999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

在線固相萃取—超高效液相色譜—串聯質譜法

2014-12-18 21:09:25張品等
分析化學 2014年12期
關鍵詞:背景污染

張品等

摘 要 建立了乳制品中三氯生、三氯卡班、雙酚A和壬基酚4種內分泌干擾物的在線固相萃取超高壓液相色譜串聯質譜(Online SPE LCMS/MS)檢測方法。液態乳制品或奶粉樣品中加入乙酸緩沖液,目標物經β葡糖醛酸苷肽酶/芳基磺酸酯酶酶解后, 用乙腈提取, 冷凍離心10 min后,取上清液,用水稀釋,在線固相萃取串聯質譜法測定。樣品溶液經Xbridge C8柱富集,BEH C18色譜柱分離,甲醇和水梯度洗脫,三重四極桿質譜電噴霧負離子模式下采集數據,同位素內標法定量。4種目標化合物的線性范圍為0.005~5.0 μg/L,相關系數R2>0.99;方法的定量限為0.03~1.0 μg/kg,3個添加水平的平均加標回收率為80.2%~106.7%,

3.2 提取條件的優化

環境污染物或藥物進入生物體后在肝臟酶系統的作用下會轉化成葡糖糖醛酸結合態。Zhou等[ 18]發現人體尿液中的三氯卡班及其代謝產物主要以結合態形式存在,盡管奶樣中是否存在結合態還未有定論[ 19,20],但為了保證檢測結果的準確性,本研究采用β葡糖醛酸苷肽酶/芳基磺酸酯酶進行酶解。

由于4種目標化合物均有一定的親脂性,因此,酶解后的樣品提取過程比較了乙腈和甲醇兩種與水互溶的極性有機溶劑。稱取適量液奶樣品,加標量為5 μg/kg,如2.3節所述進行處理,每種提取溶劑做3個平行。離心后提取液直接測定,從表觀上看,乙腈提取液比甲醇提取液更清澈透明。結果表明,乙腈提取液對TCS,TCC,NP和BPA的絕對回收率分別為95%,89%,91%和78%,比甲醇體系略高(分別為90%,85%,92%和69%)。綜合表觀結果和回收率數據,確定乙腈為提取溶劑。

3.3 背景污染的考察

由于TCS,NP和BPA廣泛應用于多個領域,因此這幾種污染物在環境中普遍存在,甚至在Milpore的超純水中檢測到了BPA[ 21]。而且,塑料器皿或橡膠制品等都會遷移出大量NP 和BPA,這些均會對分析結果造成干擾。由于離線固相萃取小柱的篩板為聚丙烯等塑料材質,有機溶劑浸潤時會持續溶出NP,其濃度大于0.2 μg/L[ 17];使用二氯甲烷、正己烷等非極性有機溶劑進行液液萃取時,其背景污染的水平視溶劑體積、純度、批號及濃縮方式有所不同,以10 mL的農殘級二氯甲烷為例(揮干后1 mL甲醇定容測定),旋轉蒸發至干時NP的背景污染水平約為0.15 μg/L,若使用氮氣吹干,背景污染水平則高達1.0 μg/L。

本實驗所用實驗器具均為玻璃材質,液相色譜管路為聚四氟乙烯,在線固相萃取柱為不銹鋼柱,所有溶劑均為LCMS級。過程空白中TCC的背景污染水平低于0.005 μg/L,其余3種物質TCS、NP和BPA均低于0.05 μg/L,且較穩定。該結果明顯低于離線固相萃取、液液萃取等方法所致的背景污染。究其原因,本方法前處理方法步驟簡單,可引入污染的環節少;溶劑耗費量低,減少了實驗試劑可能的污染;本方法的自動化程度高,使得背景污染穩定性高。

3.4 線性范圍和定量限

Fig.1 LCMS chromatograms of the target compounds as well as the internal standards in different samples (A: procedural blank sample; B: standard solution, in which the concentration of TCC is 0.05 μg/L, while BPA, NP and TCS are 0.5 μg/L; C: a positive sample, pure milk)[HT5][TS)]

References

1 Veldhoen N, Skirrow R C, Osachoff H, Wigmore H, Clapson D J, Gunderson M P, Van Aggelen G, Helbing C C. Aquat. Toxicol., 2006, 80 (3): 217-227

