999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

定量蛋白質(zhì)組學(xué)質(zhì)譜采集技術(shù)進展

2014-12-18 21:24:52張偉
分析化學(xué) 2014年12期
關(guān)鍵詞:綜述

張偉

摘 要 質(zhì)譜是定量蛋白組學(xué)的主要工具。近年來隨著定量蛋白質(zhì)組學(xué)研究的深入,傳統(tǒng)質(zhì)譜定量技術(shù)面臨著復(fù)雜基質(zhì)干擾、分析通量限制等諸多問題。而最近一系列質(zhì)譜新技術(shù)的發(fā)展,包括同步母離子選擇(SPS)、質(zhì)量虧損標記、平行反應(yīng)監(jiān)測(PRM)、多重累積(MSX)和多種全新數(shù)據(jù)非依賴性采集(DIA)等,為解決目前蛋白質(zhì)組學(xué)在相對定量和絕對定量分析方面的局限提供了有效途徑。本文對定量蛋白質(zhì)組學(xué)目前遇到的瓶頸問題進行了分析,總結(jié)了質(zhì)譜定量采集技術(shù)的最新進展,并評述了這些新技術(shù)的特點以及在定量蛋白質(zhì)組學(xué)應(yīng)用中的優(yōu)勢。

[KH*3/4D][HTH]關(guān)鍵詞 [HTSS]定量蛋白質(zhì)組學(xué); 同步母離子選擇; 平行反應(yīng)監(jiān)測; 數(shù)據(jù)非依賴性采集; 綜述

[HT][HK][FQ(32,X,DY-W] [CD15] 20140910收稿; 20141018接受

* Email: wei.zhang@thermofisher.com [HT]

1 引 言

當今蛋白質(zhì)組學(xué)的關(guān)注焦點和研究趨勢已經(jīng)逐漸從定性分析 轉(zhuǎn)向定量分析。定量蛋白質(zhì)組學(xué)是對細胞、組織乃至完整生物體的蛋白質(zhì)表達進行定量分析,對生物過程機理的探索和臨床診斷標志物的發(fā)現(xiàn)與驗證具有重要意義[ 1,2]。定量蛋白質(zhì)組學(xué)分為相對定量與絕對定量[ 3]。相對定量即差異比較,通過質(zhì)譜大規(guī)模、高通量地對兩種或多種不同生理、病理條件下的樣本進行定量分析,獲得蛋白質(zhì)表達量的精確差異, 主要方法有穩(wěn)定同位素標記和非標記兩種技術(shù)手段[ 4,5]。絕對定量即獲得蛋白的具體表達量,利用質(zhì)譜監(jiān)測目標蛋白的專一性肽段(Unique Peptide)獲得色譜質(zhì)譜峰面積,并與已知量的標準肽段(外標法)或穩(wěn)定同位素標記的重標肽段(內(nèi)標法)比較確定具體量,實現(xiàn)絕對定量。主要質(zhì)譜方法是對專一性肽段進行選擇反應(yīng)監(jiān)測或稱多反應(yīng)監(jiān)測(Selected/Multiple reaction monitoring, SRM/MRM)[ 6]。

穩(wěn)定同位素標記技術(shù)是蛋白質(zhì)組學(xué)相對定量的經(jīng)典方法。樣本在穩(wěn)定同位素標記后、質(zhì)譜分析前混合,一次分析實現(xiàn)差異定量,有效消除了色譜和質(zhì)譜分離分析過程中的不穩(wěn)定性,最大程度減小了定量誤差。常見方法有基于代謝標記的SILAC[ 7]、基于酶解標記的18O標記[ 8]和基于化學(xué)標記的二甲基化[ 9]等,這些方法通過一級母離子提取峰面積實現(xiàn)定量比較。但是,一級定量具有標記通量低、動態(tài)范圍差、靈敏度不高等不足,因此, 近年來,基于同重同位素標記的二級定量方法使用越來越廣泛[ 10]。利用同重同位素標簽標記肽段,在一級質(zhì)譜不同樣本的肽段分子量沒有區(qū)分,相互疊加,提高了靈敏度; 二級碎裂獲得分子量不同的報告離子,在b/y離子定性的同時,通過報告離子之間的強度差異實現(xiàn)定量,提高了動態(tài)范圍。同重同位素主要標記試劑有iTRAQ[ 11]和TMT[ 12],標簽容量分別達到了8標和6標。然而,同重同位素標記技術(shù)面臨共洗脫肽段干擾的問題。蛋白質(zhì)組學(xué)樣本非常復(fù)雜,在色譜上存在大量共洗脫肽段,而質(zhì)譜在選擇母離子進行二級分析時,選擇窗口通常在m/z 2左右,分子量接近的共洗脫肽段被同時選擇,碎裂出的報告離子與目標肽段報告離子疊加,降低了定量比例的準確性[ 13,14]。Ting等[ 15]研究證明,在復(fù)雜樣本中,共洗脫肽段嚴重干擾了報告離子的強度,造成肽段和蛋白的定量比例低于真實比例,產(chǎn)生“低估效應(yīng)”。這一問題已成為同重同位素標記定量技術(shù)的瓶頸。

