999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Numer ical Integration for DAEs of Multibody System Dynamics

2015-01-16 01:22:42GENGGuozhiLIUJianwenDINGJieyu
科技視界 2015年15期

GENG Guo-zhi LIU Jian-wen DING Jie-yu

(College of Information Engineering,Qingdao University,Qingdao Shandong 266071,China)

0 Introduction

Multibody system[1-2]is connected multiple objects (rigid body and elastomer/soft body,particle,etc.)of system in a certain way.In weapons,robots,aviation,machinery and so on national defense and national economic construction,such as,aircraft launch system,robot,vehicle,such as large civil machinery mechanical system can be attributed to body systems.As the national economy and national defense construction to improve the mechanical system dynamic performance requirements,need for large complex mechanical system dynamics analysis and forecast accurately and quickly.

Large complicated mechanical systems are often closed loop system,using the theory of multibody system dynamics to establish the dynamics equation is generally with differential algebraic equation[3]of Lagrange multiplier,can be expressed as follows:

There are two ways to solve the differential algebraic equations.One is the direct integral method,combines acceleration constraint equation and dynamic equation of integral.Another way is condensed and method,by using the equation of the matrix decomposition independent coordinate system consists of a set of appropriate generalized coordinates,to pure differential equations,differential algebraic equation can be converted to then integral.Commonly used direct integral method has the Euler method and Runge-Kutta method,there are some higher order numerical integral method,such as Newton-Romberg integral and Gauss integral[4],etc.

Higher order numerical integral method is within each time step to integral of integrand,integrand is obtained by interpolating fitting,we usually use interpolation method with Newton interpolation,Lagrange Interpolation, successive linear interpolation, equidistant node interpolation,piecewise interpolation and spline interpolation.Based on the Lagrange Interpolation of each step in the long function interpolation,respectively using Romberg and Gauss integral dynamics simulation.

1 Discrete Euler-Lagrangian equation and numerica integral method

Hamilton’s principle can be expressed as the following:

Where q,q·is generalized coordinates and generalized velocity,S is Hamilton integral,L is the Lagrange function,λ is the Lagrange multiplier,Φ is a vector corresponding constraints

Φ(q,t)=0(2)

Using the variation method,by(1) the Euler-Lagrange equation can be obtained as follows:

Equation (3) is a differential algebraic equation,we usually can use the Euler method and Runge-Kutta method to solve.

By using the discrete variation principle,the integration time divided into N time interval h=tf/N,using the variation method,discrete Euler-Lagrange equation is obtained

Where DjLd(j=1,2)is j th partial derivative of Ld.

In the time interval [ti,ti+1]using Lagrangian difference,first introduced a parameter τ∈(0,1),where

State variables q(t)and its first derivative q·(t)in this time interval can be difference

So the Hamilton function integrals on the interval [ti,ti+1]can be approximate as follows

Using the discrete Hamilton principle,it can be discrete Euler-Lagrangian equation[5]is obtained(10)

Using Gauss quadrature formula,which has maximal degree of accuracy 2n-1 for a fixed number n of quadrature points,we can get

Where Aris the weight and τ~ris the quadrature point.When n=2,l

Using Romberg quadrature formula,which has a degree of accuracy 2log2(n-1)for a fixed number n of quadrature points,we also can get(11),here we give n=8 quadrature points and weights respect to the interval[-1,1]below in Table 1

Tab.1 The 9 quadrature points and weights of Rombergquadrature formula with respect to the interval[-1,1]

Using the Romberg,Gauss integral can be the solution of equation.

2 Numerical example

Make the horizontal axis as the X-axis,longitudinal axis as Y-axis to establish a coordinate system,to put two balls in the positive X axis horizontal position of the starting point for the double pendulum,the following figure shows the double pendulum state at a time t.The quality of pendulum ball is m1=2,m2=1,length of the rod is l1=1,l2=1,Let pendulum ball 1 location coordinates as(x1,y1),pendulum ball 2 location coordinates as(x2,y2),The state variables of double pendulum is q=[x1,y1,x2,y2].

The kinetic energy of the system:

Based on the above parameters,For equation (3) simulation using the Euler method and Runge-Kutta method,for equation (10) is simulated using Romberg integration and Gauss integration points.Where h=0.01,Euler simulation results diverge,Figure 2 shows the Euler simulation energy curve and the position of the curve at h=0.001,using Runge-Kutta method,Romberg integration,Gauss integration simulation energy curve and position curve at h=0.01 shown in Figure 3,Figure4,Figure5.

