摘要:目的 該篇META分析比較右室非心尖部起搏(RVNAP)和心尖部起搏(RVAP)對心功能的影響。方法 檢索MEDLINE、EMBASE和Cochrane Controlled Trials Register數據庫,收集隨訪時間≥2個月的隨機對照試驗。結果 20個試驗包括1114例患者入選。與RVAP相比,RVNAP不僅在起搏閾值及R波感知方面表現優異,左室射血分數在隨訪末也明顯升高。結論 RVNAP在電極參數方面表現出令人滿意的長期結果,并在6個月隨訪后,提高左室射血分數方面作用有利。
關鍵詞:META分析;右室非心尖部起搏;心功能;文獻檢索
中圖分類號:R1,R4
Taking an Example of the Effects of Right Ventricular Pacing on Cardiac Function to Discuss META Analysi
WANG Wei-zong1,YIN Xiang-cui2,ZHANG Yu-jiao1
(1.Shandong University,Jinan 250014,Shandong,China;2.Shandong Qianfoshan Hospital,Jinan 250014,Shandong,China)
Abstract:Objective A meta-analysis of randomized controlled trials (RCTs) was conducted to compare the effects of right ventricular nonapical (RVNA) and right ventricular apical (RVA) pacing on cardiac function. Methods A systematic literature search was performed using MEDLINE, EMBASE, and the Cochrane Library to identify RCTs comparing RVNA pacing with RVA pacing with follow-up ≥2 months. Results Twenty RCTs involving 1,114 patients were included. Compared with RVA pacing, RVNA pacing exhibited not only excellent pacing threshold and R-wave amplitude but also higher impedance. RVNA pacing showed a significant increase in left ventricular ejection fraction (LVEF) at the end of follow-up. Conclusion This meta-analysis found that RVNA pacing exhibited satisfactory long-term lead performance compared with RVA pacing and demonstrated beneficial effects in improving LVEF after the 6-month follow-up.
Key words:META Analysis; Right Ventricular Nonapical Pacing; Cardiac Function; Literature Retrieval
自從心臟起搏器問世以來 [1],因為右室心尖部易于識別并且心尖部起搏具有良好的電極穩定性等優點,右室心尖部起搏(RVAP)一直被認為是治療癥狀性病態竇房結綜合征或慢性高度房室傳導阻滯中安裝臨時或永久心臟起搏器的首要選擇 [2]。然而,越來越多的研究表明,長期RVAP改變了心室激動順序,引起節段性室壁運動異常,損害了左室收縮及舒張功能,增加了心衰的發生率和死亡率,這將會抵消其潛在的優勢 [3~5]。因此,尋找一個具有同步化心室激動順序的起搏位點從未間斷,并且一系列的右心室非心尖部起搏位點被發現 [6, 7],但是,既往關于不同起搏位點的研究得到了不一致的結果 [8~11]。在以前的薈萃分析中,de Cock [12]發現右室非心尖部起搏(RVNAP)較RVAP在血流動力學方面有了很大提高。最近,另一項涉及14個隨機對照試驗的薈萃分析[13]指出,在一定時間起搏后,RVNAP左室射血分數是高于RVAP的。然而,這項研究只描述了左室射血分數這一指標,且研究表明需要進一步比較更多的參數。我們再次進行META分析來評價不同起搏位點電極的安全性及穩定性,并進一步通過常用的血流動力學參數來評估RVNAP和RVAP對心功能的影響。
1資料與方法
1.1 試驗選擇 所有比較RVNAP與RVAP關于電參數和(或)血流動力學結果的隨機對照試驗均被納入本研究。納入的試驗包括平行對照和交叉設計,隨訪時間≥2個月。所有的研究都是以人為研究對象,發表形式為中文或英文。
1.2 檢索策略
1.3 排除標準 ①非隨機對照試驗;②試驗包括植入心臟除顫器或心室再同步化起搏;③隨訪時間少于2個月;④結果沒涉及到電參數及血流動力學結果。
1.4 質量評估 根據合作網推薦的評估文章真實性的工具,采用基于結構域的評價方法來分析文章質量和風險的偏倚,具體包括以下七個結構域 [14]:隨機序列的產成、分配隱藏、實施偏倚、參與者與實施者雙盲、結局評估中的盲法、不全結局數據和其他偏倚。