基于三重四極桿的SRM(或稱MRM)是質(zhì)譜定量的金標準,在蛋白質(zhì)絕對定量中也廣泛使用[ 6]。SRM根據(jù)專一性肽段的母離子質(zhì)量和子離子質(zhì)量,第一級質(zhì)量分析器(Q1)篩選母離子,進入碰撞池碎裂后,第二級質(zhì)量分析器(Q3)再篩選子離子,最大程度地去除干擾離子,監(jiān)測母離子子離子形成的離子對的信號響應(yīng)。通過外標法,利用已知量的標準肽段繪制標準曲線; 或內(nèi)標法,直接加入已知量的同位素重標肽段同時監(jiān)測,從而實現(xiàn)定性確證和定量檢測[ 6,16]。SRM靈敏度高、線性范圍廣,是目標蛋白驗證和絕對定量的有效手段。然而,隨著定量蛋白質(zhì)組學(xué)的深入發(fā)展,樣本基質(zhì)越來越復(fù)雜、目標蛋白豐度越來越低,容易受到高豐度蛋白的掩蓋。而SRM由于質(zhì)量分辨率低,難以有效去除復(fù)雜基質(zhì)背景的干擾,易造成假陽性[ 17,18]。另一方面,隨著分析通量的要求越來越高,一次分析可能需要監(jiān)測成千上萬個離子對,而SRM速度和靈敏度的局限使得能同時監(jiān)測的離子對數(shù)量有限[ 19]; 此外,離子對、碰撞能量等條件的優(yōu)化也費時費力,難以滿足目標蛋白質(zhì)組學(xué)高通量發(fā)展的需要,特別是大樣本量的生物標志物和系統(tǒng)生物學(xué)研究[ 20,21]。因此,蛋白質(zhì)絕對定量同樣面臨著較大的技術(shù)挑戰(zhàn)。

近兩年來,隨著以O(shè)rbitrap為代表的高分辨質(zhì)譜硬件技術(shù)不斷進步、采集方法不斷創(chuàng)新,定量蛋白質(zhì)組學(xué)遇到的諸多瓶頸正逐步得到解決。這些技術(shù)包括基于同重同位素標記技術(shù)的同步母離子選擇和質(zhì)量虧損標記,相對于傳統(tǒng)SRM掃描的高分辨平行反應(yīng)監(jiān)測和多重累積平行反應(yīng)監(jiān)測,以及多種全新數(shù)據(jù)非依賴性采集技術(shù)。

References

1 Ong S E, Mann M. Nat. Chem. Biol., 2005, 1(5): 252-262

2 Veenstra T D. J. Chromatogr. B, 2007, 847(1): 3-11

3 ZHOU Yuan, SHAN YiChu, ZHANG LiHua, ZHANG YuKui. Chinese Journal of Chromatography, 2013, 31(6): 496-502

周 愿, 單亦初, 張麗華, 張玉奎. 色譜, 2013, 31(6): 496-502

4 Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Anal. Bioanal. Chem., 2007, 389(4): 1017-1031

5 ZHU JinLei, ZHANG Kai, HE XiWen, ZHANG YuKui. Chinese J. Anal. Chem., 2010, 38(3): 434-441

朱金蕾, 張 鍇, 何錫文, 張玉奎. 分析化學(xué), 2010, 38(3): 434-441

6 Lange V, Picotti P, Domon B, Aebersold R. Mol. Syst. Biol., 2008, 4: 222

7 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1(5): 376-386

8 Capelo J L, Carreira R J, Fernandes L, Lodeiro C, Santos H M, SimalGandara J. Talanta, 2010, 80(4): 1476-1486

9 Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Nat. Protoc., 2009, 4(4): 484-494