Euler integration stability is poor,so basically do not use it;there are divergent trends for Runge-Kutta method,available in small steps,radiation in big steps;Romberg integration and Gauss quadrature are used in big steps,energy error floating in a small area,Gauss integrals is better than Romberg.

Euler method,Runge-Kutta method,Romberg integration,Gauss integration at h=0.001 and h=0.01 simulation running time,the maximum energy error,the biggest constraint errors are shown in Table 2,Table 3

Tab.2 Comparison of the methods mentioned with time step h=0.001

Tab.3 Comparison of the methods mentioned with time step h=0.01

3 Conclusion

By comparing four different integration methods in h=0.01 and h=0.001 run time,the energy constraint error and error,we get the following conclusions:Euler integration stability is poor here are divergent trends for Runge-Kutta method,available in small steps,radiation in big steps;Romberg integration and Gauss quadrature are used in big steps,energy error floating in a small area,Gauss integrals is better than Romberg.

[1]Liu Yanzhu,Hong Jiazhen,Yang Haixing.Multibody system dynamics[M].Beijing:Higher Education Press,1989.

[2]Wittenburg J.Dynamics of Systems of Rigid Bodies[M].Teubner,Stuttgrt,1977.

[3]Hong Jiazhen.Computing multi-body system dynamics[M].Beijing:Higher Education Press,1999.

[4]Li Qingyang,Wang Nengchao,Yi Dayi.Numerical Analysis[M].Huazhong University of Science and Technology Press,1986.

[5]Ding Jieyu,Pan Zhenkuan.Higher Order Variational Integrators of Multibody System Dynamics with Constraints[J].Advances in Mechanical Engineering,2014.

主站蜘蛛池模板: 99热最新网址| 超碰色了色| 成人午夜网址| 爱色欧美亚洲综合图区| 亚洲欧美另类中文字幕| 91久久天天躁狠狠躁夜夜| 狠狠五月天中文字幕| 永久免费精品视频| 精品国产免费观看一区| 色综合五月婷婷| 久久这里只精品热免费99| www.狠狠| 国产日韩精品欧美一区喷| 在线观看91精品国产剧情免费| 免费激情网址| 中文毛片无遮挡播放免费| 一区二区三区成人| 亚洲精品无码日韩国产不卡| 中文字幕亚洲电影| 中文字幕资源站| 亚洲精品无码专区在线观看 | 91色在线观看| 国产成人精品高清不卡在线| 亚洲午夜福利精品无码| 一级毛片在线直接观看| 国产精品一区在线麻豆| 国产精品30p| 亚洲女同欧美在线| 超碰精品无码一区二区| 999国产精品| 伊人国产无码高清视频| 成人免费一级片| 欧洲极品无码一区二区三区| 欧美另类视频一区二区三区| 国产精品久久自在自线观看| 视频一本大道香蕉久在线播放| 午夜毛片免费观看视频 | 中文字幕在线视频免费| 亚洲欧美一区在线| 欧美国产在线看| 女人18毛片水真多国产| 9999在线视频| 亚洲精品日产精品乱码不卡| 国产精品 欧美激情 在线播放| 国产成人精品免费av| 日韩视频福利| 欧美日韩精品在线播放| 日韩在线第三页| 久久99热这里只有精品免费看| 真实国产精品vr专区| 国产原创演绎剧情有字幕的| 中文天堂在线视频| 国产精品v欧美| 精品久久高清| 欧美精品黑人粗大| 日韩二区三区| 99热这里只有精品在线播放| 视频在线观看一区二区| 九九视频免费在线观看| 九色91在线视频| 青青青国产视频| 日韩欧美国产区| 国产网站一区二区三区| 日本免费一区视频| 日韩av电影一区二区三区四区 | 精品一区二区无码av| 国产欧美日韩91| 美臀人妻中出中文字幕在线| 黄色网页在线观看| 欧美成人午夜在线全部免费| 国产三级国产精品国产普男人| 99这里只有精品6| 亚洲swag精品自拍一区| 欧美一区二区精品久久久| 国产素人在线| 日本道综合一本久久久88| 色婷婷综合激情视频免费看| 久久精品只有这里有| 亚洲成AV人手机在线观看网站| 狠狠色综合网| 欧美日韩资源| 亚洲欧美一区二区三区麻豆|