investigated by Sharpley in[10].These spaces represent a natural scale of spaces which generalize the usual Lorentz Lp,qspaces.

Let(Ω,F,P)be a complete probability space,and nondecreasing sequence of sub-σ-algebra of F such that F=σ(∪nFn).The conditional expectations operators relative to Fnare denoted by En.For an X-valued martingale f=(fn)n≥0relative to(Ω,F,P;(Fn)n≥0),denote fi=fi-fi-1(with convention df-1=0)and

Let(Ω,F,P,{Fn}n≥0)be as usual.It is said to satisfy the condition“R”,if there exists a constant d≥1 such that

In this case we call that the martingales f=(fn)n≥0are regular.

Defnition 2.3Suppose the X-valued martingales f=(fn)n≥0are regular,φ is a nondecreasing concave function on[0,∞)such that φ(0)=0 and F is an Orlicz function.We defne Lorentz-Orlicz regular martingale spaces as follows:

Defnition 2.4The Banach space X is q convexiable if S(q)(f)<∞a.e.when‖f‖∞<∞.

Defnition 2.5The Banach space X is p smoothable if fnconvergesa.e.when‖S(p)(f)‖∞<∞.

(Defnitions 2.4 and 2.5 can be found in[12]).Throughout this paper,we use the constant C to denote some positive constant and may be diferent at each occurrence.

3 Interpolation of Lorentz-Orlicz Martingale Spaces

In order to prove our main results,we collect some lemmas.

Lemma 3.2(see[8])There are some equivalent statements about condition R,such as for all nonnegative adapted process γ=(γn)n≥0,for all λ≥‖γ0‖∞,there exists a stopping time τλsuch that

Theorem 3.3Suppose(Ω,F,P,{Fn}n≥0)satisfes the condition“R”.If φ∈Bkand ,then

ProofWe defne the operator T(a)=Ma on L1.T(a)is sublinear,and by Jesen inequality we get

Therefore(H1,L∞)f,F?HφF.

To prove the converse,since a is a regular martingale,then for adapted process γ=(‖an‖) and t>0,let λ=(Ma)?(t),there exists the stopping time τ such that Mτa≤λ,P{τ<∞}≤dP{Ma>λ}.Let g=aτ=(an∧τ)n≥0,h=a-aτ,then we have

The inequality

implies thatwhere[d]is the biggest integer which is less than d.Therefore we conclude that‖a‖f,F≤(3+2d)‖a‖HφF.Theorem is proved.?

ProofWe defne the operator T(a)=S(q)(a)on L1.T(a)is sublinear,and

The left of proof is similar to Theorem 3.3.Thus Theorem 3.4 is proved.?

So

So

Then{τ<∞}={λ∞>α}.Now let h2=gτ=(gn∧τ)n≥0,h1=g-h2,then we have

ProofThe proof is similar to Theorem 3.5,we omit it.?

Then

Using Theorem 3.3 again we obtain

Similar to Theorem 3.7,we have the following Theorem 3.8.

ProofSince X is q convexiable,then there exist constants c1and c2such that for any X-valued martingale f,

So we have

ProofSince X is p smoothable,then there exist constants c1and c2such that for any X-valued martingale f,

Then

So we have

To prove the converse,we consider Walsh-Paley martingale f=(fn)which satisfes‖S(p)(f)‖∞<∞.Now let f(n)=(fk-fn)n≤k<∞.

Then we have

Thus we have fnconverges a.e.,which means X is p smoothable.?

[1]Lions J L,Peetre J.Sur une classe despances dinterpolation.Inst Hautes Etudes Sci Publ Math,1964,19: 5-68

[2]Kalugina T F.Interpolation of Banach spaces with a functional parameter.The reiteration theorem.Vestnik Moskov Univ Ser I,Math Meh,1975,30(6):68-77

[3]Gaustavsson J.A function parameter in connection with interpolation of Banach spaces.Math Scand,1978, 42:289-305

[4]Heinig H P.Interpolation of quasi-normed spaces involving weights.Can Math Soc,Conf Proc,1975,1: 245-267

[5]Merucci C.Applications of interpolation with a function parameter to Lorentz.Sobolev and Besov spaces. Lecture Note Math,1984,1070:183-201