10 Koehler C J, Strozynski M, Kozielski F, Treumann A, Thiede B. J. Proteome Res., 2009, 8(9): 4333-4341

11 Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C. Anal. Chem., 2003, 75(8): 1895-1904

12 Ross PL, Huang Y N, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, BartletJones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics, 2004, 3(12): 1154-1169

13 Karp N A, Huber W, Sadowski P G, Charles P D, Hester S V, Lilley K S. Mol. Cell. Proteomics, 2010, 9(9): 1885-1897

14 Ow S Y, Salim M, Noirel J, Evans C, Rehman I, Wright P C. J. Proteome Res., 2009, 8(11): 5347-5355

15 Ting L, Rad R, Gygi S P, Haas W. Nat. Methods, 2011, 8(11): 937-940

16 ZHAO Yan, YING WanTao, QIAN XiaoHong. Chem. Life, 2008, 28(2): 210-213

趙 焱, 應(yīng)萬濤, 錢小紅. 生命的化學(xué), 2008, 28(2): 210-213

17 Sherman J, McKay MJ, Ashman K, Molloy MP. Proteomics, 2009, 9(5): 1120-1123

18 Abbatiello SE, Mani DR, Keshishian H, Carr SA. Clin. Chem., 2010, 56(2): 291-305

19 Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Mol. Cell. Proteomics, 2011, 10(2): M110.002931

20 Cima I, Schiess R, Wild P, Kaelin M, Schüffler P, Lange V, Picotti P, Ossola R, Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J, Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R, Krek W. Proc. Natl. Acad. Sci. USA, 2011, 108(8): 3342-3347

21 Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. Cell, 2009, 138(4): 795-806

22 Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. Anal. Chem., 2010, 82(15): 6549-6558

23 Thingholm T E, Palmisano G, Kjeldsen F, Larsen M R. J. Proteome Res., 2010, 9(8): 4045-4052

24 McAlister G C, Nusinow D P, Jedrychowski M P, Wühr M, Huttlin E L, Erickson B K, Rad R, Haas W, Gygi S P. Anal. Chem., 2014, 86(14): 7150-7158

25 Wuhr M, Haas W, McAlister G C, Peshkin L, Rad R, Kirschner M W, Gygi S P. Anal. Chem., 2012, 84(21): 9214-9221

26 Wenger C D, Lee M V, Hebert A S, McAlister G C, Phanstiel D H, Westphall M S, Coon J J. Nat. Methods, 2011, 8(11): 933-935

27 Goeringer D E, Asano K G, McLuckey S A. Anal. Chem., 1994, 66(3): 313-318

28 Viner R, Bomgarden R, Blank M, Rogers J. 61st ASMS, 2013, Poster W617

29 Blank M, Bomgarden R, Rogers J, Jacobs R, Fong J, Puri N, Zabrouskov V, Viner R. 61st ASMS, 2013, Poster Th449

30 Weekes M P, Tomasec P, Huttlin E L, Fielding C A, Nusinow D, Stanton R J, Wang E C, Aicheler R, Murrell I, Wilkinson G W, Lehner P J, Gygi S P. Cell, 2014, 157(6): 1460-1472

31 Dephoure N, Gygi S P. Sci. Signal, 2012, 5(217): rs2

32 Werner T, Becher I, Sweetman G, Doce C, Savitski M M, Bantscheff M. Anal. Chem., 2012, 84(16): 7188-7194

33 McAlister G C, Huttlin E L, Haas W, Ting L, Jedrychowski M P, Rogers J C, Kuhn K, Pike I, Grothe R A, Blethrow J D, Gygi S P. Anal. Chem., 2012, 84(17): 7469-7478

34 Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski M M. Anal. Chem., 2014, 86(7): 3594-3601

35 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 9(81): 148-158

36 Karlsson C, Malmstrom L, Aebersold R, Malmstrom J. Nat. Commun., 2012, 3: 1301

37 GallartAyala H, Moyano E, Galceran M T. J. Chromatogr. A, 2008, 1208(12): 182-188

38 MartínezVillalba A, Moyano E, Martins C P, Galceran M T. Anal. Bioanal. Chem., 2010, 397(7): 2893-2901

39 Fortin T, Salvador A, Charrier J P, Lenz C, Bettsworth F, Lacoux X, ChoquetKastylevsky G, Lemoine J. Anal. Chem., 2009, 81(22): 9343-9352

