999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Survey on the Sharp Blow-up Criteria for a Class of Nonlinear Schr?dinger Equations

2014-10-09 03:39:14ZHANGJianZHUShihui

ZHANG Jian, ZHU Shihui

(College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,Sichuan)

1 Introduction

In this paper,we consider the following Cauchy problem of nonlinear Schr?dinger equations

In fact,equation(1)is proposed by Davey and Stewartson in 1974 and is also called Davey-Stewartson system(see[1]).In fluid mechanics,Davey-Stewartson system models the evolution of weakly nonlinear water wave having one predominant direction of travel,and the wave amplitude is modulated slowly in two horizontal directions.

When the singular integral operatorEis replaced by the harmonic potential,i.e.E=-|x|2,equation(1)is called the nonlinear Schr?dinger equation with a harmonic potential.This equation models the remarkable Bose-Einstein condensate with attractive inter-particle interactions under a magnetic trap(see[2-4]).Physicists and mathematicians are very interested in studying dynamics of this equation(see[2,4-5]).Oh[6]established the local well-posedness in the corresponding energy fieldΣ={u∈H1(RN)||x|u∈L2(RN)}.Cazenave[5],Zhang[3,7],Shu and Zhang[8],Chen and Zhang[9],Carles[10]studied the existence of blow-up solutions and sharp thresholds of blow-up and global existence.Carles[10]also gave the transformation which reveals the relationship between the nonlinear Schr?dinger equation with and without a harmonic potential.Recently,Merle and Rapha?l[11-13]obtained a large body of breakthrough work for the super-critical mass blow-up solutions with the help of the Spectral Properties[12],such as sharp blow-up rates,profiles of blow-up solutions,etc.Then,using this transformation proposed by Carles[10],Zhang,Li and Wu[14-16]obtained some dynamical properties of blowup solutions such as sharp blow-up rates,L2-concentration and rate ofL2-concentration etc.Zhu,Zhang and Li[17]obtained the limiting profile of blow-up solutions in the natural energy fieldΣ={u∈H1(RN)||x|u∈L2(RN)}.

For the Cauchy problem(1)~(2),Ghidaglia and Saut[18],Guo and Wang[19]established the local well-posedness in the energy spaceH1(RN)forN=2 andN=3 respectively(see[5,20]for a review).Cipolatti[21],Zhang and Zhu[22]studied the existence of the standing waves.Cipolatti[23],Ohta[24-25],Gan and Zhang[26]investigated the stability and instability of standing waves.Ghidaglia and Saut[18],Guo and Wang[19]studied the existence of blow-up solutions,and Wang and Guo[27]further discussed the scattering of global solutions.Ozawa[28]constructed some exact blow-up solutions.Richards[29], Papanicolaou et al[30],Gan and Zhang[26,31], Shu and Zhang[32],Zhang and Zhu[22]studied the sharp conditions of blow-up and global existence for the Cauchy problem(1)~(2).Li et al[33],Richards[29]obtained the mass-concentration properties of the blow-up solutions inL2-critical case whenN=2.

In the present paper,we are focusing on the sharp criteria of blow-up and global existence for the Cauchy problem(1)~(2).First,whenN=2,3,by constructing a type of cross-constrained variational problem and establishing so-called cross-constraint manifolds of the evolution flow,a sharp threshold for blow-up and global existence of the solutions to the Cauchy problemis given.Secondly,forN=2,by using the profile decomposition of bounded sequences inH1,a precisely sharp criterion of the blow-up solutions for the Cauchy problem(1)~(2)with 3≤p<+∞ is given.Thirdly,forN=3,by using the profile decomposition of bounded sequences inH1,a precisely sharp threshold of the blow-up solutions for the Cauchy problem(1)~(2)withis given.We should point out that most of the above results has been published.There are two main aims of this survey.One is to give a collection about the sharp criteria of blow-up and global existence for equation(1),and it is convenient for readers to refer.The other is to give main sketch to obtain the above sharp criteria,and it may be quite useful for students to handle this method.

2 Preliminaries

The functionalH(u(t))is well-defined according to the Sobolev embedding theorem and the properties of the singular operatorE.Ghidaglia and Saut[18],Guo and Wang[19]established the local well-posedness of the Cauchy problem(1)~(2)in energy spaceH1.

Proposition 2.1LetN∈{2,3}andu0∈H1.There exists a unique solutionu(t,x)of the Cauchy problem(1)~(2)on the maximal time[0,T)such thatu(t,x)∈C([0,T);H1)and eitherT=+∞(global existence),orT<+∞and=+∞ (blow-up).Furthermore,for allt∈[0,T),u(t,x)satisfies the following conservation laws.

(i)Conservation of mass‖u(t)‖2=‖u0‖2.

(ii)Conservation of energyH(u(t))=H(u0).

By some basic calculations,we have the following proposition(see Ohta[25]).