1.5 統計學分析 為了更好地分析試驗內及試驗間誤差,選用DerSimonian-Laird 隨機效應模型 [15]對數據進行合并,計算加權平均差(WMV)和95%可信區間 (CIs)。P值、I2進行研究的異質性評價。如異質性顯著,通過亞組分析對異質性來源進行探討。
分兩個部分進行薈萃分析,第一個部分評估了不同起搏位點間電極的安全性與穩定性;第二個部分則探討了其對心功能的影響。
敏感性分析根據各納入試驗的質量評價結果以及各研究的特點進行。發表偏倚評價采用漏斗圖及Egger' S檢驗 [16]。所有統計學數據分析、處理采用Review Manager 5. 1, SAS9. 21軟件進行,P < 0. 05認為有統計學差異。
2 結果
2.1 搜索結果 共計檢索出2974篇文章。總共9個比較電參數的試驗和17個比較中長期心功能的試驗 (6個研究為重復的 [8, 17~21])符合本研究的入選標準 [8, 17~35] (篩選步驟見圖1)。
圖1 文獻篩選流程圖
2.3 薈萃分析
2.3.1 電參數
2.3.1.1 植入即刻起搏參數
2.3.1.2 隨訪末起搏參數
2.3.2 血流動力學結果
2.3.2.1 QRS波時限 11篇文章
2.3.2.2 LVEF 15個試驗
2.3.2.3 LVEF亞組分析 為了進一步探討異質性來源,我們進行了兩個亞組分析。
亞組2 (右室流出道 vs. 右室間隔部)
為了探討不同部位非心尖部起搏對左室射血分數的影響,3 討論
3.1 安全性和穩定性 既往研究表明,盡管RVNAP保留了雙室同步收縮順序,但仍不能代替傳統的RVAP成為主要的起搏模式 [1]。與此相反,我們的META分析表明,在起搏即刻和隨訪末起搏閾值及R波感知上,RVNAP與RVAP無統計學差異。除此之外,隨訪末,RVNAP閾值較高。起搏即刻RVNAP閾值有一個升高的趨勢,但未達到統計差異。可能有如下原因:主動電極同樣應用于心尖部起搏 [21, 35],并且電極隔離材料、大小與形狀不斷升級,使結果差異不顯著。對R波感知幅度而言,雖然RVNAP在起搏即刻數值較低,但在隨訪末,與心尖部達到了一個相似的水平。在起搏即刻,RVAP和RVNAP在阻抗上無差異,但隨訪末,右室非心尖部(RVNA)閾值較高。起搏閾值反映了起搏器、電極與心肌連接的緊密程度,并且不同位點間阻抗的的差異與電極組織接觸界面的緊密度呈正相關 [36]。
3.2 血流動力學結果
3.2.1 QRS波時限 RVAP電激動波從右室心尖部向周圍傳導,與生理激動順序相反 [37]。尚無證據表明QRS波時限與心室內機械收縮不同步呈負相關,但QRS波寬度可以反映心室間收縮的同步性 [38]。心室間同步收縮在一定程度上有助于改善心功能。而且,有研究選擇最窄的QRS波作為最佳起搏位點的替代指標 [8, 26]。本研究中,QRS波時限在起搏即刻及隨訪末均較窄,提示RVNAP更接近于生理激動順序。然而,最窄的QRS波時限是否可作為最佳起搏位點的替代指標尚未達成一致 [39, 40]。
3.2.2 左室射血分數 結果表明與RVAP相比,RVNAP在隨訪末具有高水平的左室射血分數[14]。
根據第一個亞組分析,我們發現RVNAP在6到12個月亞組上開始在左室射血分數上較RVAP高,且隨著時間延長,這一優勢得以維持。這一電的不同步性可以延伸到機械模式,使心肌收縮不平衡而導致收縮效率降低 [37]。因為電和機械的不同步,心肌將不可避免的引起代謝及血流動力學的不穩定,包括收縮和舒張功能的紊亂。提前激動的心肌過早的舒張和延遲收縮的心肌共同作用使舒張功能下降[41],這一過程隨時間延長而逐漸顯現。
另一個亞組分析表明RVAP在隨訪末左室射血分數上均低于右室間隔部及右室流出道起搏。上述結果的原因可能為右室流出道的復雜結構所引起。右室流出道起搏包括多個起搏位點,具體為間隔部、游離壁和前壁三部分 [42]。有文獻表明 [38],間隔部是第一個去極化的位置;也就是說,右室間隔部是最接近于內在傳導系統的起搏位點。右室間隔部起搏較RVAP在左室射血分數上為優,故當右心室起搏不能避免時,右室間隔部起搏而非右室流出道起搏與傳統心尖部起搏相比,更好的保留了左室收縮功能。較RVAP相比,兩組在左室射血分數上均有優勢。
3.2.3 其他指標 已經有報道稱RVAP因為異常的電激動模式 [41],會逐漸損害左室舒張和收縮功能。我們推測:延長隨訪期可能使舒張末容積的差異得以顯現。在隨訪末,RVAP和RVNAP在紐約心功能分級上有明顯差異。紐約心功能分級作為一種常用的評價心功能的指標,這一差異對RVNAP在改善心功能上優于RVAP提供了更多的證據。回顧性分析這一組納入的隨機對照試驗,發現大多數試驗 [18, 25, 29]起搏時間超過12個月,可能是得出陽性結果的原因。
4 結論
右室非心尖部(主要為右室間隔)起搏在電極表現上是優秀的,尤其是電極阻抗。RVNAP帶來更窄的QRS時限,更好的左室收縮功能和較低級別的紐約心功能分級。右室流出道起搏在最終左室射血分數上與心尖部相比無明顯優勢。到目前為止,右室間隔部應該被當做為替代右室心尖部的最佳起搏位點。
參考文獻:
[1] FRANK HA. Long-term electrical pacing of the heart for Stokes-Adams disease [J]. Heart Bull, 1962, 11:101-104.