40 Peterson A C, Russell J D, Bailey D J, Westphall M S, Coon J J. Mol. Cell. Proteomics, 2012, 11(11): 1475-1488

41 Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen P H, Adrian L, von Bergen M, Jehmlich N, Seifert J. Anal. Bioanal. Chem., 2014, 406(1): 283-291

42 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 81: 148-158

43 Tsuchiya H, Tanaka K, Saeki Y. Biochem. Biophys. Res. Commun., 2013, 436(2): 223-229

44 Tang H, Fang H, Yin E, Brasier A R, Sowers L C, Zhang K. Anal. Chem., 2014, 86(11): 5526-5534

45 Gallien S, Bourmaud A, Kim S Y, Domon B. J. Proteomics, 2014, 100: 147-159

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學(xué), 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學(xué), 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學(xué), 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

猜你喜歡
綜述
2021年國內(nèi)批評話語分析研究綜述
認知需要研究綜述
氫能有軌電車應(yīng)用綜述
高速磁浮車載運行控制系統(tǒng)綜述
5G應(yīng)用及發(fā)展綜述
電子制作(2019年10期)2019-06-17 11:45:16
SEBS改性瀝青綜述
石油瀝青(2018年6期)2018-12-29 12:07:04
NBA新賽季綜述
NBA特刊(2018年21期)2018-11-24 02:47:52
深度學(xué)習認知計算綜述
JOURNAL OF FUNCTIONAL POLYMERS
Progress of DNA-based Methods for Species Identification
主站蜘蛛池模板: 99热这里只有免费国产精品| 草草影院国产第一页| 国产永久免费视频m3u8| 99国产精品国产| 五月六月伊人狠狠丁香网| AV色爱天堂网| 专干老肥熟女视频网站| 国产精品99r8在线观看| 国产在线精品美女观看| 毛片在线播放a| 中国成人在线视频| 久久青草精品一区二区三区| 无码中文字幕加勒比高清| 伊人AV天堂| 国产91高清视频| 久久综合色天堂av| 国产在线专区| 欧美色综合久久| 在线欧美一区| 欧美激情网址| 福利片91| 国产精品女人呻吟在线观看| 久久国产免费观看| 国产大全韩国亚洲一区二区三区| 亚洲视频免费在线看| 亚洲黄网视频| 欧美视频二区| 伊人激情综合网| 国产在线视频欧美亚综合| 成人在线欧美| 日本www在线视频| 日韩国产黄色网站| 91精品久久久久久无码人妻| 亚洲成A人V欧美综合| 国产免费高清无需播放器| www中文字幕在线观看| 国模视频一区二区| 欧美日韩北条麻妃一区二区| 欧美笫一页| 欧美激情视频二区三区| 毛片视频网| 亚洲无码免费黄色网址| 啦啦啦网站在线观看a毛片| 波多野结衣无码AV在线| 三区在线视频| 国产白浆在线观看| 国产剧情国内精品原创| 一级毛片免费不卡在线| 亚洲成a人在线播放www| 久久综合色视频| 欧美第二区| 91视频精品| 色综合热无码热国产| 啊嗯不日本网站| 欧美日本激情| 在线观看国产精品一区| 国产欧美视频在线观看| 538国产在线| 欧美一区二区丝袜高跟鞋| 2021最新国产精品网站| a在线亚洲男人的天堂试看| 亚洲视频一区| 亚洲一区色| 一本大道东京热无码av| 欧美成人免费| 色亚洲成人| 国产精品女主播| 亚洲AV无码乱码在线观看代蜜桃 | 国产成人亚洲日韩欧美电影| 久久久久久久久久国产精品| 亚洲日本在线免费观看| 人妻精品久久无码区| 五月激激激综合网色播免费| 成年人国产视频| 欧美激情视频一区二区三区免费| 伊人久久婷婷| 国产成人一区| 一本综合久久| 四虎影视库国产精品一区| 九九免费观看全部免费视频| 亚洲三级影院| 找国产毛片看|