3 Cross-constrained Variational Methods and Sharp Criteria

4 Profile Decomposition and Sharp Criteria for N=2

5 Profile Decomposition and Sharp Criteria for N=3

First,using the profile decomposition of bounded sequence inH1,we compute the best constant of a generalized Gagliardo-Nirenberg inequality in dimension three.More precisely,we have the following theorems.

(i)If‖?u0‖2<y0,then the solutionu(t,x)of the Cauchy problem(1)~(2)exists globally.Moreover,for all timet,u(t,x)satisfies

(ii)If‖?u0‖2>y0and|x|u0∈L2,then the solutionu(t,x)of the Cauchy problem(1)~(2)blows up in finite timeT<+∞,wherey0is the unique positive solution of the equationg(y)=0 andg(y)is defined in(27).

[1]Davey A,Stewartson K.On three-dimensional packets of surfaces waves[J].Proc Royal Soc,1974,A338:101-110.

[2]Wadati M,Tsurumi T.Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length[J].Phys Lett,1998,A247:287-293.

[3]Zhang J.Stability of attractive Bose-Einstein condensate[J].J Stat Phys,2000,10(1):731-746.

[4]Bradley C C,Sackett C A,Hulet R G.Bose-Einstein condensation of lithium:Observation of limited condensate number[J].Phys Rev Lett,1997,78:985-989.

[5]Cazenave T.Semilinear Schr?dinger equations[C]//Courant Lecture Notes in Mathematics,10.NYU:CIMS,AMS,2003.

[6]Oh Y G.Cauchy problem and Ehrenfest's law of nonlinear Schr?dinger equations with potentials[J].J Diff Eqns,1989,81:255-274.

[7]Zhang J.Sharp threshold for blowup and global existence in nonlinear Schr?dinger equations under a harmonic potential[J].Commun PDE,2005,30:1429-1443.

[8]Shu J,Zhang J.Nonlinear Schr?dinger equation with harmonic potential[J].J Math Phys,2006,47:063503-1-6.

[9]Chen G G,Zhang J.Sharp threshold of global existence for nonlinear Gross-Pitaevskii equation in RN[J].IMA J Appl Math,2006,71:232-240.

[10]Carles R.Critical nonlinear Schr?dinger equations with and without harmonic potential[J].Math Models Methods Appl Sci,2002,12:1513-1523.

[11]Merle F,Rapha?l P.On universality of blow-up profile forL2critical nonlinear Schr?dinger equation[J].Invent Math,2004,156:565-672.

[12]Merle F,Rapha?l P.Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr?dinger equation[J].Ann Math,2005,16:157-222.

[13]Merle F,Rapha?l P.On a sharp lower bound on the blow-up rate for theL2-critical nonlinear Schr?dinger equation[J].J Amer Math Soc,2006,19:37-90.

[14]Li X G,Zhang J.Limit behavior of blow-up solutions for critical nonlinear Schr?dinger equation with harmonic potential[J].Diff Integral Eqns,2006,19:761-771.

[15]Li X G,Zhang J,Wu Y H.Mathematical analysis of the collapse in Bose-Einstein Condensate[J].Acta Math Sci,2009,B29:56-64.

[16]Zhang J,Li X G,Wu Y H.Remarks on the blow-up rate for critical nonlinear Schr?dinger equation with harmonic potential[J].Appl Math Comput,2009,208:389-396.

[17]Zhu S H,Zhang J,Li X G.Limiting profile of blow-up solutions for the Gross-Pitaevskii equation[J].Sci China:Math,2009,A52:1017-1030.

[18]Ghidaglia J M,Saut J C.On the initial value problem for the Davey-Stewartson systems[J].Nonlinearity,1990,3:475-506.

[19]Guo B L,Wang B X.The Cauchy problem for Davey-Stewartson systems[J].Commun Pure Appl Math,1999,52:1477-1490.

[20]Sulem C,Sulem P L.The nonlinear Schr?dinger equation:Self-focusing and wave collapse[C]//Appl Math Sci,139.New York:Springer-Verlag,1999.

[21]Cipolatti R.On the existence of standing waves for a Davey-Stewartson system[J].Commun PDE,1992,17:967-988.

[22]Zhang J,Zhu S H.Sharp blow-up criteria for the Davey-Stewartson system in R3[J].Dynamics PDE,2011,8:239-260.

[23]Cipolatti R.On the instability of ground states for a Davey-Stewartson system[J].Ann Inst Henri Poincaré:Phys Theor,1993,58:85-104.

[24]Ohta M.Stability of standing waves for the generalized Davey-Stewartson system[J].J Dynam Diff Eqns,1994,6:325-334.

[25]Ohta M.Instability of standing waves the generalized Davey-Stewartson systems[J].Ann Inst Henri Poincare:Phys Theor,1995,63:69-80.

[26]Gan Z H,Zhang J.Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system[J].Commun Math Phys,2008,283:93-125.