2 Kumar V, Chakraborty A, Kural M R, Roy P.Reprod. Toxicol., 2009, 27 (2): 177-185

3 Ahn K C, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison S M, Lasley B, Pessah I N, Kültz D, Chang D P Y, Gee S J, Hammock B D. Environ. Health Perspect, 2008, 116 (9): 1203-1210

4 Christen V, Crettaz P, OberliSchrammli A, Fent K. Chemosphere, 2010, 81 (10): 1245-1252

5 Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N , Watanabe, H, Ohta S. Toxicol. Sci., 2005, 84(2): 249-259

6 ZHAO MeiPing, LI YuanZong, ZHANG XinXiang, CHANG WenBao. Chem. J. Chinese Universities, 2003, 24(7):1204-1206

趙美萍, 李元宗, 張新祥, 常文保. 高等學校化學學報, 2003, 24(7): 1204-1206

7 Matozzo V, Gagné F, Marin M G, Ricciardi F, Blaise C. Environ. Int., 2008, 34 (4): 531-545

8 ZHAO MeiPing, LI YuanZong, CHANG WenBao. Chinese J. Anal Chem., 2003, 31(1): 103-109

趙美萍, 李元宗, 常文保. 分析化學, 2003, 31(1): 103-109

9 Lu Y Y, Chen M L,Sung F C. Environ. Int., 2007, 33(7): 903-910

10 Gyllenhammar I, Glynn A, Darnerud P O, Lignell S, van Delft R, Aune M. Environ. Int., 2012, 43: 21-28

11 Niu Y, Zhang J, Duan H, Wu Y, Shao B. Food Chem., 2015, 167: 320-325. doi: 10.1016/j.foodchem.2014.06.115. Epub 2014 Jul 5

12 Allmyr M, AdolfssonErici M, McLachlan M S, SandborghEnglund G S. Sci. Total. Environ., 2006, 372: 87-93

13 DIAO ChunPeng, ZHAO RuSong, SHI JunBo, LIU RenMin. Chinese J. Anal. Chem., 2009, 37(1): 131-135

刁春鵬, 趙汝松, 時軍波, 柳仁民. 分析化學, 2009, 37(1): 131-135

14 Barahona F, Turiel E, MartínEsteban A. J. Chromatogr. Sci., 2011, 49(3): 243-248

15 Ye X, Bishop A M, Needham L L, Calafat A M. Anal. Chim. Acta, 2008, 622 (1/2): 150-156

16 GallartAyala H, Moyano E, Galceran M T. J.Chromatogr. A, 2011, 1218(12): 1603-1610

17 NIU YuMin, ZHANG Jing, ZHANG ShuJun, SHAO Bing. Chinese J. Anal. Chem., 2012, 40(4): 534-538

牛宇敏, 張 晶, 張書軍, 邵 兵. 分析化學, 2012, 40(4): 534-538

18 Zhou X, Ye X, Calafat A M. J. Chromatogr. B, 2012, 881882: 27-33

19 Allmyr M, McLachlan M S, SandborghEnglund G, AdolfssonErici M. Anal. Chem., 2006, 78(18): 6542-6546

20 Wang H, Zhang J, Gao F, Yang Y, Duan H, Wu Y, Berset J D, Shao B. J. Chromatogr. B, 2011, 879 (21): 1861-1869

21 CarabiasMartinez R, RodriguezGonzalo E, RevillaRuiz P. J. Chromatogr. A, 2006, 1137(2): 207-215

22 EFSA (European Food Safety Authority). EFSA Reevaluates Safety of Bisphenol A and Sets Tolerable Daily Intake. http://www.efsa.europa.eu/en/press/news/afc070129.htm

23 Nielsen E, stergaard G, Thorup I, Ladefoged O, Jelhnes O, Jelnes J E. The Institute of Food Safety and Toxicology. Danish Veterinary and Food Administration Environmental Project Copenhagen: Danish Environmental Protection Agency, 2000

Determination of 4 Environmental Endocrine

Disruptors Involving Bisphenol A in Dairy Products

by Online Solid Phase Extraction Coupled with

Liquid ChromatographyTandem Mass Spectrometry

ZHANG Pin1,2, ZHANG Jing1,2, CHEN JieJun3, DUAN HeJun2, SHAO Bing*1,2

1(School of Public Health, Capital Medical University, Beijing 100058, China)

2(Beijing Key Laboratory of Diagrostic and Traceability Technologies Food Poisoning,