[2] Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons [J]. J Am Coll Cardiol, 2008, 51(21):e1-62.
[3] Matsuoka K, Nishino M, Kato H, et al. Right ventricular apical pacing impairs left ventricular twist as well as synchrony: Acute effects of right ventricular apical pacing [J]. J Am Soc Echocardiogr, 2009, 22:914-919.
[4] Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: Echocardiographic and clinical outcome [J]. J Am Coll Cardiol, 2003, 42:614-623.
[5] Fang F, Zhang Q, Chan JY, et al. Deleterious effect of right ventricular apical pacing on left ventricular diastolic function and the impact of pre-existing diastolic disease [J]. Eur Heart J, 2011, 32:1891-1899.
[6] Mond HG, Gammage MD. Selective site pacing: The future of cardiac pacing [J].Pacing Clin Electrophysiol, 2004, 27:835-836.
[7] Mond HG, Vlay SC. Pacing the right ventricular septum: Time to abandon apical pacing [J]. Pacing Clin Electrophysiol, 2010, 33:1293-1297.
[8] Tse HF, Yu C, Wong KK, et al. Functional abnormalities in patients with permanent right ventricular pacing: The effect of sites of electrical stimulation [J]. J Am Coll Cardiol, 2002, 40:1451-1458.
[9] Ng AC, Allman C, Vidaic J, et al. Longterm impact of right ventricular septal versus apical pacing on left ventricular synchrony and function in patients with second- or third-degree heart block [J]. Am J Cardiol, 2009, 103:1096-1101.
[10] Padeletti L, Lieberman R, Schreuder J, et al. Acute effects of his bundle pacing versus left ventricular and right ventricular pacing on left ventricular function [J]. Am J Cardiol, 2007, 100:1556-1560.
[11] Yamano T, Kubo T, Takarada S, et al. Advantage of right ventricular outflow tract pacing on Cardiac function and coronary circulation in comparison with right ventricular apex pacing [J]. J Am Soc Echocardiogr, 2010, 23:1177-1182.
[12] de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing: A quantitative review [J]. Europace, 2003, 5:275-278.
[13] Shimony A, Eisenberg MJ, Filion KB, et al. Beneficial effects of right ventricular non-apical vs. apical pacing: A systematic review and meta-analysis of randomized-controlled trials [J]. Europace, 2012, 14:81-91.
[14] Higgins JPT, Green S. Assessing risk of bias in included studies. In: Cochrane handbook for systematic reviews of interventions [J]. version 5.1.0, updated March 2011, www.cochrane-handbook.org (Accessed March 1, 2012).
[15] DerSimonian R, Laird N. Meta-analysis in clinical trials [J]. Control Clin Trials, 1986, 7(3):177-188.
[16] Egger M, Davey Smith G, Schneider M, et al. Bias in metaanalysis detected by a simple, graphical test [J]. BMJ, 1997, 315:629-634.
[17] Tse HF, Wong KK, Siu CW, et al. Impacts of ventricular rate regularization pacing at right ventricular apical vs. septal sites on left ventricular function and exercise capacity in patients with permanent atrial fibrillation [J]. Europace, 2009, 11:594-600.
[18] Flevari P, Leftheriotis D, Fountoulaki K, et al. Long-term nonoutflow septal versus apical right ventricular pacing: Relation to left ventricular dyssynchrony [J]. Pacing Clin Electrophysiol, 2009, 32:354-362.
