于曉丹 陳小敏譚 偉 虞湘賓
(南京航空航天大學電子信息工程學院 南京 210016)
在 Turbo-BLAST系統中采用鏈路自適應技術可以有效改善系統性能[1,2]。其中,發送功率分配是一種簡單可行的方法,根據不同的優化目標,可選用不同的發送功率分配方案。以信道容量為優化目標的注水功率分配算法可顯著提高系統容量[35]-,而以系統誤比特率(Bit Error Rate, BER)為優化目標的自適應功率分配算法可以有效改善系統的BER性能[68]-。
近年來,自適應功率分配算法得到廣泛應用[9,10],以最小化系統BER為優化目標,文獻[6,7]分別提出一種基于迫零(Zero Forcing, ZF)和最小均方誤差(Minimum Mean Square Error, MMSE)檢測的自適應功率分配算法;文獻[8]給出了一種基于MMSE軟干擾抵消迭代檢測的發送功率分配方案,較大程度改善了系統的BER性能。功率分配的性能取決于信道狀態信息(Channel State Information, CSI),而在實際應用中信道信息的反饋存在時延或誤差[11]。已有文獻針對反饋時延對系統性能的影響做了研究[12,13],但沒有給出反饋時延對功率分配性能的影響。
為提高功率分配算法的工程應用價值,本文針對存在信道反饋延遲的Turbo-BLAST系統,推導出系統BER的表達式,在總功率約束條件下,以BER為優化目標,提出基于拉格朗日極值法的次優功率分配方案和基于牛頓迭代法的最優功率分配方案。仿真結果表明,本文推導的BER表達式可以有效評估反饋時延對系統性能的影響,提出的兩種自適應功率分配算法均可改善系統的BER性能。
Turbo-BLAST系統有M根發送天線和N根接收天線,比特流經過編碼、調制、空時變換和功率加載后發送出去,信道為準靜態瑞利衰落,某一時刻接收信號可表示為


圖1 信道反饋有延遲時的系統模型

接收端采用基于 ZF準則的軟干擾抵消算法進行檢測,檢測用的權向量矩陣為,則發送信號的估計為






已知采用 M-QAM 調制時第ik個發送符號的BER表達式[6],則t時刻的系統瞬時BER可表示為



本節推導出了信道反饋有延遲時系統 BER的表達式,下面將在總功率約束條件下以BER為優化目標,分別給出次優和最優的功率分配矩陣的求解過程。
在總發送功率約束條件下,以系統總BER為優化目標的約束優化問題可以描述為

式(12)的約束優化問題可以采用拉格朗日極值法求解,則代價函數可表示為


利用式(14)重新構造代價函數,便可得到次優的功率分配矩陣和拉格朗日乘子:



對式(17)等號兩邊取對數,可得代價函數:

本節給出求解發送功率分配矩陣次優解與最優解的計算復雜度比較,如表1所示。

表1 求解次優解與最優解的復雜度比較
從表1可以看出,次優功率分配算法雖對BER做了近似,但其計算復雜度相比于最優功率分配算法大大降低。

圖2 迭代次數不同時次優/最優功率分配算法與等功率算法的性能比較

圖3 迭代次數對最優與次優ATPA算法性能的影響
本節通過仿真實驗給出系統的BER性能,以驗證所提算法的有效性。在圖2-圖3的仿真中,信道是準靜態瑞利衰落,假設接收端完全已知信道狀態信息。發送端采用(2,1,2)卷積編碼,4-QAM調制,接收端采用基于ZF準則的軟干擾抵消檢測,BCJR譯碼。iter表示迭代次數,表示歸一化反饋時延,EPA表示等功率分配算法,最優次優ATPA表示最優次優功率分配算法。
從圖2可以看出,和等功率分配相比,采用本文所提的兩種功率分配算法均可明顯改善系統性能,在,接收天線數為6時,采用最優功率分配算法要比采用等功率算法提高約1.2 dB,比采用次優功率分配算法提高約0.3 dB。另外,系統性能隨著接收天線數目的增大,歸一化反饋時延df τ的降低而逐漸變好,說明系統的接收分集越大系統性能越好,并且可以有效反映歸一化反饋時延對系統BER性能的影響,與理論預期結果一致。
從圖3可以看出, 接收端的迭代檢測算法可進一步改善系統的BER性能,無論對次優的功率分配算法還是最優的功率分配算法,隨著迭代次數的增加,系統的BER性能均得到了改善。這說明本文所提算法在信道反饋有延遲時仍然是有效的。
針對信道反饋有延遲的 Turbo-BLAST系統,提出次優和最優兩種自適應功率分配算法,通過仿真驗證了所提算法的有效性。最優功率分配方案可以顯著改善系統的BER性能,次優功率算法具有較低的算法復雜度,基于 ZF的軟干擾抵消迭代檢測算法進一步改善了系統的BER性能。由于本文接收端采用的檢測基于 ZF準則,雖可抑制信號干擾,但同時也損失了部分有用信息,因此,在以后的工作中,將進一步研究信道反饋有延遲情況下,基于MMSE檢測的自適應功率分配算法。
[1] Chen Xiao-min, Yu Xiang-bin, Zhu Qiu-ming, et al.. Waterfilling power allocation scheme for Turbo-BLAST system with imperfect channel state information[C]. IEEE 4th International Symposium on Microwave, Antenna,Propagation, and EMC Technologies for Wireless Communications, Beijing, 2011: 611-614.
[2] Sellathurai M and Haykin S. Turbo-BLAST for wireless communications: theory and experiments[J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2538-2546.
[3] 李曉輝, 易克初, 劉乃安. 一種MIMO系統中的新型資源分配算法[J]. 電路與系統學報, 2006, 11(5): 84-87.Li Xiao-hui, Yi Ke-chu, and Liu Nai-an. A novel resource allocation algorithm for MIMO system[J]. Journal of Circuits and Systems, 2006, 11(5): 84-87.
[4] 姜永權, 劉乃安, 沈民奮, 等. MIMO系統一種新的功率分配算法及容量分析[J]. 電子學報, 2007, 35(9): 1749-1753.Jiang Yong-quan, Liu Nai-an, Shen Min-fen, et al.. A novel power allocation algorithm for MIMO system and capacity analysis[J]. Acta Electronica Sinica, 2007, 35(9): 1749-1753.
[5] Kostina V and Loyka S. Optimal power and rate allocation for coded V-BLAST: instantaneous optimization[J]. IEEE Transactions on Communications, 2011, 59(10): 2841-2850.
[6] Nam Seung-h, Shin Oh-s, and Lee Kwang-b. Transmit power allocation for a modified V-BLAST system[J]. IEEE Transactions on Communications, 2004, 52(7): 1074-1080.
[7] 許威, 趙春明, 史志華, 等. MIMO系統中基于ZF/MMSE檢測的自適應功率分配方案[J]. 電子學報, 2008, 36(10):1891-1897.Xu Wei, Zhao Chun-ming, Shi Zhi-hua, et al.. Adaptive power allocation for ZF/MMSE detected MIMO systems[J]. Acta Electronica Sinica, 2008, 36(10): 1891-1897.
[8] 唐萬斌, 張亮, 李少謙. V-BLAST系統中采用發射功率分配的MMSE迭代軟干擾抵消算法[J]. 電子與信息學報, 2006,28(9): 1640-1644.Tang Wan-bin, Zhang Liang, and Li Shao-qian. MMSE iterative soft interference cancellation algorithm using transmit power allocation scheme in V-BLAST system[J].Journal of Electronics & Information Technology, 2006, 28(9):1640-1644.
[9] Karami M and Beaulieu N C. Channel adaptive power allocation and pilot optimization for OFDM systems[C].IEEE Global Communications Conference on Wireless Communications, Anaheim, CA, 2012: 4893-4899.
[10] Heo Ayoung, Cho Yeon-j, Jin Seung-r, et al.. Adaptive relay selection and power allocation for hybrid relay systems[C].International Conference on Future Generation Communication Technology, London, 2012: 117-120.
[11] Zhou S L and Giannakis G B. Optimal transmitter eighenbeamforming and space-time block coding based on channel mean feedback[J]. IEEE Transactions on Signal Processing,2002, 50(10): 2599-2613.
[12] 趙爽, 楊鴻文. 時變瑞利信道下反饋時延對選擇發送分集性能的影響[J]. 北京郵電大學學報, 2009, 32(4): 94-99.Zhao Shuang and Yang Hong-wen. The impact of feedback delay on the performance of selective transmit diversity under time-varying Rayleigh channel[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(4):94-99.
[13] Guharoy S and Mehta N B. Joint evaluation of channel feedback schemes, rate adaptation, and scheduling in OFDMA downlinks with feedback delays[J]. IEEE Transactions on Vehicular Technology, 2013, 62(4):1719-1732.
[14] Gore D A, Jr Heath R W, and Paulraj A J. Transmit selection in spatial multiplexing systems[J]. IEEE Communications Letters, 2002, 6(11): 491-494.
[15] Alouini M S and Goldsmith A J. Adaptive modulation over Nakagami fading channels[J]. Wireless Personal Communications, 2000, 13(1/2): 119-143.