Beijing Centers for Preventive Medical Research, Beijing 100013, China)

3(China National Center for Biotechnology Development, Beijing 100038, China)

Abstract A simple analytical method by means of online solid phase extraction followed liquid chromatographytandem mass spectrometry (SPELCMS/MS) was developed for the simultaneous quantitation of 4 endocrine disruptors (triclosan, triclocarban, bisphenol A and nonylphenol) in dairy products. Infant formula and milk samples were dissolved in acetic acid buffer and hydrolyzed by βglucuronidase/arylsulfatase. Acetonitrile was used as the extract. Then, the mixture was freezecentrifuged for 10 min and the supernatant was diluted with water, and analyzed via online SPELCMS/MS. The sample extracts were concentrated by an Xbridge C8 cartridge and separated on a BEH C18 column with a gradient mobile phase of methanol and water; then analyzed by triple quadrupole mass spectrometry. Mass acquisition was conducted under negative electrospray ionization mode. Quantification was performed by isotopic internal standard calibration. Acceptable linearity (R2>0.99) was achieved over the range of 0.005-5.0 μg/L, with limits of quantification of 0.03-1.0 μg/kg. Average recoveries of four target compounds (spiked at three concentration levels) ranged from 80.2%-106.7%,with relative standard deviation less than 15%. Due to its rapidity, simplicity, and high sensitivity, the method is suitable for the analysis of endocrine disruptors in dairy products. It has been applied in the analysis of raw milk and milk products collected in Beijing. As a result, nonylphenol was found with a high detectable frequency.

Keywords Dairy products; Triclosan; Bisphenol A; Nonylphenol; Online solid phase extraction liquid chromatographytandem mass spectrometry

(Received 24 September 2014; accepted 7 October 2014)

This work was supported by the National Natural Science Foundation of China (No.21177014)

2(Beijing Key Laboratory of Diagrostic and Traceability Technologies Food Poisoning,

Beijing Centers for Preventive Medical Research, Beijing 100013, China)

3(China National Center for Biotechnology Development, Beijing 100038, China)

Abstract A simple analytical method by means of online solid phase extraction followed liquid chromatographytandem mass spectrometry (SPELCMS/MS) was developed for the simultaneous quantitation of 4 endocrine disruptors (triclosan, triclocarban, bisphenol A and nonylphenol) in dairy products. Infant formula and milk samples were dissolved in acetic acid buffer and hydrolyzed by βglucuronidase/arylsulfatase. Acetonitrile was used as the extract. Then, the mixture was freezecentrifuged for 10 min and the supernatant was diluted with water, and analyzed via online SPELCMS/MS. The sample extracts were concentrated by an Xbridge C8 cartridge and separated on a BEH C18 column with a gradient mobile phase of methanol and water; then analyzed by triple quadrupole mass spectrometry. Mass acquisition was conducted under negative electrospray ionization mode. Quantification was performed by isotopic internal standard calibration. Acceptable linearity (R2>0.99) was achieved over the range of 0.005-5.0 μg/L, with limits of quantification of 0.03-1.0 μg/kg. Average recoveries of four target compounds (spiked at three concentration levels) ranged from 80.2%-106.7%,with relative standard deviation less than 15%. Due to its rapidity, simplicity, and high sensitivity, the method is suitable for the analysis of endocrine disruptors in dairy products. It has been applied in the analysis of raw milk and milk products collected in Beijing. As a result, nonylphenol was found with a high detectable frequency.

Keywords Dairy products; Triclosan; Bisphenol A; Nonylphenol; Online solid phase extraction liquid chromatographytandem mass spectrometry

(Received 24 September 2014; accepted 7 October 2014)

This work was supported by the National Natural Science Foundation of China (No.21177014)

2(Beijing Key Laboratory of Diagrostic and Traceability Technologies Food Poisoning,

Beijing Centers for Preventive Medical Research, Beijing 100013, China)

3(China National Center for Biotechnology Development, Beijing 100038, China)

