劉健,封漢潁
(軍械工程學院基礎部,河北石家莊 050003)
二階非線性常微分方程組周期邊值問題的正解
劉健,封漢潁
(軍械工程學院基礎部,河北石家莊 050003)
研究一類二階非線性常微分方程組周期邊值問題,在滿足假設條件下,利用錐拉伸壓縮不動點定理,得到了當f和g滿足超線性或次線性時邊值問題一個正解存在的充分條件.
正解;周期邊值問題;常微分方程組
MSC2010:34B18
在物理學、工程實踐和生物學等領域中,許多問題可以抽象成常微分方程組進行研究.近年來,關于非線性常微分方程邊值問題的研究引起人們的廣泛注意,尤其是對二階非線性常微分方程邊值問題的研究已有許多結果[1-2].然而,對于非線性常微分方程組邊值問題的研究不是特別廣泛.文獻[3-4]利用拓撲方法和錐理論,對一類非線性常微分方程組邊值問題進行了研究,獲得了非零解存在性的結果;文獻[5]利用錐拉伸壓縮不動點定理研究了一類非線性二階常微分方程組邊值問題,證明了在適當條件下正解存在性的充分條件.
近年,胡玲等[6]研究了一類二階非線性微分方程組邊值問題的多個正解,

其中,f,g∈C([0,1]×R+,R+),f(x,0)≡0,g(x,0)≡0,α,β,γ,δ≥0且ρ=αγ+αδ+βγ>0.通過應用Krasnosel-skii的2個錐上的不動點定理,分別得到了邊值問題正解存在性及多解性的充分條件.
楊景保等[7]研究了一類非線性奇異微分系統的Sturm-Liouville邊值問題正解的存在性,

其中,ψ1,ψ2均為正參數,αi>0,βi≥0,γi>0,δi≥0均為常數且滿足αiγi+αiδi+βiγi>0,f1,f2:(0,1)×[0,∞)×[0,∞)→[0,∞)連續,在t=0,1處奇異,pi:(0,1)→(-∞,+∞),i=1,2勒貝格可積,且在[0,1]中有限定地可為奇異。通過應用范數形式的錐拉伸壓縮不動點定理,作者得到了該問題正解的存在性,推廣改進了現有的某些研究成果.
受此啟發,本文研究以下二階非線性常微分方程組周期邊值問題正解的存在性:






[1] 葛渭高.非線性常微分方程邊值問題[M].北京:科學出版社,2007.
[2] 馬如云.非線性常微分方程非局部問題[M].北京:科學出版社,2004.
[3] ZHANG Zhitao.Existence of non-trivial solution for superlinear system of integral equations and its applications[J].Acta Math Sinica,1999,15:153-162.
[4] MA Ruyun.Multiple nonnegative solutions of second-order systems of boundary value problems[J].Nonlinear Analysis,2000,42:1003-1010.
[5] LIU Bingmei,LIU Lishan,WU Yonghong.Positive solutions for singular systems of three-point boundary value problems[J].Comput Math Anal,2007,53:1429-1438.
[6] LING Hu,WANG Lianglong.Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations[J].J Math Anal Appl,2007,335,1052-1060.
[7] YANG Jingbao,WEI Zhongli.On existence of positive solutions of sturm-liouville boundary value problems for a nonlinear singular differential system[J].Appl Math Comput,2011,217,6097-6104.
[8] ATICI F MERDIVENCI,GUSEINOV G SH.On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions[J].J Comput Appl Math,2001,132:341-356.
[9] GUO Dajun,LAKSHMIKANTHAM V.Nonlinear problems in abstract cones[M].New York:Academic Press,1988.
[10] KRASNOSELSKII M.Positive solutions of operator equations[M].Groningen:Noordhoff,1964.
(責任編輯:王蘭英)
Positive solutions of periodic BVP for systems of nonlinear second-order ordinary differential equations
LIU Jian,FENG Hanying
(Department of Basic Courses,Ordnance Engineering College,Shijiazhuang 050003,China)
A periodic boundary value problem for systems of nonlinear second-order ordinary differential equations is investigated.By using the fixed point theorem of cone expansion and compression,the existence of at least one positive solution for the problem is established under certain assumptions,when fand gare superlinear or sublinear.
positive solution;periodic boundary value problem;ordinary differential equation systems
O175.8
A
1000-1565(2014)05-0455-05
10.3969/j.issn.1000-1565.2014.05.002
2013-12-23
國家自然科學基金資助項目(11271106);河北省自然科學基金資助項目(A2012506010)
劉健(1990-),男,山東德州人,軍械工程學院在讀碩士研究生,主要從事微分方程與動力系統方向研究.E-mail:jian_liu1990@163.com