[19] Kypta A, Steinwender C, Kammler J, et al. Longterm outcomes in patients with atrioventricular block undergoing septal ventricular lead implantation compared with standard apical pacing [J]. Europace, 2008, 10:574-579.
[20] Victor F, Mabo P, Mansour H, et al. A randomized comparison of permanent septal versus apical right ventricular pacing: Short-term results [J]. J Cardiovasc Electrophysiol, 2006, 17:238-2342.
[21] Stambler BS, Ellenbogen K, Zhang X, et al. Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2003, 14:1180-1186.
[22] Wang F, Shi H, Sun Y, et al. Right ventricular outflow pacing induces less regional wall motion abnormalities in the left ventricle compared with apical pacing [J]. Europace, 2012,; 14:351-357.
[23] Nikoo MH, Ghaedian MM, Kafi M, et al. Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels [J]. J Cardiovasc Dis Res, 2011, 2:104-109.
[24] Leong DP, Mitchell AM, Salna I, et al. Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site [J]. J Cardiovasc Electrophysiol, 2010, 21:1120-1126.
[25] Cano O, Osca J, Sancho-Tello MJ, et al. Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing [J]. Am J Cardiol, 2010, 105:1426-1432.
[26] Gong X, Su Y, Pan W, et al. Is right ventricular outflow tract pacing superior to right ventricular apex pacing in patients with normal cardiac function [J].Clin Cardiol, 2009, 32:695-699.
[27] Dabrowska-Kugacka A, Lewicka-Nowak E, Tybura S, et al. Survival analysis in patients with preserved left ventricular function and standard indications for permanent cardiac pacing randomized to right ventricular apical or septal outflow tract pacing [J]. Circ J, 2009, 73:1812-1819.
[28] Occhetta E, Bortnik M, Magnani A, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: A crossover, blinded, randomized study versus apical right ventricular pacing [J]. J Am Coll Cardiol, 2006, 47:1938-1945.
[29] Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S, Krzymi? nskaStasiuk E, et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation [J]. Kardiol Pol, 2006, 64:1082-1091.
[30] Bourke JP, Hawkins T, Keavey P, et al. Evolution of ventricular function during permanent pacing from either right ventricular apex or outflow tract following AV-junctional ablation for atrial fibrillation [J]. Europace, 2002, 4:219- 228.
[31] Victor F, Leclercq C, Mabo P, et al. Optimal right ventricular pacing site in chronically implanted patients: A prospective randomized crossover comparison of apical and outflow tract pacing [J]. J Am Coll Cardiol, 1999, 33:311- 316.
[32] Mera F, DeLurgio DB, Patterson RE, et al. A comparison of ventricular function during high right ventricular septal and apical pacing after his-bundle ablation for refractory atrial fibrillation [J]. Pacing Clin Electrophysiol, 1999, 22:1234-1239.
[33] Deng XQ, Cai L, Tang J, et al. Safety and efficiency of pacing at right ventricular outflow versus at ventricular cardiac apex [J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2008, 36:726- 728.
[34] Stambler BS, Ellenbogen KA, Liu Z, et al. ROVA Trial Investigators. Serial changes in right ventricular apical pacing lead impedance predict changes in left ventricular ejection fraction and functional class in heart failure patients [J]. Pacing Clin Electrophysiol, 2005, 28:50-53.
[35] Barin ES, Jones SM, Ward DE, et al. The right ventricular outflow tract as an alternative permanent pacing site: Long-term follow-up [J]. Pacing Clin Electrophysiol, 1991, 14:3-6.
[36] de Voogt WG. Pacemaker leads: Performance and progress [J]. Am J Cardiol, 1999, 83:187D-91D.
[37] Prinzen FW, Hunter WC, Wyman BT, et al. Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging [J]. J Am Coll Cardiol, 1999, 33:1735-1742.
[38] Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block [J]. Circulation, 2002, 106:1760-1763.
[39] Peschar M, de Swart H, Michels KJ, et al. Left ventricular septal and apex pacing for optimal pump function in canine hearts [J]. J Am Coll Cardiol, 2003, 41:1218-1226.
[40] Schwaab B, Fr¨ ohlig G, Alexander C, et al. Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing [J]. J Am Coll Cardiol, 1999, 33:317- 323.
[41] Prinzen FW, Peschar M. Relation between the pacing induced sequence of activation and left ventricular pump function in animals [J]. Pacing Clin Electrophysiol, 2002, 25:484-498.
[42] Hillock RJ, Mond HG. Pacing the right ventricular outflow tract septum: Time to embrace the future [J]. Europace, 2012, 14:28-35.編輯/許言