Abstract A simple analytical method by means of online solid phase extraction followed liquid chromatographytandem mass spectrometry (SPELCMS/MS) was developed for the simultaneous quantitation of 4 endocrine disruptors (triclosan, triclocarban, bisphenol A and nonylphenol) in dairy products. Infant formula and milk samples were dissolved in acetic acid buffer and hydrolyzed by βglucuronidase/arylsulfatase. Acetonitrile was used as the extract. Then, the mixture was freezecentrifuged for 10 min and the supernatant was diluted with water, and analyzed via online SPELCMS/MS. The sample extracts were concentrated by an Xbridge C8 cartridge and separated on a BEH C18 column with a gradient mobile phase of methanol and water; then analyzed by triple quadrupole mass spectrometry. Mass acquisition was conducted under negative electrospray ionization mode. Quantification was performed by isotopic internal standard calibration. Acceptable linearity (R2>0.99) was achieved over the range of 0.005-5.0 μg/L, with limits of quantification of 0.03-1.0 μg/kg. Average recoveries of four target compounds (spiked at three concentration levels) ranged from 80.2%-106.7%,with relative standard deviation less than 15%. Due to its rapidity, simplicity, and high sensitivity, the method is suitable for the analysis of endocrine disruptors in dairy products. It has been applied in the analysis of raw milk and milk products collected in Beijing. As a result, nonylphenol was found with a high detectable frequency.

Keywords Dairy products; Triclosan; Bisphenol A; Nonylphenol; Online solid phase extraction liquid chromatographytandem mass spectrometry

(Received 24 September 2014; accepted 7 October 2014)

This work was supported by the National Natural Science Foundation of China (No.21177014)

猜你喜歡
背景污染
“新四化”背景下汽車NVH的發展趨勢
什么是污染?
《論持久戰》的寫作背景
當代陜西(2020年14期)2021-01-08 09:30:42
什么是污染?
黑洞背景知識
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
堅決打好污染防治攻堅戰
晚清外語翻譯人才培養的背景
背景鏈接
對抗塵污染,遠離“霾”伏
都市麗人(2015年5期)2015-03-20 13:33:49
主站蜘蛛池模板: 都市激情亚洲综合久久| 亚洲欧洲国产成人综合不卡| 日韩中文字幕亚洲无线码| 久久亚洲欧美综合| 99精品免费欧美成人小视频| 在线观看亚洲人成网站| 91极品美女高潮叫床在线观看| 久久夜色精品国产嚕嚕亚洲av| 国产精品一区不卡| 97se亚洲综合在线| 亚洲精品视频免费看| 中文字幕第4页| 91免费观看视频| 久久久91人妻无码精品蜜桃HD| 毛片免费网址| 欧美激情,国产精品| 久久久久国产精品熟女影院| 91精品国产自产在线观看| 伊在人亞洲香蕉精品區| 国产午夜在线观看视频| 亚洲人人视频| 中文字幕在线观看日本| 国产精品主播| 欧美一级专区免费大片| 老色鬼欧美精品| 国产欧美专区在线观看| 欧美一区中文字幕| aa级毛片毛片免费观看久| 亚洲天堂网在线视频| 国产91久久久久久| 国产网站一区二区三区| 久久动漫精品| 久久久久九九精品影院| 亚洲黄色片免费看| 国产精品精品视频| 国产欧美日韩综合一区在线播放| 亚洲精品波多野结衣| 99在线视频网站| 久久综合九九亚洲一区| 亚洲国产精品不卡在线| 亚洲一级色| av在线无码浏览| 亚洲成人在线网| 无遮挡一级毛片呦女视频| 最新无码专区超级碰碰碰| 国产亚洲视频中文字幕视频| 国产区在线观看视频| 再看日本中文字幕在线观看| 欧美日韩另类国产| 99久久精品国产自免费| 呦视频在线一区二区三区| 国内a级毛片| 国产精品一区二区国产主播| 国产AV无码专区亚洲精品网站| 国内精品视频在线| 中国一级特黄视频| 久久男人资源站| 一级香蕉人体视频| 男人天堂伊人网| 亚洲不卡无码av中文字幕| 亚洲第一av网站| 免费一极毛片| 亚洲综合天堂网| 五月激情综合网| 国产成人免费高清AⅤ| 在线亚洲小视频| 91精品啪在线观看国产91九色| 美女一级毛片无遮挡内谢| 九九九精品成人免费视频7| 91在线中文| 精品中文字幕一区在线| 国产在线观看第二页| 亚洲乱码在线播放| 在线观看热码亚洲av每日更新| 日韩欧美中文| 欧美97欧美综合色伦图| 狠狠色成人综合首页| 特级毛片免费视频| 一级看片免费视频| 国产9191精品免费观看| 在线a网站| 亚洲最大看欧美片网站地址|