[6]Soria J.Tent Spaces Based on Weighted Lorentz Spaces,Carleson Measures[D].Washington University, 1990

[7]Weisz F.Martingale Hardy Spaces and their Applications in Fourier Analysis.Lecture Notes in Math,1568. New York:Springer,1994

[8]Long R L.Martingale Spaces and Inequalities.Beijing:Peking University Press,1993

[9]Peetre J.A Theory of Interpolation of Normed Spaces.Lecture Notes,Brasilia,1963

[10]Sharpley R.Spaces Λα(X)and interpolation.J Funct Anal,1972,11:479-513

[11]Echandia V,Finol C,Maligranda L.Interpolation of some space of Orlicz type I.Bull Polish Acad Sci Math,1990,38:125-134

[12]Liu P D.Martingale and Geometry of Banach Space.Beijing:Science Press,2007

[13]Ren Y B.Interpolation theorems for Lorentz martingale spaces.Acta Math Hungar,2012,134(1/2):169-176

[14]Ren Y B,Guo T X.Interpolation of Lorentz martingale spaces.Science China Mathematics,2012,55(9): 1951-1959

[15]Fan L P,Jiao Y,Liu P D.Lorentz martingale spaces and interpolations.Acta Math Sci,2010,30B(4): 1143-1153

?Received June 27,2014;revised January 23,2015.This work was supported by National Natural Science Foundation of China(Grant No.11201354),by Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Wuhan University of Science and Technology)(Y201321)and by National Natural Science Foundation of Pre-Research Item(2011XG005).

主站蜘蛛池模板: 精品1区2区3区| 一级毛片免费不卡在线视频| 欧美日韩北条麻妃一区二区| 免费观看国产小粉嫩喷水 | 亚洲午夜福利精品无码| 波多野结衣无码AV在线| 国产手机在线ΑⅤ片无码观看| 国产精品成人一区二区不卡| 国产精品yjizz视频网一二区| 久久香蕉国产线| 五月激情综合网| 国产视频你懂得| 国产成年女人特黄特色毛片免 | 亚洲第一成年人网站| 亚洲日韩国产精品综合在线观看| 国产福利观看| 国产成人麻豆精品| 亚洲色偷偷偷鲁综合| 国产精品妖精视频| 波多野结衣一区二区三区四区视频 | 玖玖精品在线| 亚洲IV视频免费在线光看| 亚洲精品手机在线| 香蕉综合在线视频91| 91在线播放免费不卡无毒| 美女视频黄又黄又免费高清| 久久国产V一级毛多内射| 亚洲视频无码| 久久久久88色偷偷| 欧美午夜久久| 91成人在线观看| 伊人精品成人久久综合| 国产精品不卡永久免费| 一本综合久久| 99精品免费欧美成人小视频| 亚洲欧美另类色图| 日本一区二区三区精品国产| 久久久久久尹人网香蕉 | 在线无码九区| 国产日本欧美在线观看| 亚洲国产中文精品va在线播放| 亚洲有无码中文网| 精品国产成人三级在线观看| 欧美精品亚洲二区| 超级碰免费视频91| 成人久久18免费网站| 精品国产污污免费网站| 久久久黄色片| 日本尹人综合香蕉在线观看| 91福利免费| 99久久精品国产综合婷婷| 狠狠色综合网| 欧美亚洲激情| 欧美精品v| 免费又黄又爽又猛大片午夜| 国产va在线观看免费| 久久性妇女精品免费| 亚洲欧洲AV一区二区三区| 777国产精品永久免费观看| 丰满人妻被猛烈进入无码| 真实国产精品vr专区| 国产美女无遮挡免费视频网站 | 欧美无遮挡国产欧美另类| 国产99热| 成人国产小视频| 99视频国产精品| 秋霞国产在线| 专干老肥熟女视频网站| 成年人国产视频| 久久成人国产精品免费软件| 99re在线观看视频| 国产资源免费观看| 欧美一级色视频| 一级一级一片免费| 国产资源免费观看| 欧美 国产 人人视频| 这里只有精品在线播放| 欧美日韩高清| 亚洲一本大道在线| 欧美三级自拍| 国产成人综合亚洲欧美在| 国产丰满大乳无码免费播放|