[27]Wang B X,Guo B L.On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems[J].Sci China:Math,2001,A44:994-1002.

[28]Ozawa T.Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems[J].Proc Roy Soc London,1992,A436:345-349.

[29]Richards G.Mass concentration for the Davey-Stewartson system[J].Diff Integral Eqns,2011,24:261-280.

[30]Papanicolaou G C,Sulem C,Sulem P L,et al.The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves[J].Physica,1994,D72:61-86.

[31]Gan Z H,Zhang J.Sharp conditions of global existence for the generalized Davey-Stewartson system in three dimensional space[J].Acta Math Scientia,2006,A26:87-92.

[32]Shu J,Zhang J.Sharp conditions of global existence for the generalized Davey-Stewartson system[J].IMA J Appl Math,2007,72:36-42.

[33]Li X G,Zhang J,Lai S Y,et al.The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system[J].J Diff Eqns,2011,250:2197-2226.

[34]Gérard P.Description du defaut de compacite de l'injection de Sobolev[J].ESAIM Control Optim Calc Var,1998,3:213-233.

[35]Hmidi T,Keraani S.Blowup theory for the critical nonlinear Schr?dinger equations revisited[J].Internat Math Res Notices,2005,46:2815-2828.

[36]Weinstein M I.Nonlinear Schr?dinger equations and sharp interpolation estimates[J].Commun Math Phys,1983,87:567-576.

[37]Zhang J.Cross-constrained variational problem and nonlinear Schr?dinger equation[C]//Cucker F,Rojas J M.Proc Smalefest 2000.Found Comput Math.New Jersey:World Scientific,2002.

[38]Zhang J.Sharp conditions of global existence for nonlinear Schr?dinger and Klein-Gordon equations[J].Nonlinear Anal,2002,48:191-207.

[39]Holmer J,Roudenko S.On blow-up solutions to the 3D cubic nonlinear Schr?dinger equation[J].Appl Math Research Express,2007,2007:4.

[40]Kwong M K.Uniqueness of positive solutions of Δu-u+up=0 in Rn[J].Arch Rational Mech Anal,1989,105:243-266.

[41]Strauss W A.Existence of solitary waves in higher dimensions[J].Commun Math Phys,1977,55:149-162.

主站蜘蛛池模板: 国产玖玖视频| 欧美在线视频a| igao国产精品| 波多野结衣在线一区二区| 日韩精品亚洲人旧成在线| 免费啪啪网址| 欧美综合激情| 精品国产Av电影无码久久久| 国内视频精品| 99国产精品一区二区| 亚洲天堂网2014| 国产丝袜第一页| 51国产偷自视频区视频手机观看| 日韩人妻精品一区| 亚洲成a∧人片在线观看无码| 波多野结衣在线se| 久久伊伊香蕉综合精品| 久久综合AV免费观看| 成人亚洲视频| 亚洲天堂免费在线视频| 久久香蕉国产线看精品| 久久精品这里只有精99品| 91精品aⅴ无码中文字字幕蜜桃 | 国产精品xxx| 毛片最新网址| 免费亚洲成人| a在线观看免费| 91在线视频福利| 四虎免费视频网站| 中文天堂在线视频| 久久久久夜色精品波多野结衣| 国产日韩欧美在线播放| 一级毛片免费高清视频| 久久综合九色综合97婷婷| 制服无码网站| 国产在线专区| 国产va欧美va在线观看| 激情乱人伦| 91亚瑟视频| 国产成人你懂的在线观看| 亚洲成aⅴ人在线观看| 成·人免费午夜无码视频在线观看| 日韩不卡免费视频| 韩日免费小视频| 久久99国产乱子伦精品免| 久久这里只精品热免费99| 2019年国产精品自拍不卡| 无遮挡一级毛片呦女视频| 久热中文字幕在线观看| 色老头综合网| 91蝌蚪视频在线观看| 日韩国产黄色网站| 国产91在线免费视频| 伊人91视频| 精品久久久久无码| 久草网视频在线| 精品少妇人妻av无码久久| 亚洲首页在线观看| 亚洲国产成人在线| 91国内在线观看| 永久免费无码日韩视频| 99精品影院| 国产高清色视频免费看的网址| 欧美成在线视频| 成人国产小视频| 久久女人网| 精品人妻一区无码视频| 欧美中出一区二区| 少妇精品久久久一区二区三区| 狠狠干欧美| 久久精品无码专区免费| 欧美区国产区| 为你提供最新久久精品久久综合| 日韩中文字幕亚洲无线码| 狠狠ⅴ日韩v欧美v天堂| 国产在线精品99一区不卡| 日韩高清欧美| 亚洲欧洲自拍拍偷午夜色| 国产一区二区影院| 亚洲国产天堂在线观看| 亚洲精品午夜无码电影网| 亚洲日本韩在线观看|